diff options
| author | Eric Christopher <echristo@gmail.com> | 2019-04-17 04:52:47 +0000 | 
|---|---|---|
| committer | Eric Christopher <echristo@gmail.com> | 2019-04-17 04:52:47 +0000 | 
| commit | cee313d288a4faf0355d76fb6e0e927e211d08a5 (patch) | |
| tree | d386075318d761197779a96e5d8fc0dc7b06342b /llvm/lib/Transforms | |
| parent | c3d6a929fdd92fd06d4304675ade8d7210ee711a (diff) | |
| download | bcm5719-llvm-cee313d288a4faf0355d76fb6e0e927e211d08a5.tar.gz bcm5719-llvm-cee313d288a4faf0355d76fb6e0e927e211d08a5.zip  | |
Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
Diffstat (limited to 'llvm/lib/Transforms')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/CMakeLists.txt | 1 | ||||
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopFuse.cpp | 1212 | ||||
| -rw-r--r-- | llvm/lib/Transforms/Scalar/Scalar.cpp | 1 | 
3 files changed, 1214 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/CMakeLists.txt b/llvm/lib/Transforms/Scalar/CMakeLists.txt index 9c33971ce0f..e6f8901ec81 100644 --- a/llvm/lib/Transforms/Scalar/CMakeLists.txt +++ b/llvm/lib/Transforms/Scalar/CMakeLists.txt @@ -28,6 +28,7 @@ add_llvm_library(LLVMScalarOpts    LoopDeletion.cpp    LoopDataPrefetch.cpp    LoopDistribute.cpp +  LoopFuse.cpp    LoopIdiomRecognize.cpp    LoopInstSimplify.cpp    LoopInterchange.cpp diff --git a/llvm/lib/Transforms/Scalar/LoopFuse.cpp b/llvm/lib/Transforms/Scalar/LoopFuse.cpp new file mode 100644 index 00000000000..1d2394bf14e --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopFuse.cpp @@ -0,0 +1,1212 @@ +//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements the loop fusion pass. +/// The implementation is largely based on the following document: +/// +///       Code Transformations to Augment the Scope of Loop Fusion in a +///         Production Compiler +///       Christopher Mark Barton +///       MSc Thesis +///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf +/// +/// The general approach taken is to collect sets of control flow equivalent +/// loops and test whether they can be fused. The necessary conditions for +/// fusion are: +///    1. The loops must be adjacent (there cannot be any statements between +///       the two loops). +///    2. The loops must be conforming (they must execute the same number of +///       iterations). +///    3. The loops must be control flow equivalent (if one loop executes, the +///       other is guaranteed to execute). +///    4. There cannot be any negative distance dependencies between the loops. +/// If all of these conditions are satisfied, it is safe to fuse the loops. +/// +/// This implementation creates FusionCandidates that represent the loop and the +/// necessary information needed by fusion. It then operates on the fusion +/// candidates, first confirming that the candidate is eligible for fusion. The +/// candidates are then collected into control flow equivalent sets, sorted in +/// dominance order. Each set of control flow equivalent candidates is then +/// traversed, attempting to fuse pairs of candidates in the set. If all +/// requirements for fusion are met, the two candidates are fused, creating a +/// new (fused) candidate which is then added back into the set to consider for +/// additional fusion. +/// +/// This implementation currently does not make any modifications to remove +/// conditions for fusion. Code transformations to make loops conform to each of +/// the conditions for fusion are discussed in more detail in the document +/// above. These can be added to the current implementation in the future. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LoopFuse.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +using namespace llvm; + +#define DEBUG_TYPE "loop-fusion" + +STATISTIC(FuseCounter, "Count number of loop fusions performed"); +STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); +STATISTIC(InvalidPreheader, "Loop has invalid preheader"); +STATISTIC(InvalidHeader, "Loop has invalid header"); +STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); +STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); +STATISTIC(InvalidLatch, "Loop has invalid latch"); +STATISTIC(InvalidLoop, "Loop is invalid"); +STATISTIC(AddressTakenBB, "Basic block has address taken"); +STATISTIC(MayThrowException, "Loop may throw an exception"); +STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); +STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); +STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); +STATISTIC(InvalidTripCount, +          "Loop does not have invariant backedge taken count"); +STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); +STATISTIC(NonEqualTripCount, "Candidate trip counts are not the same"); +STATISTIC(NonAdjacent, "Candidates are not adjacent"); +STATISTIC(NonEmptyPreheader, "Candidate has a non-empty preheader"); + +enum FusionDependenceAnalysisChoice { +  FUSION_DEPENDENCE_ANALYSIS_SCEV, +  FUSION_DEPENDENCE_ANALYSIS_DA, +  FUSION_DEPENDENCE_ANALYSIS_ALL, +}; + +static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( +    "loop-fusion-dependence-analysis", +    cl::desc("Which dependence analysis should loop fusion use?"), +    cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", +                          "Use the scalar evolution interface"), +               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", +                          "Use the dependence analysis interface"), +               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", +                          "Use all available analyses")), +    cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); + +#ifndef NDEBUG +static cl::opt<bool> +    VerboseFusionDebugging("loop-fusion-verbose-debug", +                           cl::desc("Enable verbose debugging for Loop Fusion"), +                           cl::Hidden, cl::init(false), cl::ZeroOrMore); +#endif + +/// This class is used to represent a candidate for loop fusion. When it is +/// constructed, it checks the conditions for loop fusion to ensure that it +/// represents a valid candidate. It caches several parts of a loop that are +/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead +/// of continually querying the underlying Loop to retrieve these values. It is +/// assumed these will not change throughout loop fusion. +/// +/// The invalidate method should be used to indicate that the FusionCandidate is +/// no longer a valid candidate for fusion. Similarly, the isValid() method can +/// be used to ensure that the FusionCandidate is still valid for fusion. +struct FusionCandidate { +  /// Cache of parts of the loop used throughout loop fusion. These should not +  /// need to change throughout the analysis and transformation. +  /// These parts are cached to avoid repeatedly looking up in the Loop class. + +  /// Preheader of the loop this candidate represents +  BasicBlock *Preheader; +  /// Header of the loop this candidate represents +  BasicBlock *Header; +  /// Blocks in the loop that exit the loop +  BasicBlock *ExitingBlock; +  /// The successor block of this loop (where the exiting blocks go to) +  BasicBlock *ExitBlock; +  /// Latch of the loop +  BasicBlock *Latch; +  /// The loop that this fusion candidate represents +  Loop *L; +  /// Vector of instructions in this loop that read from memory +  SmallVector<Instruction *, 16> MemReads; +  /// Vector of instructions in this loop that write to memory +  SmallVector<Instruction *, 16> MemWrites; +  /// Are all of the members of this fusion candidate still valid +  bool Valid; + +  /// Dominator and PostDominator trees are needed for the +  /// FusionCandidateCompare function, required by FusionCandidateSet to +  /// determine where the FusionCandidate should be inserted into the set. These +  /// are used to establish ordering of the FusionCandidates based on dominance. +  const DominatorTree *DT; +  const PostDominatorTree *PDT; + +  FusionCandidate(Loop *L, const DominatorTree *DT, +                  const PostDominatorTree *PDT) +      : Preheader(L->getLoopPreheader()), Header(L->getHeader()), +        ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), +        Latch(L->getLoopLatch()), L(L), Valid(true), DT(DT), PDT(PDT) { + +    // Walk over all blocks in the loop and check for conditions that may +    // prevent fusion. For each block, walk over all instructions and collect +    // the memory reads and writes If any instructions that prevent fusion are +    // found, invalidate this object and return. +    for (BasicBlock *BB : L->blocks()) { +      if (BB->hasAddressTaken()) { +        AddressTakenBB++; +        invalidate(); +        return; +      } + +      for (Instruction &I : *BB) { +        if (I.mayThrow()) { +          MayThrowException++; +          invalidate(); +          return; +        } +        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { +          if (SI->isVolatile()) { +            ContainsVolatileAccess++; +            invalidate(); +            return; +          } +        } +        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { +          if (LI->isVolatile()) { +            ContainsVolatileAccess++; +            invalidate(); +            return; +          } +        } +        if (I.mayWriteToMemory()) +          MemWrites.push_back(&I); +        if (I.mayReadFromMemory()) +          MemReads.push_back(&I); +      } +    } +  } + +  /// Check if all members of the class are valid. +  bool isValid() const { +    return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && +           !L->isInvalid() && Valid; +  } + +  /// Verify that all members are in sync with the Loop object. +  void verify() const { +    assert(isValid() && "Candidate is not valid!!"); +    assert(!L->isInvalid() && "Loop is invalid!"); +    assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); +    assert(Header == L->getHeader() && "Header is out of sync"); +    assert(ExitingBlock == L->getExitingBlock() && +           "Exiting Blocks is out of sync"); +    assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); +    assert(Latch == L->getLoopLatch() && "Latch is out of sync"); +  } + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +  LLVM_DUMP_METHOD void dump() const { +    dbgs() << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") +           << "\n" +           << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" +           << "\tExitingBB: " +           << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" +           << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") +           << "\n" +           << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"; +  } +#endif + +private: +  // This is only used internally for now, to clear the MemWrites and MemReads +  // list and setting Valid to false. I can't envision other uses of this right +  // now, since once FusionCandidates are put into the FusionCandidateSet they +  // are immutable. Thus, any time we need to change/update a FusionCandidate, +  // we must create a new one and insert it into the FusionCandidateSet to +  // ensure the FusionCandidateSet remains ordered correctly. +  void invalidate() { +    MemWrites.clear(); +    MemReads.clear(); +    Valid = false; +  } +}; + +inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, +                                     const FusionCandidate &FC) { +  if (FC.isValid()) +    OS << FC.Preheader->getName(); +  else +    OS << "<Invalid>"; + +  return OS; +} + +struct FusionCandidateCompare { +  /// Comparison functor to sort two Control Flow Equivalent fusion candidates +  /// into dominance order. +  /// If LHS dominates RHS and RHS post-dominates LHS, return true; +  /// IF RHS dominates LHS and LHS post-dominates RHS, return false; +  bool operator()(const FusionCandidate &LHS, +                  const FusionCandidate &RHS) const { +    const DominatorTree *DT = LHS.DT; +    const PostDominatorTree *PDT = LHS.PDT; + +    assert(DT && PDT && "Expecting valid dominator tree"); + +    if (DT->dominates(LHS.Preheader, RHS.Preheader)) { +      // Verify RHS Postdominates LHS +      assert(PDT->dominates(RHS.Preheader, LHS.Preheader)); +      return true; +    } + +    if (DT->dominates(RHS.Preheader, LHS.Preheader)) { +      // RHS dominates LHS +      // Verify LHS post-dominates RHS +      assert(PDT->dominates(LHS.Preheader, RHS.Preheader)); +      return false; +    } +    // If LHS does not dominate RHS and RHS does not dominate LHS then there is +    // no dominance relationship between the two FusionCandidates. Thus, they +    // should not be in the same set together. +    llvm_unreachable( +        "No dominance relationship between these fusion candidates!"); +  } +}; + +namespace { +using LoopVector = SmallVector<Loop *, 4>; + +// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance +// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 +// dominates FC1 and FC1 post-dominates FC0. +// std::set was chosen because we want a sorted data structure with stable +// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent +// loops by moving intervening code around. When this intervening code contains +// loops, those loops will be moved also. The corresponding FusionCandidates +// will also need to be moved accordingly. As this is done, having stable +// iterators will simplify the logic. Similarly, having an efficient insert that +// keeps the FusionCandidateSet sorted will also simplify the implementation. +using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; +using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; +} // namespace + +inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, +                                     const FusionCandidateSet &CandSet) { +  for (auto IT : CandSet) +    OS << IT << "\n"; + +  return OS; +} + +static void +printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { +  LLVM_DEBUG(dbgs() << "Fusion Candidates: \n"); +  for (const auto &CandidateSet : FusionCandidates) { +    LLVM_DEBUG({ +      dbgs() << "*** Fusion Candidate Set ***\n"; +      dbgs() << CandidateSet; +      dbgs() << "****************************\n"; +    }); +  } +} + +/// Collect all loops in function at the same nest level, starting at the +/// outermost level. +/// +/// This data structure collects all loops at the same nest level for a +/// given function (specified by the LoopInfo object). It starts at the +/// outermost level. +struct LoopDepthTree { +  using LoopsOnLevelTy = SmallVector<LoopVector, 4>; +  using iterator = LoopsOnLevelTy::iterator; +  using const_iterator = LoopsOnLevelTy::const_iterator; + +  LoopDepthTree(LoopInfo &LI) : Depth(1) { +    if (!LI.empty()) +      LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); +  } + +  /// Test whether a given loop has been removed from the function, and thus is +  /// no longer valid. +  bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } + +  /// Record that a given loop has been removed from the function and is no +  /// longer valid. +  void removeLoop(const Loop *L) { RemovedLoops.insert(L); } + +  /// Descend the tree to the next (inner) nesting level +  void descend() { +    LoopsOnLevelTy LoopsOnNextLevel; + +    for (const LoopVector &LV : *this) +      for (Loop *L : LV) +        if (!isRemovedLoop(L) && L->begin() != L->end()) +          LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); + +    LoopsOnLevel = LoopsOnNextLevel; +    RemovedLoops.clear(); +    Depth++; +  } + +  bool empty() const { return size() == 0; } +  size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } +  unsigned getDepth() const { return Depth; } + +  iterator begin() { return LoopsOnLevel.begin(); } +  iterator end() { return LoopsOnLevel.end(); } +  const_iterator begin() const { return LoopsOnLevel.begin(); } +  const_iterator end() const { return LoopsOnLevel.end(); } + +private: +  /// Set of loops that have been removed from the function and are no longer +  /// valid. +  SmallPtrSet<const Loop *, 8> RemovedLoops; + +  /// Depth of the current level, starting at 1 (outermost loops). +  unsigned Depth; + +  /// Vector of loops at the current depth level that have the same parent loop +  LoopsOnLevelTy LoopsOnLevel; +}; + +#ifndef NDEBUG +static void printLoopVector(const LoopVector &LV) { +  dbgs() << "****************************\n"; +  for (auto L : LV) +    printLoop(*L, dbgs()); +  dbgs() << "****************************\n"; +} +#endif + +static void reportLoopFusion(const FusionCandidate &FC0, +                             const FusionCandidate &FC1, +                             OptimizationRemarkEmitter &ORE) { +  using namespace ore; +  ORE.emit( +      OptimizationRemark(DEBUG_TYPE, "LoopFusion", FC0.Preheader->getParent()) +      << "Fused " << NV("Cand1", StringRef(FC0.Preheader->getName())) +      << " with " << NV("Cand2", StringRef(FC1.Preheader->getName()))); +} + +struct LoopFuser { +private: +  // Sets of control flow equivalent fusion candidates for a given nest level. +  FusionCandidateCollection FusionCandidates; + +  LoopDepthTree LDT; +  DomTreeUpdater DTU; + +  LoopInfo &LI; +  DominatorTree &DT; +  DependenceInfo &DI; +  ScalarEvolution &SE; +  PostDominatorTree &PDT; +  OptimizationRemarkEmitter &ORE; + +public: +  LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, +            ScalarEvolution &SE, PostDominatorTree &PDT, +            OptimizationRemarkEmitter &ORE, const DataLayout &DL) +      : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), +        DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} + +  /// This is the main entry point for loop fusion. It will traverse the +  /// specified function and collect candidate loops to fuse, starting at the +  /// outermost nesting level and working inwards. +  bool fuseLoops(Function &F) { +#ifndef NDEBUG +    if (VerboseFusionDebugging) { +      LI.print(dbgs()); +    } +#endif + +    LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() +                      << "\n"); +    bool Changed = false; + +    while (!LDT.empty()) { +      LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " +                        << LDT.getDepth() << "\n";); + +      for (const LoopVector &LV : LDT) { +        assert(LV.size() > 0 && "Empty loop set was build!"); + +        // Skip singleton loop sets as they do not offer fusion opportunities on +        // this level. +        if (LV.size() == 1) +          continue; +#ifndef NDEBUG +        if (VerboseFusionDebugging) { +          LLVM_DEBUG({ +            dbgs() << "  Visit loop set (#" << LV.size() << "):\n"; +            printLoopVector(LV); +          }); +        } +#endif + +        collectFusionCandidates(LV); +        Changed |= fuseCandidates(); +      } + +      // Finished analyzing candidates at this level. +      // Descend to the next level and clear all of the candidates currently +      // collected. Note that it will not be possible to fuse any of the +      // existing candidates with new candidates because the new candidates will +      // be at a different nest level and thus not be control flow equivalent +      // with all of the candidates collected so far. +      LLVM_DEBUG(dbgs() << "Descend one level!