diff options
author | Matt Arsenault <Matthew.Arsenault@amd.com> | 2016-06-30 23:11:38 +0000 |
---|---|---|
committer | Matt Arsenault <Matthew.Arsenault@amd.com> | 2016-06-30 23:11:38 +0000 |
commit | 08debb0244fa1e4ca4a3b50dc726608ee34f0be6 (patch) | |
tree | e77d36161d44b6adc76af4209986ff28852b4f7b /llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp | |
parent | a62287b3236d176ebdbda5cca6d1f863ec27eee5 (diff) | |
download | bcm5719-llvm-08debb0244fa1e4ca4a3b50dc726608ee34f0be6.tar.gz bcm5719-llvm-08debb0244fa1e4ca4a3b50dc726608ee34f0be6.zip |
Add LoadStoreVectorizer pass
This was contributed by Apple, and I've been working on
minimal cleanups and generalizing it.
llvm-svn: 274293
Diffstat (limited to 'llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp')
-rw-r--r-- | llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp | 824 |
1 files changed, 824 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp b/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp new file mode 100644 index 00000000000..2908caa9c6a --- /dev/null +++ b/llvm/lib/Transforms/Vectorize/LoadStoreVectorizer.cpp @@ -0,0 +1,824 @@ +//===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Vectorize.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "load-store-vectorizer" +STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); +STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); + +namespace { + +// TODO: Remove this +static const unsigned TargetBaseAlign = 4; + +class Vectorizer { + typedef SmallVector<Value *, 8> ValueList; + typedef MapVector<Value *, ValueList> ValueListMap; + + Function &F; + AliasAnalysis &AA; + DominatorTree &DT; + ScalarEvolution &SE; + const DataLayout &DL; + IRBuilder<> Builder; + ValueListMap StoreRefs; + ValueListMap LoadRefs; + unsigned VecRegSize; + +public: + Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, + ScalarEvolution &SE, unsigned VecRegSize) + : F(F), AA(AA), DT(DT), SE(SE), DL(F.getParent()->getDataLayout()), + Builder(SE.getContext()), VecRegSize(VecRegSize) {} + + bool run(); + +private: + Value *getPointerOperand(Value *I); + + unsigned getPointerAddressSpace(Value *I); + + bool isConsecutiveAccess(Value *A, Value *B); + + /// Reorders the users of I after vectorization to ensure that I dominates its + /// users. + void reorder(Instruction *I); + + /// Returns the first and the last instructions in Chain. + std::pair<BasicBlock::iterator, BasicBlock::iterator> + getBoundaryInstrs(ArrayRef<Value *> Chain); + + /// Erases the original instructions after vectorizing. + void eraseInstructions(ArrayRef<Value *> Chain); + + /// "Legalize" the vector type that would be produced by combining \p + /// ElementSizeBits elements in \p Chain. Break into two pieces such that the + /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is + /// expected to have more than 4 elements. + std::pair<ArrayRef<Value *>, ArrayRef<Value *>> + splitOddVectorElts(ArrayRef<Value *> Chain, unsigned ElementSizeBits); + + /// Checks if there are any instructions which may affect the memory accessed + /// in the chain between \p From and \p To. The elements of \p Chain should be + /// all loads or all stores. + bool isVectorizable(ArrayRef<Value *> Chain, BasicBlock::iterator From, + BasicBlock::iterator To); + + /// Collects load and store instructions to vectorize. + void collectInstructions(BasicBlock *BB); + + /// Processes the collected instructions, the \p Map. The elements of \p Map + /// should be all loads or all stores. + bool vectorizeChains(ValueListMap &Map); + + /// Finds the load/stores to consecutive memory addresses and vectorizes them. + bool vectorizeInstructions(ArrayRef<Value *> Instrs); + + /// Vectorizes the load instructions in Chain. + bool vectorizeLoadChain(ArrayRef<Value *> Chain); + + /// Vectorizes the store instructions in Chain. + bool vectorizeStoreChain(ArrayRef<Value *> Chain); +}; + +class LoadStoreVectorizer : public FunctionPass { +public: + static char ID; + unsigned VecRegSize; + + LoadStoreVectorizer(unsigned VecRegSize = 128) : FunctionPass(ID), + VecRegSize(VecRegSize) { + initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + const char *getPassName() const