summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
diff options
context:
space:
mode:
authorMatt Arsenault <Matthew.Arsenault@amd.com>2016-06-30 23:11:38 +0000
committerMatt Arsenault <Matthew.Arsenault@amd.com>2016-06-30 23:11:38 +0000
commit08debb0244fa1e4ca4a3b50dc726608ee34f0be6 (patch)
treee77d36161d44b6adc76af4209986ff28852b4f7b /llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
parenta62287b3236d176ebdbda5cca6d1f863ec27eee5 (diff)
downloadbcm5719-llvm-08debb0244fa1e4ca4a3b50dc726608ee34f0be6.tar.gz
bcm5719-llvm-08debb0244fa1e4ca4a3b50dc726608ee34f0be6.zip
Add LoadStoreVectorizer pass
This was contributed by Apple, and I've been working on minimal cleanups and generalizing it. llvm-svn: 274293
Diffstat (limited to 'llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp')
-rw-r--r--llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp824
1 files changed, 824 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp b/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
new file mode 100644
index 00000000000..2908caa9c6a
--- /dev/null
+++ b/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp
@@ -0,0 +1,824 @@
+//===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "load-store-vectorizer"
+STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
+STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
+
+namespace {
+
+// TODO: Remove this
+static const unsigned TargetBaseAlign = 4;
+
+class Vectorizer {
+ typedef SmallVector<Value *, 8> ValueList;
+ typedef MapVector<Value *, ValueList> ValueListMap;
+
+ Function &F;
+ AliasAnalysis &AA;
+ DominatorTree &DT;
+ ScalarEvolution &SE;
+ const DataLayout &DL;
+ IRBuilder<> Builder;
+ ValueListMap StoreRefs;
+ ValueListMap LoadRefs;
+ unsigned VecRegSize;
+
+public:
+ Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
+ ScalarEvolution &SE, unsigned VecRegSize)
+ : F(F), AA(AA), DT(DT), SE(SE), DL(F.getParent()->getDataLayout()),
+ Builder(SE.getContext()), VecRegSize(VecRegSize) {}
+
+ bool run();
+
+private:
+ Value *getPointerOperand(Value *I);
+
+ unsigned getPointerAddressSpace(Value *I);
+
+ bool isConsecutiveAccess(Value *A, Value *B);
+
+ /// Reorders the users of I after vectorization to ensure that I dominates its
+ /// users.
+ void reorder(Instruction *I);
+
+ /// Returns the first and the last instructions in Chain.
+ std::pair<BasicBlock::iterator, BasicBlock::iterator>
+ getBoundaryInstrs(ArrayRef<Value *> Chain);
+
+ /// Erases the original instructions after vectorizing.
+ void eraseInstructions(ArrayRef<Value *> Chain);
+
+ /// "Legalize" the vector type that would be produced by combining \p
+ /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
+ /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
+ /// expected to have more than 4 elements.
+ std::pair<ArrayRef<Value *>, ArrayRef<Value *>>
+ splitOddVectorElts(ArrayRef<Value *> Chain, unsigned ElementSizeBits);
+
+ /// Checks if there are any instructions which may affect the memory accessed
+ /// in the chain between \p From and \p To. The elements of \p Chain should be
+ /// all loads or all stores.
+ bool isVectorizable(ArrayRef<Value *> Chain, BasicBlock::iterator From,
+ BasicBlock::iterator To);
+
+ /// Collects load and store instructions to vectorize.
+ void collectInstructions(BasicBlock *BB);
+
+ /// Processes the collected instructions, the \p Map. The elements of \p Map
+ /// should be all loads or all stores.
+ bool vectorizeChains(ValueListMap &Map);
+
+ /// Finds the load/stores to consecutive memory addresses and vectorizes them.
+ bool vectorizeInstructions(ArrayRef<Value *> Instrs);
+
+ /// Vectorizes the load instructions in Chain.
+ bool vectorizeLoadChain(ArrayRef<Value *> Chain);
+
+ /// Vectorizes the store instructions in Chain.