\n"); +      LDT.descend(); +      FusionCandidates.clear(); +    } + +    if (Changed) +      LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); + +#ifndef NDEBUG +    assert(DT.verify()); +    assert(PDT.verify()); +    LI.verify(DT); +    SE.verify(); +#endif + +    LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); +    return Changed; +  } + +private: +  /// Determine if two fusion candidates are control flow equivalent. +  /// +  /// Two fusion candidates are control flow equivalent if when one executes, +  /// the other is guaranteed to execute. This is determined using dominators +  /// and post-dominators: if A dominates B and B post-dominates A then A and B +  /// are control-flow equivalent. +  bool isControlFlowEquivalent(const FusionCandidate &FC0, +                               const FusionCandidate &FC1) const { +    assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); + +    if (DT.dominates(FC0.Preheader, FC1.Preheader)) +      return PDT.dominates(FC1.Preheader, FC0.Preheader); + +    if (DT.dominates(FC1.Preheader, FC0.Preheader)) +      return PDT.dominates(FC0.Preheader, FC1.Preheader); + +    return false; +  } + +  /// Determine if a fusion candidate (representing a loop) is eligible for +  /// fusion. Note that this only checks whether a single loop can be fused - it +  /// does not check whether it is *legal* to fuse two loops together. +  bool eligibleForFusion(const FusionCandidate &FC) const { +    if (!FC.isValid()) { +      LLVM_DEBUG(dbgs() << "FC " << FC << " has invalid CFG requirements!\n"); +      if (!FC.Preheader) +        InvalidPreheader++; +      if (!FC.Header) +        InvalidHeader++; +      if (!FC.ExitingBlock) +        InvalidExitingBlock++; +      if (!FC.ExitBlock) +        InvalidExitBlock++; +      if (!FC.Latch) +        InvalidLatch++; +      if (FC.L->isInvalid()) +        InvalidLoop++; + +      return false; +    } + +    // Require ScalarEvolution to be able to determine a trip count. +    if (!SE.hasLoopInvariantBackedgeTakenCount(FC.L)) { +      LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName() +                        << " trip count not computable!\n"); +      InvalidTripCount++; +      return false; +    } + +    if (!FC.L->isLoopSimplifyForm()) { +      LLVM_DEBUG(dbgs() << "Loop " << FC.L->getName() +                        << " is not in simplified form!\n"); +      NotSimplifiedForm++; +      return false; +    } + +    return true; +  } + +  /// Iterate over all loops in the given loop set and identify the loops that +  /// are eligible for fusion. Place all eligible fusion candidates into Control +  /// Flow Equivalent sets, sorted by dominance. +  void collectFusionCandidates(const LoopVector &LV) { +    for (Loop *L : LV) { +      FusionCandidate CurrCand(L, &DT, &PDT); +      if (!eligibleForFusion(CurrCand)) +        continue; + +      // Go through each list in FusionCandidates and determine if L is control +      // flow equivalent with the first loop in that list. If it is, append LV. +      // If not, go to the next list. +      // If no suitable list is found, start another list and add it to +      // FusionCandidates. +      bool FoundSet = false; + +      for (auto &CurrCandSet : FusionCandidates) { +        if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { +          CurrCandSet.insert(CurrCand); +          FoundSet = true; +#ifndef NDEBUG +          if (VerboseFusionDebugging) +            LLVM_DEBUG(dbgs() << "Adding " << CurrCand +                              << " to existing candidate set\n"); +#endif +          break; +        } +      } +      if (!FoundSet) { +        // No set was found. Create a new set and add to FusionCandidates +#ifndef NDEBUG +        if (VerboseFusionDebugging) +          LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); +#endif +        FusionCandidateSet NewCandSet; +        NewCandSet.insert(CurrCand); +        FusionCandidates.push_back(NewCandSet); +      } +      NumFusionCandidates++; +    } +  } + +  /// Determine if it is beneficial to fuse two loops. +  /// +  /// For now, this method simply returns true because we want to fuse as much +  /// as possible (primarily to test the pass). This method will evolve, over +  /// time, to add heuristics for profitability of fusion. +  bool isBeneficialFusion(const FusionCandidate &FC0, +                          const FusionCandidate &FC1) { +    return true; +  } + +  /// Determine if two fusion candidates have the same trip count (i.e., they +  /// execute the same number of iterations). +  /// +  /// Note that for now this method simply returns a boolean value because there +  /// are no mechanisms in loop fusion to handle different trip counts. In the +  /// future, this behaviour can be extended to adjust one of the loops to make +  /// the trip counts equal (e.g., loop peeling). When this is added, this +  /// interface may need to change to return more information than just a +  /// boolean value. +  bool identicalTripCounts(const FusionCandidate &FC0, +                           const FusionCandidate &FC1) const { +    const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); +    if (isa<SCEVCouldNotCompute>(TripCount0)) { +      UncomputableTripCount++; +      LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); +      return false; +    } + +    const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); +    if (isa<SCEVCouldNotCompute>(TripCount1)) { +      UncomputableTripCount++; +      LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); +      return false; +    } +    LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " +                      << *TripCount1 << " are " +                      << (TripCount0 == TripCount1 ? "identical" : "different") +                      << "\n"); + +    return (TripCount0 == TripCount1); +  } + +  /// Walk each set of control flow equivalent fusion candidates and attempt to +  /// fuse them. This does a single linear traversal of all candidates in the +  /// set. The conditions for legal fusion are checked at this point. If a pair +  /// of fusion candidates passes all legality checks, they are fused together +  /// and a new fusion candidate is created and added to the FusionCandidateSet. +  /// The original fusion candidates are then removed, as they are no longer +  /// valid. +  bool fuseCandidates() { +    bool Fused = false; +    LLVM_DEBUG(printFusionCandidates(FusionCandidates)); +    for (auto &CandidateSet : FusionCandidates) { +      if (CandidateSet.size() < 2) +        continue; + +      LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" +                        << CandidateSet << "\n"); + +      for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { +        assert(!LDT.isRemovedLoop(FC0->L) && +               "Should not have removed loops in CandidateSet!"); +        auto FC1 = FC0; +        for (++FC1; FC1 != CandidateSet.end(); ++FC1) { +          assert(!LDT.isRemovedLoop(FC1->L) && +                 "Should not have removed loops in CandidateSet!"); + +          LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); +                     dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); + +          FC0->verify(); +          FC1->verify(); + +          if (!identicalTripCounts(*FC0, *FC1)) { +            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " +                                 "counts. Not fusing.\n"); +            NonEqualTripCount++; +            continue; +          } + +          if (!isAdjacent(*FC0, *FC1)) { +            LLVM_DEBUG(dbgs() +                       << "Fusion candidates are not adjacent. Not fusing.\n"); +            NonAdjacent++; +            continue; +          } + +          // For now we skip fusing if the second candidate has any instructions +          // in the preheader. This is done because we currently do not have the +          // safety checks to determine if it is save to move the preheader of +          // the second candidate past the body of the first candidate. Once +          // these checks are added, this condition can be removed. +          if (!isEmptyPreheader(*FC1)) { +            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " +                                 "preheader. Not fusing.\n"); +            NonEmptyPreheader++; +            continue; +          } + +          if (!dependencesAllowFusion(*FC0, *FC1)) { +            LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); +            continue; +          } + +          bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); +          LLVM_DEBUG(dbgs() +                     << "\tFusion appears to be " +                     << (BeneficialToFuse ? "" : "un") << "profitable!\n"); +          if (!BeneficialToFuse) +            continue; + +          // All analysis has completed and has determined that fusion is legal +          // and profitable. At this point, start transforming the code and +          // perform fusion. + +          LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " +                            << *FC1 << "\n"); + +          // Report fusion to the Optimization Remarks. +          // Note this needs to be done *before* performFusion because +          // performFusion will change the original loops, making it not +          // possible to identify them after fusion is complete. +          reportLoopFusion(*FC0, *FC1, ORE); + +          FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT); +          FusedCand.verify(); +          assert(eligibleForFusion(FusedCand) && +                 "Fused candidate should be eligible for fusion!"); + +          // Notify the loop-depth-tree that these loops are not valid objects +          // anymore. +          LDT.removeLoop(FC1->L); + +          CandidateSet.erase(FC0); +          CandidateSet.erase(FC1); + +          auto InsertPos = CandidateSet.insert(FusedCand); + +          assert(InsertPos.second && +                 "Unable to insert TargetCandidate in CandidateSet!"); + +          // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations +          // of the FC1 loop will attempt to fuse the new (fused) loop with the +          // remaining candidates in the current candidate set. +          FC0 = FC1 = InsertPos.first; + +          LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet +                            << "\n"); + +          Fused = true; +        } +      } +    } +    return Fused; +  } + +  /// Rewrite all additive recurrences in a SCEV to use a new loop. +  class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { +  public: +    AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, +                       bool UseMax = true) +        : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), +          NewL(NewL) {} + +    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { +      const Loop *ExprL = Expr->getLoop(); +      SmallVector<const SCEV *, 2> Operands; +      if (ExprL == &OldL) { +        Operands.append(Expr->op_begin(), Expr->op_end()); +        return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); +      } + +      if (OldL.contains(ExprL)) { +        bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); +        if (!UseMax || !Pos || !Expr->isAffine()) { +          Valid = false; +          return Expr; +        } +        return visit(Expr->getStart()); +      } + +      for (const SCEV *Op : Expr->operands()) +        Operands.push_back(visit(Op)); +      return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); +    } + +    bool wasValidSCEV() const { return Valid; } + +  private: +    bool Valid, UseMax; +    const Loop &OldL, &NewL; +  }; + +  /// Return false if the access functions of \p I0 and \p I1 could cause +  /// a negative dependence. +  bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, +                            Instruction &I1, bool EqualIsInvalid) { +    Value *Ptr0 = getLoadStorePointerOperand(&I0); +    Value *Ptr1 = getLoadStorePointerOperand(&I1); +    if (!Ptr0 || !Ptr1) +      return false; + +    const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); +    const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); +#ifndef NDEBUG +    if (VerboseFusionDebugging) +      LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs " +                        << *SCEVPtr1 << "\n"); +#endif +    AddRecLoopReplacer Rewriter(SE, L0, L1); +    SCEVPtr0 = Rewriter.visit(SCEVPtr0); +#ifndef NDEBUG +    if (VerboseFusionDebugging) +      LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0 +                        << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); +#endif +    if (!Rewriter.wasValidSCEV()) +      return false; + +    // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by +    //       L0) and the other is not. We could check if it is monotone and test +    //       the beginning and end value instead. + +    BasicBlock *L0Header = L0.getHeader(); +    auto HasNonLinearDominanceRelation = [&](const SCEV *S) { +      const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); +      if (!AddRec) +        return false; +      return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && +             !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); +    }; +    if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) +      return false; + +    ICmpInst::Predicate Pred = +        EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; +    bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); +#ifndef NDEBUG +    if (VerboseFusionDebugging) +      LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0 +                        << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1 +                        << "\n"); +#endif +    return IsAlwaysGE; +  } + +  /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in +  /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses +  /// specified by @p DepChoice are used to determine this. +  bool dependencesAllowFusion(const FusionCandidate &FC0, +                              const FusionCandidate &FC1, Instruction &I0, +                              Instruction &I1, bool AnyDep, +                              FusionDependenceAnalysisChoice DepChoice) { +#ifndef NDEBUG +    if (VerboseFusionDebugging) { +      LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " +                        << DepChoice << "\n"); +    } +#endif +    switch (DepChoice) { +    case FUSION_DEPENDENCE_ANALYSIS_SCEV: +      return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); +    case FUSION_DEPENDENCE_ANALYSIS_DA: { +      auto DepResult = DI.depends(&I0, &I1, true); +      if (!DepResult) +        return true; +#ifndef NDEBUG +      if (VerboseFusionDebugging) { +        LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); +                   dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " +                          << (DepResult->isOrdered() ? "true" : "false") +                          << "]\n"); +        LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() +                          << "\n"); +      } +#endif + +      if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) +        LLVM_DEBUG( +            dbgs() << "TODO: Implement pred/succ dependence handling!\n"); + +      // TODO: Can we actually use the dependence info analysis here? +      return false; +    } + +    case FUSION_DEPENDENCE_ANALYSIS_ALL: +      return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, +                                    FUSION_DEPENDENCE_ANALYSIS_SCEV) || +             dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, +                                    FUSION_DEPENDENCE_ANALYSIS_DA); +    } + +    llvm_unreachable("Unknown fusion dependence analysis choice!"); +  } + +  /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. +  bool dependencesAllowFusion(const FusionCandidate &FC0, +                              const FusionCandidate &FC1) { +    LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 +                      << "\n"); +    assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); +    assert(DT.dominates(FC0.Preheader, FC1.Preheader)); + +    for (Instruction *WriteL0 : FC0.MemWrites) { +      for (Instruction *WriteL1 : FC1.MemWrites) +        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, +                                    /* AnyDep */ false, +                                    FusionDependenceAnalysis)) { +          InvalidDependencies++; +          return false; +        } +      for (Instruction *ReadL1 : FC1.MemReads) +        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, +                                    /* AnyDep */ false, +                                    FusionDependenceAnalysis)) { +          InvalidDependencies++; +          return false; +        } +    } + +    for (Instruction *WriteL1 : FC1.MemWrites) { +      for (Instruction *WriteL0 : FC0.MemWrites) +        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, +                                    /* AnyDep */ false, +                                    FusionDependenceAnalysis)) { +          InvalidDependencies++; +          return false; +        } +      for (Instruction *ReadL0 : FC0.MemReads) +        if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, +                                    /* AnyDep */ false, +                                    FusionDependenceAnalysis)) { +          InvalidDependencies++; +          return false; +        } +    } + +    // Walk through all uses in FC1. For each use, find the reaching def. If the +    // def is located in FC0 then it is is not safe to fuse. +    for (BasicBlock *BB : FC1.L->blocks()) +      for (Instruction &I : *BB) +        for (auto &Op : I.operands()) +          if (Instruction *Def = dyn_cast<Instruction>(Op)) +            if (FC0.L->contains(Def->getParent())) { +              InvalidDependencies++; +              return false; +            } + +    return true; +  } + +  /// Determine if the exit block of \p FC0 is the preheader of \p FC1. In this +  /// case, there is no code in between the two fusion candidates, thus making +  /// them adjacent. +  bool isAdjacent(const FusionCandidate &FC0, +                  const FusionCandidate &FC1) const { +    return FC0.ExitBlock == FC1.Preheader; +  } + +  bool isEmptyPreheader(const FusionCandidate &FC) const { +    return FC.Preheader->size() == 1; +  } + +  /// Fuse two fusion candidates, creating a new fused loop. +  /// +  /// This method contains the mechanics of fusing two loops, represented by \p +  /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 +  /// postdominates \p FC0 (making them control flow equivalent). It also +  /// assumes that the other conditions for fusion have been met: adjacent, +  /// identical trip counts, and no negative distance dependencies exist that +  /// would prevent fusion. Thus, there is no checking for these conditions in +  /// this method. +  /// +  /// Fusion is performed by rewiring the CFG to update successor blocks of the +  /// components of tho loop. Specifically, the following changes are done: +  /// +  ///   1. The preheader of \p FC1 is removed as it is no longer necessary +  ///   (because it is currently only a single statement block). +  ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1. +  ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0. +  ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0. +  /// +  /// All of these modifications are done with dominator tree updates, thus +  /// keeping the dominator (and post dominator) information up-to-date. +  /// +  /// This can be improved in the future by actually merging blocks during +  /// fusion. For example, the preheader of \p FC1 can be merged with the +  /// preheader of \p FC0. This would allow loops with more than a single +  /// statement in the preheader to be fused. Similarly, the latch blocks of the +  /// two loops could also be fused into a single block. This will require +  /// analysis to prove it is safe to move the contents of the block past +  /// existing code, which currently has not been implemented. +  Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { +    assert(FC0.isValid() && FC1.isValid() && +           "Expecting valid fusion candidates"); + +    LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); +               dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); + +    assert(FC1.Preheader == FC0.ExitBlock); +    assert(FC1.Preheader->size() == 1 && +           FC1.Preheader->getSingleSuccessor() == FC1.Header); + +    // Remember the phi nodes originally in the header of FC0 in order to rewire +    // them later. However, this is only necessary if the new loop carried +    // values might not dominate the exiting branch. While we do not generally +    // test if this is the case but simply insert intermediate phi nodes, we +    // need to make sure these intermediate phi nodes have different +    // predecessors. To this end, we filter the special case where the exiting +    // block is the latch block of the first loop. Nothing needs to be done +    // anyway as all loop carried values dominate the latch and thereby also the +    // exiting branch. +    SmallVector<PHINode *, 8> OriginalFC0PHIs; +    if (FC0.ExitingBlock != FC0.Latch) +      for (PHINode &PHI : FC0.Header->phis()) +        OriginalFC0PHIs.push_back(&PHI); + +    // Replace incoming blocks for header PHIs first. +    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); +    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); + +    // Then modify the control flow and update DT and PDT. +    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; + +    // The old exiting block of the first loop (FC0) has to jump to the header +    // of the second as we need to execute the code in the second header block +    // regardless of the trip count. That is, if the trip count is 0, so the +    // back edge is never taken, we still have to execute both loop headers, +    // especially (but not only!) if the second is a do-while style loop. +    // However, doing so might invalidate the phi nodes of the first loop as +    // the new values do only need to dominate their latch and not the exiting +    // predicate. To remedy this potential problem we always introduce phi +    // nodes in the header of the second loop later that select the loop carried +    // value, if the second header was reached through an old latch of the +    // first, or undef otherwise. This is sound as exiting the first implies the +    // second will exit too, __without__ taking the back-edge. [Their +    // trip-counts are equal after all. +    // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go +    // to FC1.Header? I think this is basically what the three sequences are +    // trying to accomplish; however, doing this directly in the CFG may mean +    // the DT/PDT becomes invalid +    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, +                                                         FC1.Header); +    TreeUpdates.emplace_back(DominatorTree::UpdateType( +        DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); +    TreeUpdates.emplace_back(DominatorTree::UpdateType( +        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); + +    // The pre-header of L1 is not necessary anymore. +    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); +    FC1.Preheader->getTerminator()->eraseFromParent(); +    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); +    TreeUpdates.emplace_back(DominatorTree::UpdateType( +        DominatorTree::Delete, FC1.Preheader, FC1.Header)); + +    // Moves the phi nodes from the second to the first loops header block. +    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { +      if (SE.isSCEVable(PHI->getType())) +        