diff options
| author | Florian Hahn <florian.hahn@arm.com> | 2018-09-12 08:01:57 +0000 |
|---|---|---|
| committer | Florian Hahn <florian.hahn@arm.com> | 2018-09-12 08:01:57 +0000 |
| commit | 1086ce2397e0c954855ae96edbd864934a09a92b (patch) | |
| tree | 6e2dd29a342b387af302dc543af9cdf6cf28303a /llvm/lib/Transforms | |
| parent | 73c201da51505c8598625918f0f0cf8b315360da (diff) | |
| download | bcm5719-llvm-1086ce2397e0c954855ae96edbd864934a09a92b.tar.gz bcm5719-llvm-1086ce2397e0c954855ae96edbd864934a09a92b.zip | |
[LV] Move InterleaveGroup and InterleavedAccessInfo to VectorUtils.h (NFC)
Move the 2 classes out of LoopVectorize.cpp to make it easier to re-use
them for VPlan outside LoopVectorize.cpp
Reviewers: Ayal, mssimpso, rengolin, dcaballe, mkuper, hsaito, hfinkel, xbolva00
Reviewed By: rengolin, xbolva00
Differential Revision: https://reviews.llvm.org/D49488
llvm-svn: 342027
Diffstat (limited to 'llvm/lib/Transforms')
| -rw-r--r-- | llvm/lib/Transforms/Vectorize/LoopVectorize.cpp | 705 |
1 files changed, 11 insertions, 694 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp index fc177a30912..e9f46377280 100644 --- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -171,12 +171,6 @@ static cl::opt<bool> EnableInterleavedMemAccesses( "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop")); -/// Maximum factor for an interleaved memory access. -static cl::opt<unsigned> MaxInterleaveGroupFactor( - "max-interleave-group-factor", cl::Hidden, - cl::desc("Maximum factor for an interleaved access group (default = 8)"), - cl::init(8)); - /// We don't interleave loops with a known constant trip count below this /// number. static const unsigned TinyTripCountInterleaveThreshold = 128; @@ -265,10 +259,6 @@ static Type *ToVectorTy(Type *Scalar, unsigned VF) { return VectorType::get(Scalar, VF); } -// FIXME: The following helper functions have multiple implementations -// in the project. They can be effectively organized in a common Load/Store -// utilities unit. - /// A helper function that returns the type of loaded or stored value. static Type *getMemInstValueType(Value *I) { assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && @@ -278,25 +268,6 @@ static Type *getMemInstValueType(Value *I) { return cast<StoreInst>(I)->getValueOperand()->getType(); } -/// A helper function that returns the alignment of load or store instruction. -static unsigned getMemInstAlignment(Value *I) { - assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && - "Expected Load or Store instruction"); - if (auto *LI = dyn_cast<LoadInst>(I)) - return LI->getAlignment(); - return cast<StoreInst>(I)->getAlignment(); -} - -/// A helper function that returns the address space of the pointer operand of -/// load or store instruction. -static unsigned getMemInstAddressSpace(Value *I) { - assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && - "Expected Load or Store instruction"); - if (auto *LI = dyn_cast<LoadInst>(I)) - return LI->getPointerAddressSpace(); - return cast<StoreInst>(I)->getPointerAddressSpace(); -} - /// A helper function that returns true if the given type is irregular. The /// type is irregular if its allocated size doesn't equal the store size of an /// element of the corresponding vector type at the given vectorization factor. @@ -809,348 +780,6 @@ void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, } } -namespace llvm { - -/// The group of interleaved loads/stores sharing the same stride and -/// close to each other. -/// -/// Each member in this group has an index starting from 0, and the largest -/// index should be less than interleaved factor, which is equal to the absolute -/// value of the access's stride. -/// -/// E.g. An interleaved load group of factor 4: -/// for (unsigned i = 0; i < 1024; i+=4) { -/// a = A[i]; // Member of index 0 -/// b = A[i+1]; // Member of index 1 -/// d = A[i+3]; // Member of index 3 -/// ... -/// } -/// -/// An interleaved store group of factor 4: -/// for (unsigned i = 0; i < 1024; i+=4) { -/// ... -/// A[i] = a; // Member of index 0 -/// A[i+1] = b; // Member of index 1 -/// A[i+2] = c; // Member of index 2 -/// A[i+3] = d; // Member of index 3 -/// } -/// -/// Note: the interleaved load group could have gaps (missing members), but -/// the interleaved store group doesn't allow gaps. -class InterleaveGroup { -public: - InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) - : Align(Align), InsertPos(Instr) { - assert(Align && "The alignment should be non-zero"); - - Factor = std::abs(Stride); - assert(Factor > 1 && "Invalid interleave factor"); - - Reverse = Stride < 0; - Members[0] = Instr; - } - - bool isReverse() const { return Reverse; } - unsigned getFactor() const { return Factor; } - unsigned getAlignment() const { return Align; } - unsigned getNumMembers() const { return Members.size(); } - - /// Try to insert a new member \p Instr with index \p Index and - /// alignment \p NewAlign. The index is related to the leader and it could be - /// negative if it is the new leader. - /// - /// \returns false if the instruction doesn't belong to the group. - bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { - assert(NewAlign && "The new member's alignment should be non-zero"); - - int Key = Index + SmallestKey; - - // Skip if there is already a member with the same index. - if (Members.find(Key) != Members.end()) - return false; - - if (Key > LargestKey) { - // The largest index is always less than the interleave factor. - if (Index >= static_cast<int>(Factor)) - return false; - - LargestKey = Key; - } else if (Key < SmallestKey) { - // The largest index is always less than the interleave factor. - if (LargestKey - Key >= static_cast<int>(Factor)) - return false; - - SmallestKey = Key; - } - - // It's always safe to select the minimum alignment. - Align = std::min(Align, NewAlign); - Members[Key] = Instr; - return true; - } - - /// Get the member with the given index \p Index - /// - /// \returns nullptr if contains no such member. - Instruction *getMember(unsigned Index) const { - int Key = SmallestKey + Index; - auto Member = Members.find(Key); - if (Member == Members.end()) - return nullptr; - - return Member->second; - } - - /// Get the index for the given member. Unlike the key in the member - /// map, the index starts from 0. - unsigned getIndex(Instruction *Instr) const { - for (auto I : Members) - if (I.second == Instr) - return I.first - SmallestKey; - - llvm_unreachable("InterleaveGroup contains no such member"); - } - - Instruction *getInsertPos() const { return InsertPos; } - void setInsertPos(Instruction *Inst) { InsertPos = Inst; } - - /// Add metadata (e.g. alias info) from the instructions in this group to \p - /// NewInst. - /// - /// FIXME: this function currently does not add noalias metadata a'la - /// addNewMedata. To do that we need to compute the intersection of the - /// noalias info from all members. - void addMetadata(Instruction *NewInst) const { - SmallVector<Value *, 4> VL; - std::transform(Members.begin(), Members.end(), std::back_inserter(VL), - [](std::pair<int, Instruction *> p) { return p.second; }); - propagateMetadata(NewInst, VL); - } - -private: - unsigned Factor; // Interleave Factor. - bool Reverse; - unsigned Align; - DenseMap<int, Instruction *> Members; - int SmallestKey = 0; - int LargestKey = 0; - - // To avoid breaking dependences, vectorized instructions of an interleave - // group should be inserted at either the first load or the last store in - // program order. - // - // E.g. %even = load i32 // Insert Position - // %add = add i32 %even // Use of %even - // %odd = load i32 - // - // store i32 %even - // %odd = add i32 // Def of %odd - // store i32 %odd // Insert Position - Instruction *InsertPos; -}; -} // end namespace llvm - -namespace { - -/// Drive the analysis of interleaved memory accesses in the loop. -/// -/// Use this class to analyze interleaved accesses only when we can vectorize -/// a loop. Otherwise it's meaningless to do analysis as the vectorization -/// on interleaved accesses is unsafe. -/// -/// The analysis collects interleave groups and records the relationships -/// between the member and the group in a map. -class InterleavedAccessInfo { -public: - InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, - DominatorTree *DT, LoopInfo *LI, - const LoopAccessInfo *LAI) - : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} - - ~InterleavedAccessInfo() { - SmallPtrSet<InterleaveGroup *, 4> DelSet; - // Avoid releasing a pointer twice. - for (auto &I : InterleaveGroupMap) - DelSet.insert(I.second); - for (auto *Ptr : DelSet) - delete Ptr; - } - - /// Analyze the interleaved accesses and collect them in interleave - /// groups. Substitute symbolic strides using \p Strides. - void analyzeInterleaving(); - - /// Check if \p Instr belongs to any interleave group. - bool isInterleaved(Instruction *Instr) const { - return InterleaveGroupMap.find(Instr) != InterleaveGroupMap.end(); - } - - /// Get the interleave group that \p Instr