+ bool vectorizeStoreChain(ArrayRef<Value *> Chain);
+};
+
+class LoadStoreVectorizer : public FunctionPass {
+public:
+ static char ID;
+ unsigned VecRegSize;
+
+ LoadStoreVectorizer(unsigned VecRegSize = 128) : FunctionPass(ID),
+ VecRegSize(VecRegSize) {
+ initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ const char *getPassName() const override {
+ return "GPU Load and Store Vectorizer";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.setPreservesCFG();
+ }
+};
+}
+
+INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE,
+ "Vectorize load and Store instructions", false, false);
+INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE,
+ "Vectorize load and store instructions", false, false);
+
+char LoadStoreVectorizer::ID = 0;
+
+Pass *llvm::createLoadStoreVectorizerPass(unsigned VecRegSize) {
+ return new LoadStoreVectorizer(VecRegSize);
+}
+
+bool LoadStoreVectorizer::runOnFunction(Function &F) {
+ AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+
+ // Don't vectorize when the attribute NoImplicitFloat is used.
+ if (F.hasFnAttribute(Attribute::NoImplicitFloat))
+ return false;
+
+ Vectorizer V(F, AA, DT, SE, VecRegSize);
+ return V.run();
+}
+
+// Vectorizer Implementation
+bool Vectorizer::run() {
+ bool Changed = false;
+
+ // Scan the blocks in the function in post order.
+ for (BasicBlock *BB : post_order(&F)) {
+ collectInstructions(BB);
+ Changed |= vectorizeChains(LoadRefs);
+ Changed |= vectorizeChains(StoreRefs);
+ }
+
+ return Changed;
+}
+
+Value *Vectorizer::getPointerOperand(Value *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->getPointerOperand();
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->getPointerOperand();
+ return nullptr;
+}
+
+unsigned Vectorizer::getPointerAddressSpace(Value *I) {
+ if (LoadInst *L = dyn_cast<LoadInst>(I))
+ return L->getPointerAddressSpace();
+ if (StoreInst *S = dyn_cast<StoreInst>(I))
+ return S->getPointerAddressSpace();
+ return -1;
+}
+
+// FIXME: Merge with llvm::isConsecutiveAccess
+bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
+ Value *PtrA = getPointerOperand(A);
+ Value *PtrB = getPointerOperand(B);
+ unsigned ASA = getPointerAddressSpace(A);
+ unsigned ASB = getPointerAddressSpace(B);
+
+ // Check that the address spaces match and that the pointers are valid.
+ if (!PtrA || !PtrB || (ASA != ASB))
+ return false;
+
+ // Make sure that A and B are different pointers of the same size type.
+ unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
+ Type *PtrATy = PtrA->getType()->getPointerElementType();
+ Type *PtrBTy = PtrB->getType()->getPointerElementType();
+ if (PtrA == PtrB ||
+ DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
+ DL.getTypeStoreSize(PtrATy->getScalarType()) !=
+ DL.getTypeStoreSize(PtrBTy->getScalarType()))
+ return false;
+
+ APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
+
+ APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
+ PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
+ PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
+
+ APInt OffsetDelta = OffsetB - OffsetA;
+
+ // Check if they are based on the same pointer. That makes the offsets
+ // sufficient.
+ if (PtrA == PtrB)
+ return OffsetDelta == Size;
+
+ // Compute the necessary base pointer delta to have the necessary final delta
+ // equal to the size.
+ APInt BaseDelta = Size - OffsetDelta;
+
+ // Compute the distance with SCEV between the base pointers.
+ const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
+ const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
+ const SCEV *C = SE.getConstant(BaseDelta);
+ const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
+ if (X == PtrSCEVB)
+ return true;
+
+ // Sometimes even this doesn't work, because SCEV can't always see through
+ // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
+ // things the hard way.
+
+ // Look through GEPs after checking they're the same except for the last
+ // index.
+ GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A));
+ GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B));
+ if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands())
+ return false;
+ unsigned FinalIndex = GEPA->getNumOperands() - 1;
+ for (unsigned i = 0; i < FinalIndex; i++)
+ if (GEPA->getOperand(i) != GEPB->getOperand(i))
+ return false;
+
+ Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex));
+ Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex));
+ if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
+ OpA->getType() != OpB->getType())
+ return false;
+
+ // Only look through a ZExt/SExt.