SE.forgetValue(PHI); +      if (PHI->hasNUsesOrMore(1)) +        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); +      else +        PHI->eraseFromParent(); +    } + +    // Introduce new phi nodes in the second loop header to ensure +    // exiting the first and jumping to the header of the second does not break +    // the SSA property of the phis originally in the first loop. See also the +    // comment above. +    Instruction *L1HeaderIP = &FC1.Header->front(); +    for (PHINode *LCPHI : OriginalFC0PHIs) { +      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); +      assert(L1LatchBBIdx >= 0 && +             "Expected loop carried value to be rewired at this point!"); + +      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); + +      PHINode *L1HeaderPHI = PHINode::Create( +          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); +      L1HeaderPHI->addIncoming(LCV, FC0.Latch); +      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), +                               FC0.ExitingBlock); + +      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); +    } + +    // Replace latch terminator destinations. +    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); +    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); + +    // If FC0.Latch and FC0.ExitingBlock are the same then we have already +    // performed the updates above. +    if (FC0.Latch != FC0.ExitingBlock) +      TreeUpdates.emplace_back(DominatorTree::UpdateType( +          DominatorTree::Insert, FC0.Latch, FC1.Header)); + +    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, +                                                       FC0.Latch, FC0.Header)); +    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, +                                                       FC1.Latch, FC0.Header)); +    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, +                                                       FC1.Latch, FC1.Header)); + +    // Update DT/PDT +    DTU.applyUpdates(TreeUpdates); + +    LI.removeBlock(FC1.Preheader); +    DTU.deleteBB(FC1.Preheader); +    DTU.flush(); + +    // Is there a way to keep SE up-to-date so we don't need to forget the loops +    // and rebuild the information in subsequent passes of fusion? +    SE.forgetLoop(FC1.L); +    SE.forgetLoop(FC0.L); + +    // Merge the loops. +    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), +                                        FC1.L->block_end()); +    for (BasicBlock *BB : Blocks) { +      FC0.L->addBlockEntry(BB); +      FC1.L->removeBlockFromLoop(BB); +      if (LI.getLoopFor(BB) != FC1.L) +        continue; +      LI.changeLoopFor(BB, FC0.L); +    } +    while (!FC1.L->empty()) { +      const auto &ChildLoopIt = FC1.L->begin(); +      Loop *ChildLoop = *ChildLoopIt; +      FC1.L->removeChildLoop(ChildLoopIt); +      FC0.L->addChildLoop(ChildLoop); +    } + +    // Delete the now empty loop L1. +    LI.erase(FC1.L); + +#ifndef NDEBUG +    assert(!verifyFunction(*FC0.Header->getParent(), &errs())); +    assert(DT.verify(DominatorTree::VerificationLevel::Fast)); +    assert(PDT.verify()); +    LI.verify(DT); +    SE.verify(); +#endif + +    FuseCounter++; + +    LLVM_DEBUG(dbgs() << "Fusion done:\n"); + +    return FC0.L; +  } +}; + +struct LoopFuseLegacy : public FunctionPass { + +  static char ID; + +  LoopFuseLegacy() : FunctionPass(ID) { +    initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequiredID(LoopSimplifyID); +    AU.addRequired<ScalarEvolutionWrapperPass>(); +    AU.addRequired<LoopInfoWrapperPass>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<PostDominatorTreeWrapperPass>(); +    AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); +    AU.addRequired<DependenceAnalysisWrapperPass>(); + +    AU.addPreserved<ScalarEvolutionWrapperPass>(); +    AU.addPreserved<LoopInfoWrapperPass>(); +    AU.addPreserved<DominatorTreeWrapperPass>(); +    AU.addPreserved<PostDominatorTreeWrapperPass>(); +  } + +  bool runOnFunction(Function &F) override { +    if (skipFunction(F)) +      return false; +    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +    auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); +    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); +    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + +    const DataLayout &DL = F.getParent()->getDataLayout(); +    LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); +    return LF.fuseLoops(F); +  } +}; + +PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { +  auto &LI = AM.getResult<LoopAnalysis>(F); +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  auto &DI = AM.getResult<DependenceAnalysis>(F); +  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); +  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); +  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); + +  const DataLayout &DL = F.getParent()->getDataLayout(); +  LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); +  bool Changed = LF.fuseLoops(F); +  if (!Changed) +    return PreservedAnalyses::all(); + +  PreservedAnalyses PA; +  PA.preserve<DominatorTreeAnalysis>(); +  PA.preserve<PostDominatorTreeAnalysis>(); +  PA.preserve<ScalarEvolutionAnalysis>(); +  PA.preserve<LoopAnalysis>(); +  return PA; +} + +char LoopFuseLegacy::ID = 0; + +INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, +                      false) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) + +FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } diff --git a/llvm/lib/Transforms/Scalar/Scalar.cpp b/llvm/lib/Transforms/Scalar/Scalar.cpp index c91ffda6d98..2584cf04c93 100644 --- a/llvm/lib/Transforms/Scalar/Scalar.cpp +++ b/llvm/lib/Transforms/Scalar/Scalar.cpp @@ -62,6 +62,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {    initializeJumpThreadingPass(Registry);    initializeLegacyLICMPassPass(Registry);    initializeLegacyLoopSinkPassPass(Registry); +  initializeLoopFuseLegacyPass(Registry);    initializeLoopDataPrefetchLegacyPassPass(Registry);    initializeLoopDeletionLegacyPassPass(Registry);    initializeLoopAccessLegacyAnalysisPass(Registry);  | 

