summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Vectorize
diff options
context:
space:
mode:
authorAlexey Bataev <a.bataev@hotmail.com>2016-12-08 11:57:51 +0000
committerAlexey Bataev <a.bataev@hotmail.com>2016-12-08 11:57:51 +0000
commit4f0d469d45a0a5c02467eddc471a22127db82f11 (patch)
tree4dac16c00becb14d93bb864bbc98684a78e6a9c3 /llvm/lib/Transforms/Vectorize
parent77f039bf58bf8d77c9defe374df86f12404779dc (diff)
downloadbcm5719-llvm-4f0d469d45a0a5c02467eddc471a22127db82f11.tar.gz
bcm5719-llvm-4f0d469d45a0a5c02467eddc471a22127db82f11.zip
[SLP] Fix for PR6246: vectorization for scalar ops on vector elements.
When trying to vectorize trees that start at insertelement instructions function tryToVectorizeList() uses vectorization factor calculated as MinVecRegSize/ScalarTypeSize. But sometimes it does not work as tree cost for this fixed vectorization factor is too high. Patch tries to improve the situation. It tries different vectorization factors from max(PowerOf2Floor(NumberOfVectorizedValues), MinVecRegSize/ScalarTypeSize) to MinVecRegSize/ScalarTypeSize and tries to choose the best one. Differential Revision: https://reviews.llvm.org/D27215 llvm-svn: 289043
Diffstat (limited to 'llvm/lib/Transforms/Vectorize')
-rw-r--r--llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp146
1 files changed, 80 insertions, 66 deletions
diff --git a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
index d1b569d4cd3..867de25841b 100644
--- a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -3870,10 +3870,11 @@ bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
unsigned Opcode0 = I0->getOpcode();
- // FIXME: Register size should be a parameter to this function, so we can
- // try different vectorization factors.
unsigned Sz = R.getVectorElementSize(I0);
- unsigned VF = R.getMinVecRegSize() / Sz;
+ unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
+ unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
+ if (MaxVF < 2)
+ return false;
for (Value *V : VL) {
Type *Ty = V->getType();
@@ -3889,76 +3890,89 @@ bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
// Keep track of values that were deleted by vectorizing in the loop below.
SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- unsigned OpsWidth = 0;
-
- if (i + VF > e)
- OpsWidth = e - i;
- else
- OpsWidth = VF;
+ unsigned NextInst = 0, MaxInst = VL.size();
+ for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
+ VF /= 2) {
+ // No actual vectorization should happen, if number of parts is the same as
+ // provided vectorization factor (i.e. the scalar type is used for vector
+ // code during codegen).
+ auto *VecTy = VectorType::get(VL[0]->getType(), VF);
+ if (TTI->getNumberOfParts(VecTy) == VF)
+ continue;
+ for (unsigned I = NextInst; I < MaxInst; ++I) {
+ unsigned OpsWidth = 0;
- if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
- break;
+ if (I + VF > MaxInst)
+ OpsWidth = MaxInst - I;
+ else
+ OpsWidth = VF;
- // Check that a previous iteration of this loop did not delete the Value.
- if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
- continue;
+ if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
+ break;
- DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
- << "\n");
- ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
-
- ArrayRef<Value *> BuildVectorSlice;
- if (!BuildVector.empty())
- BuildVectorSlice = BuildVector.slice(i, OpsWidth);
-
- R.buildTree(Ops, BuildVectorSlice);
- // TODO: check if we can allow reordering for more cases.
- if (AllowReorder && R.shouldReorder()) {
- // Conceptually, there is nothing actually preventing us from trying to
- // reorder a larger list. In fact, we do exactly this when vectorizing
- // reductions. However, at this point, we only expect to get here from
- // tryToVectorizePair().
- assert(Ops.size() == 2);
- assert(BuildVectorSlice.empty());
- Value *ReorderedOps[] = { Ops[1], Ops[0] };
- R.buildTree(ReorderedOps, None);
- }
- if (R.isTreeTinyAndNotFullyVectorizable())
- continue;
+ // Check that a previous iteration of this loop did not delete the Value.
+ if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
+ continue;
- R.computeMinimumValueSizes();
- int Cost = R.getTreeCost();
+ DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
+ << "\n");
+ ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
+
+ ArrayRef<Value *> BuildVectorSlice;
+ if (!BuildVector.empty())
+ BuildVectorSlice = BuildVector.slice(I, OpsWidth);
+
+ R.buildTree(Ops, BuildVectorSlice);
+ // TODO: check if we can allow reordering for more cases.
+ if (AllowReorder && R.shouldReorder()) {
+ // Conceptually, there is nothing actually preventing us from trying to
+ // reorder a larger list. In fact, we do exactly this when vectorizing
+ // reductions. However, at this point, we only expect to get here from
+ // tryToVectorizePair().
+ assert(Ops.size() == 2);
+ assert(BuildVectorSlice.empty());
+ Value *ReorderedOps[] = {Ops[1], Ops[0]};
+ R.buildTree(ReorderedOps, None);
+ }
+ if (R.isTreeTinyAndNotFullyVectorizable())
+ continue;
- if (Cost < -SLPCostThreshold) {
- DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- Value *VectorizedRoot = R.vectorizeTree();
-
- // Reconstruct the build vector by extracting the vectorized root. This
- // way we handle the case where some elements of the vector are undefined.
- // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
- if (!BuildVectorSlice.empty()) {
- // The insert point is the last build vector instruction. The vectorized
- // root will precede it. This guarantees that we get an instruction. The
- // vectorized tree could have been constant folded.
- Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
- unsigned VecIdx = 0;
- for (auto &V : BuildVectorSlice) {
- IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
- ++BasicBlock::iterator(InsertAfter));
- Instruction *I = cast<Instruction>(V);
- assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
- Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
- VectorizedRoot, Builder.getInt32(VecIdx++)));
- I->setOperand(1, Extract);
- I->removeFromParent();
- I->insertAfter(Extract);
- InsertAfter = I;
+ R.computeMinimumValueSizes();
+ int Cost = R.getTreeCost();
+
+ if (Cost < -SLPCostThreshold) {
+ DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
+ Value *VectorizedRoot = R.vectorizeTree();
+
+ // Reconstruct the build vector by extracting the vectorized root. This
+ // way we handle the case where some elements of the vector are
+ // undefined.
+ // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
+ if (!BuildVectorSlice.empty()) {
+ // The insert point is the last build vector instruction. The
+ // vectorized root will precede it. This guarantees that we get an
+ // instruction. The vectorized tree could have been constant folded.
+ Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
+ unsigned VecIdx = 0;
+ for (auto &V : BuildVectorSlice) {
+ IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
+ ++BasicBlock::iterator(InsertAfter));
+ Instruction *I = cast<Instruction>(V);
+ assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
+ Instruction *Extract =
+ cast<Instruction>(Builder.CreateExtractElement(
+ VectorizedRoot, Builder.getInt32(VecIdx++)));
+ I->setOperand(1, Extract);
+ I->removeFromParent();
+ I->insertAfter(Extract);
+ InsertAfter = I;
+ }
}
+ // Move to the next bundle.
+ I += VF - 1;
+ NextInst = I + 1;
+ Changed = true;
}
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
}
}
OpenPOWER on IntegriCloud