belongs to. - /// - /// \returns nullptr if doesn't have such group. - InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { - auto Group = InterleaveGroupMap.find(Instr); - if (Group == InterleaveGroupMap.end()) - return nullptr; - return Group->second; - } - - /// Returns true if an interleaved group that may access memory - /// out-of-bounds requires a scalar epilogue iteration for correctness. - bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } - -private: - /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. - /// Simplifies SCEV expressions in the context of existing SCEV assumptions. - /// The interleaved access analysis can also add new predicates (for example - /// by versioning strides of pointers). - PredicatedScalarEvolution &PSE; - - Loop *TheLoop; - DominatorTree *DT; - LoopInfo *LI; - const LoopAccessInfo *LAI; - - /// True if the loop may contain non-reversed interleaved groups with - /// out-of-bounds accesses. We ensure we don't speculatively access memory - /// out-of-bounds by executing at least one scalar epilogue iteration. - bool RequiresScalarEpilogue = false; - - /// Holds the relationships between the members and the interleave group. - DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; - - /// Holds dependences among the memory accesses in the loop. It maps a source - /// access to a set of dependent sink accesses. - DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; - - /// The descriptor for a strided memory access. - struct StrideDescriptor { - StrideDescriptor() = default; - StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, - unsigned Align) - : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} - - // The access's stride. It is negative for a reverse access. - int64_t Stride = 0; - - // The scalar expression of this access. - const SCEV *Scev = nullptr; - - // The size of the memory object. - uint64_t Size = 0; - - // The alignment of this access. - unsigned Align = 0; - }; - - /// A type for holding instructions and their stride descriptors. - using StrideEntry = std::pair<Instruction *, StrideDescriptor>; - - /// Create a new interleave group with the given instruction \p Instr, - /// stride \p Stride and alignment \p Align. - /// - /// \returns the newly created interleave group. - InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, - unsigned Align) { - assert(!isInterleaved(Instr) && "Already in an interleaved access group"); - InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); - return InterleaveGroupMap[Instr]; - } - - /// Release the group and remove all the relationships. - void releaseGroup(InterleaveGroup *Group) { - for (unsigned i = 0; i < Group->getFactor(); i++) - if (Instruction *Member = Group->getMember(i)) - InterleaveGroupMap.erase(Member); - - delete Group; - } - - /// Collect all the accesses with a constant stride in program order. - void collectConstStrideAccesses( - MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, - const ValueToValueMap &Strides); - - /// Returns true if \p Stride is allowed in an interleaved group. - static bool isStrided(int Stride) { - unsigned Factor = std::abs(Stride); - return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; - } - - /// Returns true if \p BB is a predicated block. - bool isPredicated(BasicBlock *BB) const { - return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); - } - - /// Returns true if LoopAccessInfo can be used for dependence queries. - bool areDependencesValid() const { - return LAI && LAI->getDepChecker().getDependences(); - } - - /// Returns true if memory accesses \p A and \p B can be reordered, if - /// necessary, when constructing interleaved groups. - /// - /// \p A must precede \p B in program order. We return false if reordering is - /// not necessary or is prevented because \p A and \p B may be dependent. - bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, - StrideEntry *B) const { - // Code motion for interleaved accesses can potentially hoist strided loads - // and sink strided stores. The code below checks the legality of the - // following two conditions: - // - // 1. Potentially moving a strided load (B) before any store (A) that - // precedes B, or - // - // 2. Potentially moving a strided store (A) after any load or store (B) - // that A precedes. - // - // It's legal to reorder A and B if we know there isn't a dependence from A - // to B. Note that this determination is conservative since some - // dependences could potentially be reordered