+ if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
+ return false;
+
+ OpA = dyn_cast<Instruction>(OpA->getOperand(0));
+ OpB = dyn_cast<Instruction>(OpB->getOperand(0));
+ if (!OpA || !OpB || OpA->getType() != OpB->getType())
+ return false;
+
+ // Now we need to prove that adding 1 to OpA won't overflow.
+ unsigned BitWidth = OpA->getType()->getScalarSizeInBits();
+ APInt KnownZero = APInt(BitWidth, 0);
+ APInt KnownOne = APInt(BitWidth, 0);
+ computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT);
+ // If any bits are known to be zero other than the sign bit in OpA, we can
+ // add 1 to it while guaranteeing no overflow of any sort.
+ KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1);
+ if (KnownZero == 0)
+ return false;
+
+ const SCEV *OffsetSCEVA = SE.getSCEV(OpA);
+ const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
+ const SCEV *One = SE.getConstant(APInt(BitWidth, 1));
+ const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One);
+ return X2 == OffsetSCEVB;
+}
+
+void Vectorizer::reorder(Instruction *I) {
+ for (User *U : I->users()) {
+ Instruction *User = dyn_cast<Instruction>(U);
+ if (!User || User->getOpcode() == Instruction::PHI)
+ continue;
+
+ if (!DT.dominates(I, User)) {
+ User->removeFromParent();
+ User->insertAfter(I);
+ reorder(User);
+ }
+ }
+}
+
+std::pair<BasicBlock::iterator, BasicBlock::iterator>
+Vectorizer::getBoundaryInstrs(ArrayRef<Value *> Chain) {
+ Instruction *C0 = cast<Instruction>(Chain[0]);
+ BasicBlock::iterator FirstInstr = C0->getIterator();
+ BasicBlock::iterator LastInstr = C0->getIterator();
+
+ BasicBlock *BB = C0->getParent();
+ unsigned NumFound = 0;
+ for (Instruction &I : *BB) {
+ if (!is_contained(Chain, &I))
+ continue;
+
+ ++NumFound;
+ if (NumFound == 1) {
+ FirstInstr = I.getIterator();
+ } else if (NumFound == Chain.size()) {
+ LastInstr = I.getIterator();
+ break;
+ }
+ }
+
+ return std::make_pair(FirstInstr, LastInstr);
+}
+
+void Vectorizer::eraseInstructions(ArrayRef<Value *> Chain) {
+ SmallVector<Instruction *, 16> Instrs;
+ for (Value *V : Chain) {
+ Value *PtrOperand = getPointerOperand(V);
+ assert(PtrOperand && "Instruction must have a pointer operand.");
+ Instrs.push_back(cast<Instruction>(V));
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
+ Instrs.push_back(GEP);
+ }
+
+ // Erase instructions.
+ for (Value *V : Instrs) {
+ Instruction *Instr = cast<Instruction>(V);
+ if (Instr->use_empty())
+ Instr->eraseFromParent();
+ }
+}
+
+std::pair<ArrayRef<Value *>, ArrayRef<Value *>>
+Vectorizer::splitOddVectorElts(ArrayRef<Value *> Chain,
+ unsigned ElementSizeBits) {
+ unsigned ElemSizeInBytes = ElementSizeBits / 8;
+ unsigned SizeInBytes = ElemSizeInBytes * Chain.size();
+ unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes;
+ unsigned NumLeft = Chain.size() - NumRight;
+ return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
+}
+
+bool Vectorizer::isVectorizable(ArrayRef<Value *> Chain,
+ BasicBlock::iterator From,
+ BasicBlock::iterator To) {
+ SmallVector<std::pair<Value *, unsigned>, 16> MemoryInstrs;
+ SmallVector<std::pair<Value *, unsigned>, 16> ChainInstrs;
+
+ unsigned Idx = 0;
+ for (auto I = From, E = To; I != E; ++I, ++Idx) {
+ if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
+ if (!is_contained(Chain, &*I))
+ MemoryInstrs.push_back({ &*I, Idx });
+ else
+ ChainInstrs.push_back({ &*I, Idx });
+ } else if (I->mayHaveSideEffects()) {
+ DEBUG(dbgs() << "LSV: Found side-effecting operation: " << *I << '\n');
+ return false;
+ }
+ }
+
+ for (auto EntryMem : MemoryInstrs) {
+ Value *V = EntryMem.first;
+ unsigned VIdx = EntryMem.second;
+ for (auto EntryChain : ChainInstrs) {
+ Value *VV = EntryChain.first;
+ unsigned VVIdx = EntryChain.second;
+ if (isa<LoadInst>(V) && isa<LoadInst>(VV))
+ continue;
+
+ // We can ignore the alias as long as the load comes before the store,
+ // because that means we won't be moving the load past the store to
+ // vectorize it (the vectorized load is inserted at the location of the
+ // first load in the chain).