override { + return "GPU Load and Store Vectorizer"; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.setPreservesCFG(); + } +}; +} + +INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, + "Vectorize load and Store instructions", false, false); +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, + "Vectorize load and store instructions", false, false); + +char LoadStoreVectorizer::ID = 0; + +Pass *llvm::createLoadStoreVectorizerPass(unsigned VecRegSize) { + return new LoadStoreVectorizer(VecRegSize); +} + +bool LoadStoreVectorizer::runOnFunction(Function &F) { + AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + + // Don't vectorize when the attribute NoImplicitFloat is used. + if (F.hasFnAttribute(Attribute::NoImplicitFloat)) + return false; + + Vectorizer V(F, AA, DT, SE, VecRegSize); + return V.run(); +} + +// Vectorizer Implementation +bool Vectorizer::run() { + bool Changed = false; + + // Scan the blocks in the function in post order. + for (BasicBlock *BB : post_order(&F)) { + collectInstructions(BB); + Changed |= vectorizeChains(LoadRefs); + Changed |= vectorizeChains(StoreRefs); + } + + return Changed; +} + +Value *Vectorizer::getPointerOperand(Value *I) { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->getPointerOperand(); + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->getPointerOperand(); + return nullptr; +} + +unsigned Vectorizer::getPointerAddressSpace(Value *I) { + if (LoadInst *L = dyn_cast<LoadInst>(I)) + return L->getPointerAddressSpace(); + if (StoreInst *S = dyn_cast<StoreInst>(I)) + return S->getPointerAddressSpace(); + return -1; +} + +// FIXME: Merge with llvm::isConsecutiveAccess +bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { + Value *PtrA = getPointerOperand(A); + Value *PtrB = getPointerOperand(B); + unsigned ASA = getPointerAddressSpace(A); + unsigned ASB = getPointerAddressSpace(B); + + // Check that the address spaces match and that the pointers are valid. + if (!PtrA || !PtrB || (ASA != ASB)) + return false; + + // Make sure that A and B are different pointers of the same size type. + unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); + Type *PtrATy = PtrA->getType()->getPointerElementType(); + Type *PtrBTy = PtrB->getType()->getPointerElementType(); + if (PtrA == PtrB || + DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || + DL.getTypeStoreSize(PtrATy->getScalarType()) != + DL.getTypeStoreSize(PtrBTy->getScalarType())) + return false; + + APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); + + APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); + PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); + PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); + + APInt OffsetDelta = OffsetB - OffsetA; + + // Check if they are based on the same pointer. That makes the offsets + // sufficient. + if (PtrA == PtrB) + return OffsetDelta == Size; + + // Compute the necessary base pointer delta to have the necessary final delta + // equal to the size. + APInt BaseDelta = Size - OffsetDelta; + + // Compute the distance with SCEV between the base pointers. + const SCEV *PtrSCEVA = SE.getSCEV(PtrA); + const SCEV *PtrSCEVB = SE.getSCEV(PtrB); + const SCEV *C = SE.getConstant(BaseDelta); + const SCEV *X = SE.getAddExpr(PtrSCEVA, C); + if (X == PtrSCEVB) + return true; + + // Sometimes even this doesn't work, because SCEV can't always see through + // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking + // things the hard way. + + // Look through GEPs after checking they're the same except for the last + // index. + GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A)); + GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B)); + if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) + return false; + unsigned FinalIndex = GEPA->getNumOperands() - 1; + for (unsigned i = 0; i < FinalIndex; i++) + if (GEPA->getOperand(i) != GEPB->getOperand(i)) + return false; + + Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); + Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); + if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || + OpA->getType() != OpB->getType()) + return false; + + // Only look through a