safely. - - // A is potentially the source of a dependence. - auto *Src = A->first; - auto SrcDes = A->second; - - // B is potentially the sink of a dependence. - auto *Sink = B->first; - auto SinkDes = B->second; - - // Code motion for interleaved accesses can't violate WAR dependences. - // Thus, reordering is legal if the source isn't a write. - if (!Src->mayWriteToMemory()) - return true; - - // At least one of the accesses must be strided. - if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) - return true; - - // If dependence information is not available from LoopAccessInfo, - // conservatively assume the instructions can't be reordered. - if (!areDependencesValid()) - return false; - - // If we know there is a dependence from source to sink, assume the - // instructions can't be reordered. Otherwise, reordering is legal. - return Dependences.find(Src) == Dependences.end() || - !Dependences.lookup(Src).count(Sink); - } - - /// Collect the dependences from LoopAccessInfo. - /// - /// We process the dependences once during the interleaved access analysis to - /// enable constant-time dependence queries. - void collectDependences() { - if (!areDependencesValid()) - return; - auto *Deps = LAI->getDepChecker().getDependences(); - for (auto Dep : *Deps) - Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); - } -}; - -} // end anonymous namespace - static void emitMissedWarning(Function *F, Loop *L, const LoopVectorizeHints &LH, OptimizationRemarkEmitter *ORE) { @@ -2288,7 +1917,7 @@ void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { Type *ScalarTy = getMemInstValueType(Instr); unsigned InterleaveFactor = Group->getFactor(); Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); - Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); + Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); // Prepare for the new pointers. setDebugLocFromInst(Builder, Ptr); @@ -2431,13 +2060,13 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, Type *ScalarDataTy = getMemInstValueType(Instr); Type *DataTy = VectorType::get(ScalarDataTy, VF); Value *Ptr = getLoadStorePointerOperand(Instr); - unsigned Alignment = getMemInstAlignment(Instr); + unsigned Alignment = getLoadStoreAlignment(Instr); // An alignment of 0 means target abi alignment. We need to use the scalar's // target abi alignment in such a case. const DataLayout &DL = Instr->getModule()->getDataLayout(); if (!Alignment) Alignment = DL.getABITypeAlignment(ScalarDataTy); - unsigned AddressSpace = getMemInstAddressSpace(Instr); + unsigned AddressSpace = getLoadStoreAddressSpace(Instr); // Determine if the pointer operand of the access is either consecutive or // reverse consecutive. @@ -4700,318 +4329,6 @@ void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { Uniforms[VF].insert(Worklist.begin(), Worklist.end()); } -void InterleavedAccessInfo::collectConstStrideAccesses( - MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, - const ValueToValueMap &Strides) { - auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); - - // Since it's desired that the load/store instructions be maintained in - // "program order" for the interleaved access analysis, we have to visit the - // blocks in the loop in reverse postorder (i.e., in a topological order). - // Such an ordering will ensure that any load/store that may be executed - // before a second load/store will precede the second load/store in - // AccessStrideInfo. - LoopBlocksDFS DFS(TheLoop); - DFS.perform(LI); - for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) - for (auto &I : *BB) { - auto *LI = dyn_cast<LoadInst>(&I); - auto *SI = dyn_cast<StoreInst>(&I); - if (!LI && !SI) - continue; - - Value *Ptr = getLoadStorePointerOperand(&I); - // We don't check wrapping here because we don't know yet if Ptr will be - // part of a full group or a group with gaps. Checking wrapping for all - // pointers (even those that end up in groups with no gaps) will be overly - // conservative. For full groups, wrapping should be ok since if we would - // wrap around the address space we would do a memory access at nullptr - // even without the transformation. The wrapping checks are therefore - // deferred until after we've formed the interleaved groups. - int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, - /*Assume=*/true, /*ShouldCheckWrap=*/false); - - const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); - PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); - uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); - - // An