diff options
author | Hal Finkel <hfinkel@anl.gov> | 2014-09-07 19:21:07 +0000 |
---|---|---|
committer | Hal Finkel <hfinkel@anl.gov> | 2014-09-07 19:21:07 +0000 |
commit | 15aeaaf24adf73b4d9bbcc619fb6165fdb50591a (patch) | |
tree | 22a83759a0c7668afe7a689cd7b9e91fcd4d9d45 /llvm/lib/Transforms | |
parent | 60db05896acea81b57a6678fb6166a9c35151571 (diff) | |
download | bcm5719-llvm-15aeaaf24adf73b4d9bbcc619fb6165fdb50591a.tar.gz bcm5719-llvm-15aeaaf24adf73b4d9bbcc619fb6165fdb50591a.zip |
Add additional patterns for @llvm.assume in ValueTracking
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.
r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:
assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
can propagate inverted known bits from the a to v.
assume(v | b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v.
assume(~(v | b) = a): For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v.
assume(v ^ b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v. For those bits in
b that are known to be one, we can propagate inverted
known bits from the a to v.
assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v. For those
bits in b that are known to be one, we can propagate
known bits from the a to v.
assume(v << c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v << c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >> c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >=_s c) where c is non-negative: The sign bit of v is zero
assume(v >_s c) where c is at least -1: The sign bit of v is zero
assume(v <=_s c) where c is negative: The sign bit of v is one
assume(v <_s c) where c is non-positive: The sign bit of v is one
assume(v <=_u c): Transfer the known high zero bits
assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
of 2, transfer one more)
A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.
llvm-svn: 217343
Diffstat (limited to 'llvm/lib/Transforms')
-rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp | 24 |
1 files changed, 24 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp index 249544a061f..ad6983abf83 100644 --- a/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp +++ b/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp @@ -264,6 +264,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + // If the client is only demanding bits that we know, return the known + // constant. + if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)| + (RHSKnownOne & LHSKnownOne))) == DemandedMask) + return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne); + // If all of the demanded bits are known 1 on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == @@ -296,6 +302,12 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + // If the client is only demanding bits that we know, return the known + // constant. + if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)| + (RHSKnownOne | LHSKnownOne))) == DemandedMask) + return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne); + // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == @@ -332,6 +344,18 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + // Output known-0 bits are known if clear or set in both the LHS & RHS. + APInt IKnownZero = (RHSKnownZero & LHSKnownZero) | + (RHSKnownOne & LHSKnownOne); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + APInt IKnownOne = (RHSKnownZero & LHSKnownOne) | + (RHSKnownOne & LHSKnownZero); + + // If the client is only demanding bits that we know, return the known + // constant. + if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask) + return Constant::getIntegerValue(VTy, IKnownOne); + // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((DemandedMask & RHSKnownZero) == DemandedMask) |