ZExt/SExt. + if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) + return false; + + OpA = dyn_cast<Instruction>(OpA->getOperand(0)); + OpB = dyn_cast<Instruction>(OpB->getOperand(0)); + if (!OpA || !OpB || OpA->getType() != OpB->getType()) + return false; + + // Now we need to prove that adding 1 to OpA won't overflow. + unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); + APInt KnownZero = APInt(BitWidth, 0); + APInt KnownOne = APInt(BitWidth, 0); + computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT); + // If any bits are known to be zero other than the sign bit in OpA, we can + // add 1 to it while guaranteeing no overflow of any sort. + KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1); + if (KnownZero == 0) + return false; + + const SCEV *OffsetSCEVA = SE.getSCEV(OpA); + const SCEV *OffsetSCEVB = SE.getSCEV(OpB); + const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); + const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); + return X2 == OffsetSCEVB; +} + +void Vectorizer::reorder(Instruction *I) { + for (User *U : I->users()) { + Instruction *User = dyn_cast<Instruction>(U); + if (!User || User->getOpcode() == Instruction::PHI) + continue; + + if (!DT.dominates(I, User)) { + User->removeFromParent(); + User->insertAfter(I); + reorder(User); + } + } +} + +std::pair<BasicBlock::iterator, BasicBlock::iterator> +Vectorizer::getBoundaryInstrs(ArrayRef<Value *> Chain) { + Instruction *C0 = cast<Instruction>(Chain[0]); + BasicBlock::iterator FirstInstr = C0->getIterator(); + BasicBlock::iterator LastInstr = C0->getIterator(); + + BasicBlock *BB = C0->getParent(); + unsigned NumFound = 0; + for (Instruction &I : *BB) { + if (!is_contained(Chain, &I)) + continue; + + ++NumFound; + if (NumFound == 1) { + FirstInstr = I.getIterator(); + } else if (NumFound == Chain.size()) { + LastInstr = I.getIterator(); + break; + } + } + + return std::make_pair(FirstInstr, LastInstr); +} + +void Vectorizer::eraseInstructions(ArrayRef<Value *> Chain) { + SmallVector<Instruction *, 16> Instrs; + for (Value *V : Chain) { + Value *PtrOperand = getPointerOperand(V); + assert(PtrOperand && "Instruction must have a pointer operand."); + Instrs.push_back(cast<Instruction>(V)); + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) + Instrs.push_back(GEP); + } + + // Erase instructions. + for (Value *V : Instrs) { + Instruction *Instr = cast<Instruction>(V); + if (Instr->use_empty()) + Instr->eraseFromParent(); + } +} + +std::pair<ArrayRef<Value *>, ArrayRef<Value *>> +Vectorizer::splitOddVectorElts(ArrayRef<Value *> Chain, + unsigned ElementSizeBits) { + unsigned ElemSizeInBytes = ElementSizeBits / 8; + unsigned SizeInBytes = ElemSizeInBytes * Chain.size(); + unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes; + unsigned NumLeft = Chain.size() - NumRight; + return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); +} + +bool Vectorizer::isVectorizable(ArrayRef<Value *> Chain, + BasicBlock::iterator From, + BasicBlock::iterator To) { + SmallVector<std::pair<Value *, unsigned>, 16> MemoryInstrs; + SmallVector<std::pair<Value *, unsigned>, 16> ChainInstrs; + + unsigned Idx = 0; + for (auto I = From, E = To; I != E; ++I, ++Idx) { + if (isa<LoadInst>(I) || isa<StoreInst>(I)) { + if (!is_contained(Chain, &*I)) + MemoryInstrs.push_back({ &*I, Idx }); + else + ChainInstrs.push_back({ &*I, Idx }); + } else if (I->mayHaveSideEffects()) { + DEBUG(dbgs() << "LSV: Found side-effecting operation: " << *I << '\n'); + return false; + } + } + + for (auto EntryMem : MemoryInstrs) { + Value *V = EntryMem.first; + unsigned VIdx = EntryMem.second; + for (auto EntryChain : ChainInstrs) { + Value *VV = EntryChain.first; + unsigned VVIdx = EntryChain.second; + if (isa<LoadInst>(V) && isa<LoadInst>(VV)) + continue; + + // We can ignore the alias as long as the load comes before the store, + // because that means we won't be moving the load past the store to + // vectorize it (the vectorized load is inserted at the location of the + // first load in the chain). + if (isa<StoreInst>(V) && isa<LoadInst>(VV) && VVIdx < VIdx) + continue; + + // Same case, but in reverse. + if (isa<LoadInst>(V) && isa<StoreInst>(VV) && VVIdx > VIdx) + continue; + + Instruction *M0 = cast<Instruction>(V); + Instruction *M1 = cast<Instruction>(VV); + Value *Ptr0 = getPointerOperand(M0); + Value *Ptr1 = getPointerOperand(M1); + unsigned S0 = + DL.getTypeStoreSize(Ptr0->getType()->getPointerElementType()); + unsigned S1 = + DL.getTypeStoreSize(Ptr1->getType()->getPointerElementType()); + + if (AA.alias(MemoryLocation(Ptr0, S0), MemoryLocation(Ptr1, S1))) { + DEBUG( + dbgs() << "LSV: Found alias.