alignment of 0 means target ABI alignment. - unsigned Align = getMemInstAlignment(&I); - if (!Align) - Align = DL.getABITypeAlignment(PtrTy->getElementType()); - - AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); - } -} - -// Analyze interleaved accesses and collect them into interleaved load and -// store groups. -// -// When generating code for an interleaved load group, we effectively hoist all -// loads in the group to the location of the first load in program order. When -// generating code for an interleaved store group, we sink all stores to the -// location of the last store. This code motion can change the order of load -// and store instructions and may break dependences. -// -// The code generation strategy mentioned above ensures that we won't violate -// any write-after-read (WAR) dependences. -// -// E.g., for the WAR dependence: a = A[i]; // (1) -// A[i] = b; // (2) -// -// The store group of (2) is always inserted at or below (2), and the load -// group of (1) is always inserted at or above (1). Thus, the instructions will -// never be reordered. All other dependences are checked to ensure the -// correctness of the instruction reordering. -// -// The algorithm visits all memory accesses in the loop in bottom-up program -// order. Program order is established by traversing the blocks in the loop in -// reverse postorder when collecting the accesses. -// -// We visit the memory accesses in bottom-up order because it can simplify the -// construction of store groups in the presence of write-after-write (WAW) -// dependences. -// -// E.g., for the WAW dependence: A[i] = a; // (1) -// A[i] = b; // (2) -// A[i + 1] = c; // (3) -// -// We will first create a store group with (3) and (2). (1) can't be added to -// this group because it and (2) are dependent. However, (1) can be grouped -// with other accesses that may precede it in program order. Note that a -// bottom-up order does not imply that WAW dependences should not be checked. -void InterleavedAccessInfo::analyzeInterleaving() { - LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); - const ValueToValueMap &Strides = LAI->getSymbolicStrides(); - - // Holds all accesses with a constant stride. - MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; - collectConstStrideAccesses(AccessStrideInfo, Strides); - - if (AccessStrideInfo.empty()) - return; - - // Collect the dependences in the loop. - collectDependences(); - - // Holds all interleaved store groups temporarily. - SmallSetVector<InterleaveGroup *, 4> StoreGroups; - // Holds all interleaved load groups temporarily. - SmallSetVector<InterleaveGroup *, 4> LoadGroups; - - // Search in bottom-up program order for pairs of accesses (A and B) that can - // form interleaved load or store groups. In the algorithm below, access A - // precedes access B in program order. We initialize a group for B in the - // outer loop of the algorithm, and then in the inner loop, we attempt to - // insert each A into B's group if: - // - // 1. A and B have the same stride, - // 2. A and B have the same memory object size, and - // 3. A belongs in B's group according to its distance from B. - // - // Special care is taken to ensure group formation will not break any - // dependences. - for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); - BI != E; ++BI) { - Instruction *B = BI->first; - StrideDescriptor DesB = BI->second; - - // Initialize a group for B if it has an allowable stride. Even if we don't - // create a group for B, we continue with the bottom-up algorithm to ensure - // we don't break any of B's dependences. - InterleaveGroup *Group = nullptr; - if (isStrided(DesB.Stride)) { - Group = getInterleaveGroup(B); - if (!Group) { - LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B - << '\n'); - Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); - } - if (B->mayWriteToMemory()) - StoreGroups.insert(Group); - else - LoadGroups.insert(Group); - } - - for (auto AI = std::next(BI); AI != E; ++AI) { - Instruction *A = AI->first; - StrideDescriptor DesA = AI->second; - - // Our code motion strategy implies that we can't have dependences - // between accesses in an interleaved group and other accesses located - // between the first and last member of the group. Note that this also - // means that a group can't have more than one member at a given offset. - // The accesses in a group can have dependences with other accesses, but - // we must ensure we don't extend the boundaries of the