+ if (isa<StoreInst>(V) && isa<LoadInst>(VV) && VVIdx < VIdx)
+ continue;
+
+ // Same case, but in reverse.
+ if (isa<LoadInst>(V) && isa<StoreInst>(VV) && VVIdx > VIdx)
+ continue;
+
+ Instruction *M0 = cast<Instruction>(V);
+ Instruction *M1 = cast<Instruction>(VV);
+ Value *Ptr0 = getPointerOperand(M0);
+ Value *Ptr1 = getPointerOperand(M1);
+ unsigned S0 =
+ DL.getTypeStoreSize(Ptr0->getType()->getPointerElementType());
+ unsigned S1 =
+ DL.getTypeStoreSize(Ptr1->getType()->getPointerElementType());
+
+ if (AA.alias(MemoryLocation(Ptr0, S0), MemoryLocation(Ptr1, S1))) {
+ DEBUG(
+ dbgs() << "LSV: Found alias.\n"
+ " Aliasing instruction and pointer:\n"
+ << *V << " aliases " << *Ptr0 << '\n'
+ << " Aliased instruction and pointer:\n"
+ << *VV << " aliases " << *Ptr1 << '\n'
+ );
+
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+void Vectorizer::collectInstructions(BasicBlock *BB) {
+ LoadRefs.clear();
+ StoreRefs.clear();
+
+ for (Instruction &I : *BB) {
+ if (!I.mayReadOrWriteMemory())
+ continue;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (!LI->isSimple())
+ continue;
+
+ Type *Ty = LI->getType();
+ if (!VectorType::isValidElementType(Ty->getScalarType()))
+ continue;
+
+ // No point in looking at these if they're too big to vectorize.
+ if (DL.getTypeSizeInBits(Ty) > VecRegSize / 2)
+ continue;
+
+ // Make sure all the users of a vector are constant-index extracts.
+ if (isa<VectorType>(Ty) &&
+ !all_of(LI->users(), [LI](const User *U) {
+ const Instruction *UI = cast<Instruction>(U);
+ return isa<ExtractElementInst>(UI) &&
+ isa<ConstantInt>(UI->getOperand(1));
+ }))
+ continue;
+
+ // TODO: Target hook to filter types.
+
+ // Save the load locations.
+ Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
+ LoadRefs[Ptr].push_back(LI);
+
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ if (!SI->isSimple())
+ continue;
+
+ Type *Ty = SI->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(Ty->getScalarType()))
+ continue;
+
+ if (DL.getTypeSizeInBits(Ty) > VecRegSize / 2)
+ continue;
+
+ if (isa<VectorType>(Ty) &&
+ !all_of(SI->users(), [SI](const User *U) {
+ const Instruction *UI = cast<Instruction>(U);
+ return isa<ExtractElementInst>(UI) &&
+ isa<ConstantInt>(UI->getOperand(1));
+ }))
+ continue;
+
+ // Save store location.
+ Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
+ StoreRefs[Ptr].push_back(SI);
+ }
+ }
+}
+
+bool Vectorizer::vectorizeChains(ValueListMap &Map) {
+ bool Changed = false;
+
+ for (const std::pair<Value *, ValueList> &Chain : Map) {
+ unsigned Size = Chain.second.size();
+ if (Size < 2)
+ continue;
+
+ DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
+
+ // Process the stores in chunks of 64.
+ for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
+ unsigned Len = std::min<unsigned>(CE - CI, 64);
+ ArrayRef<Value *> Chunk(&Chain.second[CI], Len);
+ Changed |= vectorizeInstructions(Chunk);
+ }
+ }
+
+ return Changed;
+}
+
+bool Vectorizer::vectorizeInstructions(ArrayRef<Value *> Instrs) {
+ DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n");
+ SmallSetVector<int, 16> Heads, Tails;
+ int ConsecutiveChain[64];
+
+ // Do a quadratic search on all of the given stores and find all of the pairs
+ // of stores that follow each other.
+ for (int i = 0, e = Instrs.size(); i < e; ++i) {
+ ConsecutiveChain[i] = -1;
+ for (int j = e - 1; j >= 0; --j) {
+ if (i == j)
+ continue;
+
+ if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
+ if (ConsecutiveChain[i] != -1) {
+ int CurDistance = std::abs(ConsecutiveChain[i] - i);
+ int NewDistance = std::abs(ConsecutiveChain[i] - j);
+ if (j < i || NewDistance > CurDistance)
+ continue; // Should not insert.
+ }
+
+ Tails.insert(j);
+ Heads.insert(i);
+ ConsecutiveChain[i] = j;
+ }
+ }
+ }
+
+ bool Changed = false;
+ SmallPtrSet<Value *, 16> VectorizedValues;
+
+ for (int Head : Heads) {
+ if (Tails.count(Head))
+ continue;
+
+ // We found an instr that starts a chain. Now follow the chain and try to
+ // vectorize it.
+ SmallVector<Value *, 16> Operands;
+ int I = Head;
+ while (I != -1 && (Tails.count(I) || Heads.count(I))) {
+ if (VectorizedValues.count(Instrs[I]))
+ break;
+
+ Operands.push_back(Instrs[I]);
+ I = ConsecutiveChain[I];
+ }
+
+ bool Vectorized = false;
+ if (isa<LoadInst>(*Operands.begin()))
+ Vectorized = vectorizeLoadChain(Operands);
+ else
+ Vectorized = vectorizeStoreChain(Operands);
+
+ // Mark the vectorized instructions so that we don't vectorize them again.
+ if (Vectorized)
+ VectorizedValues.insert(Operands.begin(), Operands.end());
+ Changed |= Vectorized;
+ }
+
+ return Changed;
+}
+
+bool Vectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain) {
+ StoreInst *S0 = cast<StoreInst>(Chain[0]);
+ Type *StoreTy = S0->getValueOperand()->getType();
+ unsigned Sz = DL.getTypeSizeInBits(StoreTy);
+ unsigned VF = VecRegSize / Sz;
+ unsigned ChainSize = Chain.size();
+
+ if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2)
+ return false;
+
+ // Store size should be 1B, 2B or multiple of 4B.
+ // TODO: Target hook for size constraint?
+ unsigned SzInBytes = (Sz / 8) * ChainSize;
+ if (SzInBytes > 2 && SzInBytes % 4 != 0) {
+ DEBUG(dbgs() << "LSV: Size should be 1B, 2B "
+ "or multiple of 4B. Splitting.\n");
+ if (SzInBytes == 3)
+ return vectorizeStoreChain(Chain.slice(0, ChainSize - 1));
+
+ auto Chains = splitOddVectorElts(Chain, Sz);
+ return vectorizeStoreChain(Chains.first) |
+ vectorizeStoreChain(Chains.second);
+ }
+
+ VectorType *VecTy;
+ VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
+ if (VecStoreTy)
+ VecTy = VectorType::get(StoreTy->getScalarType(),
+ Chain.size() * VecStoreTy->getNumElements());
+ else
+ VecTy = VectorType::get(StoreTy, Chain.size());
+
+ // If it's more than the max vector size, break it into two pieces.