\n" + " Aliasing instruction and pointer:\n" + << *V << " aliases " << *Ptr0 << '\n' + << " Aliased instruction and pointer:\n" + << *VV << " aliases " << *Ptr1 << '\n' + ); + + return false; + } + } + } + + return true; +} + +void Vectorizer::collectInstructions(BasicBlock *BB) { + LoadRefs.clear(); + StoreRefs.clear(); + + for (Instruction &I : *BB) { + if (!I.mayReadOrWriteMemory()) + continue; + + if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { + if (!LI->isSimple()) + continue; + + Type *Ty = LI->getType(); + if (!VectorType::isValidElementType(Ty->getScalarType())) + continue; + + // No point in looking at these if they're too big to vectorize. + if (DL.getTypeSizeInBits(Ty) > VecRegSize / 2) + continue; + + // Make sure all the users of a vector are constant-index extracts. + if (isa<VectorType>(Ty) && + !all_of(LI->users(), [LI](const User *U) { + const Instruction *UI = cast<Instruction>(U); + return isa<ExtractElementInst>(UI) && + isa<ConstantInt>(UI->getOperand(1)); + })) + continue; + + // TODO: Target hook to filter types. + + // Save the load locations. + Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); + LoadRefs[Ptr].push_back(LI); + + } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { + if (!SI->isSimple()) + continue; + + Type *Ty = SI->getValueOperand()->getType(); + if (!VectorType::isValidElementType(Ty->getScalarType())) + continue; + + if (DL.getTypeSizeInBits(Ty) > VecRegSize / 2) + continue; + + if (isa<VectorType>(Ty) && + !all_of(SI->users(), [SI](const User *U) { + const Instruction *UI = cast<Instruction>(U); + return isa<ExtractElementInst>(UI) && + isa<ConstantInt>(UI->getOperand(1)); + })) + continue; + + // Save store location. + Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); + StoreRefs[Ptr].push_back(SI); + } + } +} + +bool Vectorizer::vectorizeChains(ValueListMap &Map) { + bool Changed = false; + + for (const std::pair<Value *, ValueList> &Chain : Map) { + unsigned Size = Chain.second.size(); + if (Size < 2) + continue; + + DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); + + // Process the stores in chunks of 64. + for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { + unsigned Len = std::min<unsigned>(CE - CI, 64); + ArrayRef<Value *> Chunk(&Chain.second[CI], Len); + Changed |= vectorizeInstructions(Chunk); + } + } + + return Changed; +} + +bool Vectorizer::vectorizeInstructions(ArrayRef<Value *> Instrs) { + DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); + SmallSetVector<int, 16> Heads, Tails; + int ConsecutiveChain[64]; + + // Do a quadratic search on all of the given stores and find all of the pairs + // of stores that follow each other. + for (int i = 0, e = Instrs.size(); i < e; ++i) { + ConsecutiveChain[i] = -1; + for (int j = e - 1; j >= 0; --j) { + if (i == j) + continue; + + if (isConsecutiveAccess(Instrs[i], Instrs[j])) { + if (ConsecutiveChain[i] != -1) { + int CurDistance = std::abs(ConsecutiveChain[i] - i); + int NewDistance = std::abs(ConsecutiveChain[i] - j); + if (j < i || NewDistance > CurDistance) + continue; // Should not insert. + } + + Tails.insert(j); + Heads.insert(i); + ConsecutiveChain[i] = j; + } + } + } + + bool Changed = false; + SmallPtrSet<Value *, 16> VectorizedValues; + + for (int Head : Heads) { + if (Tails.count(Head)) + continue; + + // We found an instr that starts a chain. Now follow the chain and try to + // vectorize it. + SmallVector<Value *, 16> Operands; + int I = Head; + while (I != -1 && (Tails.count(I) || Heads.count(I))) { + if (VectorizedValues.count(Instrs[I])) + break; + + Operands.push_back(Instrs[I]); + I = ConsecutiveChain[I]; + } + + bool Vectorized = false; + if (isa<LoadInst>(*Operands.begin())) + Vectorized = vectorizeLoadChain(Operands); + else + Vectorized = vectorizeStoreChain(Operands); + + // Mark the vectorized instructions so that we don't vectorize them again. + if (Vectorized) + VectorizedValues.insert(Operands.begin(), Operands.end()); + Changed |= Vectorized; + } + + return Changed; +} + +bool Vectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain) { + StoreInst *S0 = cast<StoreInst>(Chain[0]); + Type *StoreTy = S0->getValueOperand()->getType(); + unsigned Sz = DL.getTypeSizeInBits(StoreTy); + unsigned VF = VecRegSize / Sz; + unsigned ChainSize = Chain.size(); + + if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) + return false; + + // Store size should be 1B, 2B or multiple of 4B. + // TODO: Target hook for size constraint? + unsigned SzInBytes = (Sz / 8) * ChainSize; + if (SzInBytes > 2 && SzInBytes % 4 != 0) { + DEBUG(dbgs() << "LSV: Size should be 1B, 2B " + "or multiple of 4B. Splitting.\n"); + if (SzInBytes == 3) + return vectorizeStoreChain(Chain.slice(0, ChainSize - 1)); + + auto Chains = splitOddVectorElts(Chain, Sz); + return vectorizeStoreChain(Chains.first) | + vectorizeStoreChain(Chains.second); + } + + VectorType *VecTy; + VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); + if (VecStoreTy) + VecTy = VectorType::get(StoreTy->getScalarType(), + Chain.size() * VecStoreTy->getNumElements()); + else + VecTy = VectorType::get(StoreTy, Chain.size()); + + // If it's more than the max vector size, break it into two pieces. + // TODO: Target hook to control types to split to. + if (ChainSize > VF) { + DEBUG(dbgs() << "LSV: Vector factor is too big." + " Creating two separate arrays.\n"); + return vectorizeStoreChain(Chain.slice(0, VF)) | + vectorizeStoreChain(Chain.slice(VF)); + } + + DEBUG( + dbgs() << "LSV: Stores to vectorize:\n"; + for (Value *V : Chain) + V->dump(); + ); + + // Check alignment restrictions. + unsigned Alignment = S0->getAlignment(); + + // If the store is going to be misaligned, don't vectorize it. + // TODO: Check TLI.allowsMisalignedMemoryAccess + if ((Alignment % SzInBytes) != 0 && (Alignment % TargetBaseAlign) != 0) { + if (S0->getPointerAddressSpace() == 0) { + // If we're storing to an object on the stack, we control its alignment, + // so we can cheat and change it! + Value *V = GetUnderlyingObject(S0->getPointerOperand(), DL); + if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) { + AI->setAlignment(TargetBaseAlign); + Alignment = TargetBaseAlign; + } else { + return false; + } + } else { + return false; + } + } + + BasicBlock::iterator First, Last; + std::tie(First, Last) = getBoundaryInstrs(Chain); + + if (!isVectorizable(Chain, First, Last)) + return false; + + // Set insert point. + Builder.SetInsertPoint(&*Last); + unsigned AS = S0->getPointerAddressSpace(); + + Value *Vec = UndefValue::get(VecTy); + + if (VecStoreTy) { + unsigned VecWidth = VecStoreTy->getNumElements(); + for (unsigned I = 0, E = Chain.size(); I != E; ++I) { + StoreInst *Store = cast<StoreInst>(Chain[I]); + for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { + unsigned NewIdx = J + I * VecWidth; + Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), + Builder.getInt32(J)); + if (Extract->getType() != StoreTy->getScalarType()) + Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); + + Value *Insert = Builder.CreateInsertElement(Vec, Extract, + Builder.getInt32(NewIdx)); + Vec = Insert; + } + } + } else { + for (unsigned I = 0, E = Chain.size(); I != E; ++I) { + StoreInst *Store = cast<StoreInst>(Chain[I]); + Value *Extract = Store->getValueOperand(); + if (Extract->getType() != StoreTy->getScalarType()) + Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); + + Value *Insert = Builder.CreateInsertElement(Vec, Extract, + Builder.getInt32(I)); + Vec = Insert; + } + } + + Value *Bitcast = + Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)); + StoreInst *SI = cast<StoreInst>(Builder.CreateStore(Vec, Bitcast)); + propagateMetadata(SI, Chain); + SI->setAlignment(Alignment); + + eraseInstructions(Chain); + ++NumVectorInstructions; + NumScalarsVectorized += Chain.size(); + return true; +} + +bool Vectorizer::vectorizeLoadChain(ArrayRef<Value *> Chain) { + LoadInst *L0 = cast<LoadInst>(Chain[0]); + Type *LoadTy = L0->getType(); + unsigned Sz = DL.getTypeSizeInBits(LoadTy); + unsigned VF = VecRegSize / Sz; + unsigned ChainSize = Chain.size(); + + if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) + return false; + + // Load size should be 1B, 2B or multiple of 4B. + // TODO: Should size constraint be a target hook? + unsigned SzInBytes = (Sz / 8) * ChainSize; + if (SzInBytes > 2 && SzInBytes % 4 != 0) { + DEBUG(dbgs() << "LSV: Size should be 1B, 2B or multiple of 4B. Splitting.