group such that - // we encompass those dependent accesses. - // - // For example, assume we have the sequence of accesses shown below in a - // stride-2 loop: - // - // (1, 2) is a group | A[i] = a; // (1) - // | A[i-1] = b; // (2) | - // A[i-3] = c; // (3) - // A[i] = d; // (4) | (2, 4) is not a group - // - // Because accesses (2) and (3) are dependent, we can group (2) with (1) - // but not with (4). If we did, the dependent access (3) would be within - // the boundaries of the (2, 4) group. - if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { - // If a dependence exists and A is already in a group, we know that A - // must be a store since A precedes B and WAR dependences are allowed. - // Thus, A would be sunk below B. We release A's group to prevent this - // illegal code motion. A will then be free to form another group with - // instructions that precede it. - if (isInterleaved(A)) { - InterleaveGroup *StoreGroup = getInterleaveGroup(A); - StoreGroups.remove(StoreGroup); - releaseGroup(StoreGroup); - } - - // If a dependence exists and A is not already in a group (or it was - // and we just released it), B might be hoisted above A (if B is a - // load) or another store might be sunk below A (if B is a store). In - // either case, we can't add additional instructions to B's group. B - // will only form a group with instructions that it precedes. - break; - } - - // At this point, we've checked for illegal code motion. If either A or B - // isn't strided, there's nothing left to do. - if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) - continue; - - // Ignore A if it's already in a group or isn't the same kind of memory - // operation as B. - // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory - // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() - // should have returned false - except for the case we asked for optimization - // remarks. - if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) - || (A->mayWriteToMemory() != B->mayWriteToMemory())) - continue; - - // Check rules 1 and 2. Ignore A if its stride or size is different from - // that of B. - if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) - continue; - - // Ignore A if the memory object of A and B don't belong to the same - // address space - if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) - continue; - - // Calculate the distance from A to B. - const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( - PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); - if (!DistToB) - continue; - int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); - - // Check rule 3. Ignore A if its distance to B is not a multiple of the - // size. - if (DistanceToB % static_cast<int64_t>(DesB.Size)) - continue; - - // Ignore A if either A or B is in a predicated block. Although we - // currently prevent group formation for predicated accesses, we may be - // able to relax this limitation in the future once we handle more - // complicated blocks. - if (isPredicated(A->getParent()) || isPredicated(B->getParent())) - continue; - - // The index of A is the index of B plus A's distance to B in multiples - // of the size. - int IndexA = - Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); - - // Try to insert A into B's group. - if (Group->insertMember(A, IndexA, DesA.Align)) { - LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' - << " into the interleave group with" << *B - << '\n'); - InterleaveGroupMap[A] = Group; - - // Set the first load in program order as the insert position. - if (A->mayReadFromMemory()) - Group->setInsertPos(A); - } - } // Iteration over A accesses. - } // Iteration over B accesses. - - // Remove interleaved store groups with gaps. - for (InterleaveGroup *Group : StoreGroups) - if (Group->getNumMembers() != Group->getFactor()) { - LLVM_DEBUG( - dbgs() << "LV: Invalidate candidate interleaved store group due " - "to gaps.