+ // TODO: Target hook to control types to split to.
+ if (ChainSize > VF) {
+ DEBUG(dbgs() << "LSV: Vector factor is too big."
+ " Creating two separate arrays.\n");
+ return vectorizeStoreChain(Chain.slice(0, VF)) |
+ vectorizeStoreChain(Chain.slice(VF));
+ }
+
+ DEBUG(
+ dbgs() << "LSV: Stores to vectorize:\n";
+ for (Value *V : Chain)
+ V->dump();
+ );
+
+ // Check alignment restrictions.
+ unsigned Alignment = S0->getAlignment();
+
+ // If the store is going to be misaligned, don't vectorize it.
+ // TODO: Check TLI.allowsMisalignedMemoryAccess
+ if ((Alignment % SzInBytes) != 0 && (Alignment % TargetBaseAlign) != 0) {
+ if (S0->getPointerAddressSpace() == 0) {
+ // If we're storing to an object on the stack, we control its alignment,
+ // so we can cheat and change it!
+ Value *V = GetUnderlyingObject(S0->getPointerOperand(), DL);
+ if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) {
+ AI->setAlignment(TargetBaseAlign);
+ Alignment = TargetBaseAlign;
+ } else {
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+
+ BasicBlock::iterator First, Last;
+ std::tie(First, Last) = getBoundaryInstrs(Chain);
+
+ if (!isVectorizable(Chain, First, Last))
+ return false;
+
+ // Set insert point.
+ Builder.SetInsertPoint(&*Last);
+ unsigned AS = S0->getPointerAddressSpace();
+
+ Value *Vec = UndefValue::get(VecTy);
+
+ if (VecStoreTy) {
+ unsigned VecWidth = VecStoreTy->getNumElements();
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ StoreInst *Store = cast<StoreInst>(Chain[I]);
+ for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
+ unsigned NewIdx = J + I * VecWidth;
+ Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
+ Builder.getInt32(J));
+ if (Extract->getType() != StoreTy->getScalarType())
+ Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
+
+ Value *Insert = Builder.CreateInsertElement(Vec, Extract,
+ Builder.getInt32(NewIdx));
+ Vec = Insert;
+ }
+ }
+ } else {
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ StoreInst *Store = cast<StoreInst>(Chain[I]);
+ Value *Extract = Store->getValueOperand();
+ if (Extract->getType() != StoreTy->getScalarType())
+ Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
+
+ Value *Insert = Builder.CreateInsertElement(Vec, Extract,
+ Builder.getInt32(I));
+ Vec = Insert;
+ }
+ }
+
+ Value *Bitcast =
+ Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS));
+ StoreInst *SI = cast<StoreInst>(Builder.CreateStore(Vec, Bitcast));
+ propagateMetadata(SI, Chain);
+ SI->setAlignment(Alignment);
+
+ eraseInstructions(Chain);
+ ++NumVectorInstructions;
+ NumScalarsVectorized += Chain.size();
+ return true;
+}
+
+bool Vectorizer::vectorizeLoadChain(ArrayRef<Value *> Chain) {
+ LoadInst *L0 = cast<LoadInst>(Chain[0]);
+ Type *LoadTy = L0->getType();
+ unsigned Sz = DL.getTypeSizeInBits(LoadTy);
+ unsigned VF = VecRegSize / Sz;
+ unsigned ChainSize = Chain.size();
+
+ if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2)
+ return false;
+
+ // Load size should be 1B, 2B or multiple of 4B.
+ // TODO: Should size constraint be a target hook?
+ unsigned SzInBytes = (Sz / 8) * ChainSize;
+ if (SzInBytes > 2 && SzInBytes % 4 != 0) {
+ DEBUG(dbgs() << "LSV: Size should be 1B, 2B or multiple of 4B. Splitting.\n");
+ if (SzInBytes == 3)
+ return vectorizeLoadChain(Chain.slice(0, ChainSize - 1));
+ auto Chains = splitOddVectorElts(Chain, Sz);
+ return vectorizeLoadChain(Chains.first) | vectorizeLoadChain(Chains.second);
+ }
+
+ VectorType *VecTy;
+ VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
+ if (VecLoadTy)
+ VecTy = VectorType::get(LoadTy->getScalarType(),
+ Chain.size() * VecLoadTy->getNumElements());
+ else
+ VecTy = VectorType::get(LoadTy, Chain.size());
+
+ // If it's more than the max vector size, break it into two pieces.