\n"); + if (SzInBytes == 3) + return vectorizeLoadChain(Chain.slice(0, ChainSize - 1)); + auto Chains = splitOddVectorElts(Chain, Sz); + return vectorizeLoadChain(Chains.first) | vectorizeLoadChain(Chains.second); + } + + VectorType *VecTy; + VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); + if (VecLoadTy) + VecTy = VectorType::get(LoadTy->getScalarType(), + Chain.size() * VecLoadTy->getNumElements()); + else + VecTy = VectorType::get(LoadTy, Chain.size()); + + // If it's more than the max vector size, break it into two pieces. + // TODO: Target hook to control types to split to. + if (ChainSize > VF) { + DEBUG(dbgs() << "LSV: Vector factor is too big. " + "Creating two separate arrays.\n"); + return vectorizeLoadChain(Chain.slice(0, VF)) | + vectorizeLoadChain(Chain.slice(VF)); + } + + // Check alignment restrictions. + unsigned Alignment = L0->getAlignment(); + + // If the load is going to be misaligned, don't vectorize it. + // TODO: Check TLI.allowsMisalignedMemoryAccess and remove TargetBaseAlign. + if ((Alignment % SzInBytes) != 0 && (Alignment % TargetBaseAlign) != 0) { + if (L0->getPointerAddressSpace() == 0) { + // If we're loading from an object on the stack, we control its alignment, + // so we can cheat and change it! + Value *V = GetUnderlyingObject(L0->getPointerOperand(), DL); + if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) { + AI->setAlignment(TargetBaseAlign); + Alignment = TargetBaseAlign; + } else { + return false; + } + } else { + return false; + } + } + + DEBUG( + dbgs() << "LSV: Loads to vectorize:\n"; + for (Value *V : Chain) + V->dump(); + ); + + BasicBlock::iterator First, Last; + std::tie(First, Last) = getBoundaryInstrs(Chain); + + if (!isVectorizable(Chain, First, Last)) + return false; + + // Set insert point. + Builder.SetInsertPoint(&*Last); + + unsigned AS = L0->getPointerAddressSpace(); + Value *Bitcast = + Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); + + LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); + propagateMetadata(LI, Chain); + LI->setAlignment(Alignment); + + if (VecLoadTy) { + SmallVector<Instruction *, 16> InstrsToErase; + SmallVector<Instruction *, 16> InstrsToReorder; + + unsigned VecWidth = VecLoadTy->getNumElements(); + for (unsigned I = 0, E = Chain.size(); I != E; ++I) { + for (auto Use : Chain[I]->users()) { + Instruction *UI = cast<Instruction>(Use); + unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); + unsigned NewIdx = Idx + I * VecWidth; + Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx)); + Instruction *Extracted = cast<Instruction>(V); + if (Extracted->getType() != UI->getType()) + Extracted = + cast<Instruction>(Builder.CreateBitCast(Extracted, UI->getType())); + + // Replace the old instruction. + UI->replaceAllUsesWith(Extracted); + InstrsToReorder.push_back(Extracted); + InstrsToErase.push_back(UI); + } + } + + for (Instruction *ModUser : InstrsToReorder) + reorder(ModUser); + + for (auto I : InstrsToErase) + I->eraseFromParent(); + } else { + SmallVector<Instruction *, 16> InstrsToReorder; + + for (unsigned I = 0, E = Chain.size(); I != E; ++I) { + Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I)); + Instruction *Extracted = cast<Instruction>(V); + Instruction *UI = cast<Instruction>(Chain[I]); + if (Extracted->getType() != UI->getType()) + Extracted = + cast<Instruction>(Builder.CreateBitCast(Extracted, UI->getType())); + + // Replace the old instruction. + UI->replaceAllUsesWith(Extracted); + InstrsToReorder.push_back(Extracted); + } + + for (Instruction *ModUser : InstrsToReorder) + reorder(ModUser); + } + + eraseInstructions(Chain); + + ++NumVectorInstructions; + NumScalarsVectorized += Chain.size(); + return true; +} |