\n"); - releaseGroup(Group); - } - // Remove interleaved groups with gaps (currently only loads) whose memory - // accesses may wrap around. We have to revisit the getPtrStride analysis, - // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does - // not check wrapping (see documentation there). - // FORNOW we use Assume=false; - // TODO: Change to Assume=true but making sure we don't exceed the threshold - // of runtime SCEV assumptions checks (thereby potentially failing to - // vectorize altogether). - // Additional optional optimizations: - // TODO: If we are peeling the loop and we know that the first pointer doesn't - // wrap then we can deduce that all pointers in the group don't wrap. - // This means that we can forcefully peel the loop in order to only have to - // check the first pointer for no-wrap. When we'll change to use Assume=true - // we'll only need at most one runtime check per interleaved group. - for (InterleaveGroup *Group : LoadGroups) { - // Case 1: A full group. Can Skip the checks; For full groups, if the wide - // load would wrap around the address space we would do a memory access at - // nullptr even without the transformation. - if (Group->getNumMembers() == Group->getFactor()) - continue; - - // Case 2: If first and last members of the group don't wrap this implies - // that all the pointers in the group don't wrap. - // So we check only group member 0 (which is always guaranteed to exist), - // and group member Factor - 1; If the latter doesn't exist we rely on - // peeling (if it is a non-reveresed accsess -- see Case 3). - Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); - if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, - /*ShouldCheckWrap=*/true)) { - LLVM_DEBUG( - dbgs() << "LV: Invalidate candidate interleaved group due to " - "first group member potentially pointer-wrapping.\n"); - releaseGroup(Group); - continue; - } - Instruction *LastMember = Group->getMember(Group->getFactor() - 1); - if (LastMember) { - Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); - if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, - /*ShouldCheckWrap=*/true)) { - LLVM_DEBUG( - dbgs() << "LV: Invalidate candidate interleaved group due to " - "last group member potentially pointer-wrapping.\n"); - releaseGroup(Group); - } - } else { - // Case 3: A non-reversed interleaved load group with gaps: We need - // to execute at least one scalar epilogue iteration. This will ensure - // we don't speculatively access memory out-of-bounds. We only need - // to look for a member at index factor - 1, since every group must have - // a member at index zero. - if (Group->isReverse()) { - LLVM_DEBUG( - dbgs() << "LV: Invalidate candidate interleaved group due to " - "a reverse access with gaps.\n"); - releaseGroup(Group); - continue; - } - LLVM_DEBUG( - dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); - RequiresScalarEpilogue = true; - } - } -} - Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { // TODO: It may by useful to do since it's still likely to be dynamically @@ -5813,8 +5130,8 @@ unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, Type *ValTy = getMemInstValueType(I); auto SE = PSE.getSE(); - unsigned Alignment = getMemInstAlignment(I); - unsigned AS = getMemInstAddressSpace(I); + unsigned Alignment = getLoadStoreAlignment(I); + unsigned AS = getLoadStoreAddressSpace(I); Value *Ptr = getLoadStorePointerOperand(I); Type *PtrTy = ToVectorTy(Ptr->getType(), VF); @@ -5852,9 +5169,9 @@ unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, unsigned VF) { Type *ValTy = getMemInstValueType(I); Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned Alignment = getMemInstAlignment(I); + unsigned Alignment = getLoadStoreAlignment(I); Value *Ptr = getLoadStorePointerOperand(I); - unsigned AS = getMemInstAddressSpace(I); + unsigned AS = getLoadStoreAddressSpace(I); int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && @@ -5888,7 +5205,7 @@ unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, unsigned VF) { Type *ValTy = getMemInstValueType(I); Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned Alignment = getMemInstAlignment(I); + unsigned Alignment = getLoadStoreAlignment(I); Value *Ptr = getLoadStorePointerOperand(I); return TTI.getAddressComputationCost(VectorTy) + @@ -5900,7 +5217,7 @@ unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, unsigned VF) { Type *ValTy = getMemInstValueType(I); Type *VectorTy = ToVectorTy(ValTy, VF); - unsigned AS = getMemInstAddressSpace(I); + unsigned AS = getLoadStoreAddressSpace(I); auto Group = getInterleavedAccessGroup(I); assert(Group && "Fail to get an interleaved access group."); @@ -5934,8 +5251,8 @@ unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, // moment. if (VF == 1) { Type *ValTy = getMemInstValueType(I); - unsigned Alignment = getMemInstAlignment(I); - unsigned AS = getMemInstAddressSpace(I); + unsigned Alignment = getLoadStoreAlignment(I); + unsigned AS = getLoadStoreAddressSpace(I); return TTI.getAddressComputationCost(ValTy) + TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); |