+ // TODO: Target hook to control types to split to.
+ if (ChainSize > VF) {
+ DEBUG(dbgs() << "LSV: Vector factor is too big. "
+ "Creating two separate arrays.\n");
+ return vectorizeLoadChain(Chain.slice(0, VF)) |
+ vectorizeLoadChain(Chain.slice(VF));
+ }
+
+ // Check alignment restrictions.
+ unsigned Alignment = L0->getAlignment();
+
+ // If the load is going to be misaligned, don't vectorize it.
+ // TODO: Check TLI.allowsMisalignedMemoryAccess and remove TargetBaseAlign.
+ if ((Alignment % SzInBytes) != 0 && (Alignment % TargetBaseAlign) != 0) {
+ if (L0->getPointerAddressSpace() == 0) {
+ // If we're loading from an object on the stack, we control its alignment,
+ // so we can cheat and change it!
+ Value *V = GetUnderlyingObject(L0->getPointerOperand(), DL);
+ if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) {
+ AI->setAlignment(TargetBaseAlign);
+ Alignment = TargetBaseAlign;
+ } else {
+ return false;
+ }
+ } else {
+ return false;
+ }
+ }
+
+ DEBUG(
+ dbgs() << "LSV: Loads to vectorize:\n";
+ for (Value *V : Chain)
+ V->dump();
+ );
+
+ BasicBlock::iterator First, Last;
+ std::tie(First, Last) = getBoundaryInstrs(Chain);
+
+ if (!isVectorizable(Chain, First, Last))
+ return false;
+
+ // Set insert point.
+ Builder.SetInsertPoint(&*Last);
+
+ unsigned AS = L0->getPointerAddressSpace();
+ Value *Bitcast =
+ Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
+
+ LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast));
+ propagateMetadata(LI, Chain);
+ LI->setAlignment(Alignment);
+
+ if (VecLoadTy) {
+ SmallVector<Instruction *, 16> InstrsToErase;
+ SmallVector<Instruction *, 16> InstrsToReorder;
+
+ unsigned VecWidth = VecLoadTy->getNumElements();
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ for (auto Use : Chain[I]->users()) {
+ Instruction *UI = cast<Instruction>(Use);
+ unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
+ unsigned NewIdx = Idx + I * VecWidth;
+ Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx));
+ Instruction *Extracted = cast<Instruction>(V);
+ if (Extracted->getType() != UI->getType())
+ Extracted =
+ cast<Instruction>(Builder.CreateBitCast(Extracted, UI->getType()));
+
+ // Replace the old instruction.
+ UI->replaceAllUsesWith(Extracted);
+ InstrsToReorder.push_back(Extracted);
+ InstrsToErase.push_back(UI);
+ }
+ }
+
+ for (Instruction *ModUser : InstrsToReorder)
+ reorder(ModUser);
+
+ for (auto I : InstrsToErase)
+ I->eraseFromParent();
+ } else {
+ SmallVector<Instruction *, 16> InstrsToReorder;
+
+ for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
+ Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I));
+ Instruction *Extracted = cast<Instruction>(V);
+ Instruction *UI = cast<Instruction>(Chain[I]);
+ if (Extracted->getType() != UI->getType())
+ Extracted =
+ cast<Instruction>(Builder.CreateBitCast(Extracted, UI->getType()));
+
+ // Replace the old instruction.
+ UI->replaceAllUsesWith(Extracted);
+ InstrsToReorder.push_back(Extracted);
+ }
+
+ for (Instruction *ModUser : InstrsToReorder)
+ reorder(ModUser);
+ }
+
+ eraseInstructions(Chain);
+
+ ++NumVectorInstructions;
+ NumScalarsVectorized += Chain.size();
+ return true;
+}
OpenPOWER on IntegriCloud