diff options
author | George Burgess IV <george.burgess.iv@gmail.com> | 2016-02-02 22:46:49 +0000 |
---|---|---|
committer | George Burgess IV <george.burgess.iv@gmail.com> | 2016-02-02 22:46:49 +0000 |
commit | e1100f533f0a48f55e80e1152b06f5deab5f9b30 (patch) | |
tree | 2be2f081aed1e5aae7158c48f5ecaa630d7cb69d /llvm/lib/Transforms/Utils | |
parent | b7571043f2267cbc9971955c2bd3eac724c2e062 (diff) | |
download | bcm5719-llvm-e1100f533f0a48f55e80e1152b06f5deab5f9b30.tar.gz bcm5719-llvm-e1100f533f0a48f55e80e1152b06f5deab5f9b30.zip |
This patch adds MemorySSA to LLVM.
Please see include/llvm/Transforms/Utils/MemorySSA.h for a description
of MemorySSA, and what it does.
Differential Revision: http://reviews.llvm.org/D7864
llvm-svn: 259595
Diffstat (limited to 'llvm/lib/Transforms/Utils')
-rw-r--r-- | llvm/lib/Transforms/Utils/CMakeLists.txt | 1 | ||||
-rw-r--r-- | llvm/lib/Transforms/Utils/MemorySSA.cpp | 939 | ||||
-rw-r--r-- | llvm/lib/Transforms/Utils/Utils.cpp | 2 |
3 files changed, 942 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/CMakeLists.txt b/llvm/lib/Transforms/Utils/CMakeLists.txt index ba2d6e91d5b..6a72752da24 100644 --- a/llvm/lib/Transforms/Utils/CMakeLists.txt +++ b/llvm/lib/Transforms/Utils/CMakeLists.txt @@ -26,6 +26,7 @@ add_llvm_library(LLVMTransformUtils LowerInvoke.cpp LowerSwitch.cpp Mem2Reg.cpp + MemorySSA.cpp MetaRenamer.cpp ModuleUtils.cpp PromoteMemoryToRegister.cpp diff --git a/llvm/lib/Transforms/Utils/MemorySSA.cpp b/llvm/lib/Transforms/Utils/MemorySSA.cpp new file mode 100644 index 00000000000..0ef4688ea84 --- /dev/null +++ b/llvm/lib/Transforms/Utils/MemorySSA.cpp @@ -0,0 +1,939 @@ +//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------===// +// +// This file implements the MemorySSA class. +// +//===----------------------------------------------------------------===// +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/IteratedDominanceFrontier.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/IR/AssemblyAnnotationWriter.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/MemorySSA.h" +#include <algorithm> + +#define DEBUG_TYPE "memoryssa" +using namespace llvm; +STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); +STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); +STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); +INITIALIZE_PASS_WITH_OPTIONS_BEGIN(MemorySSAPrinterPass, "print-memoryssa", + "Memory SSA", true, true) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_END(MemorySSAPrinterPass, "print-memoryssa", "Memory SSA", true, + true) +INITIALIZE_PASS(MemorySSALazy, "memoryssalazy", "Memory SSA", true, true) + +namespace llvm { + +/// \brief An assembly annotator class to print Memory SSA information in +/// comments. +class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { + friend class MemorySSA; + const MemorySSA *MSSA; + +public: + MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} + + virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, + formatted_raw_ostream &OS) { + if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) + OS << "; " << *MA << "\n"; + } + + virtual void emitInstructionAnnot(const Instruction *I, + formatted_raw_ostream &OS) { + if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) + OS << "; " << *MA << "\n"; + } +}; +} + +namespace { +struct RenamePassData { + DomTreeNode *DTN; + DomTreeNode::const_iterator ChildIt; + MemoryAccess *IncomingVal; + + RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, + MemoryAccess *M) + : DTN(D), ChildIt(It), IncomingVal(M) {} + void swap(RenamePassData &RHS) { + std::swap(DTN, RHS.DTN); + std::swap(ChildIt, RHS.ChildIt); + std::swap(IncomingVal, RHS.IncomingVal); + } +}; +} + +namespace llvm { +/// \brief Rename a single basic block into MemorySSA form. +/// Uses the standard SSA renaming algorithm. +/// \returns The new incoming value. +MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, + MemoryAccess *IncomingVal) { + auto It = PerBlockAccesses.find(BB); + // Skip most processing if the list is empty. + if (It != PerBlockAccesses.end()) { + AccessListType *Accesses = It->second.get(); + for (MemoryAccess &L : *Accesses) { + switch (L.getValueID()) { + case Value::MemoryUseVal: + cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal); + break; + case Value::MemoryDefVal: + // We can't legally optimize defs, because we only allow single + // memory phis/uses on operations, and if we optimize these, we can + // end up with multiple reaching defs. Uses do not have this + // problem, since they do not produce a value + cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal); + IncomingVal = &L; + break; + case Value::MemoryPhiVal: + IncomingVal = &L; + break; + } + } + } + + // Pass through values to our successors + for (const BasicBlock *S : successors(BB)) { + auto It = PerBlockAccesses.find(S); + // Rename the phi nodes in our successor block + if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) + continue; + AccessListType *Accesses = It->second.get(); + auto *Phi = cast<MemoryPhi>(&Accesses->front()); + assert(std::find(succ_begin(BB), succ_end(BB), S) != succ_end(BB) && + "Must be at least one edge from Succ to BB!"); + Phi->addIncoming(IncomingVal, BB); + } + + return IncomingVal; +} + +/// \brief This is the standard SSA renaming algorithm. +/// +/// We walk the dominator tree in preorder, renaming accesses, and then filling +/// in phi nodes in our successors. +void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, + SmallPtrSet<BasicBlock *, 16> &Visited) { + SmallVector<RenamePassData, 32> WorkStack; + IncomingVal = renameBlock(Root->getBlock(), IncomingVal); + WorkStack.push_back({Root, Root->begin(), IncomingVal}); + Visited.insert(Root->getBlock()); + + while (!WorkStack.empty()) { + DomTreeNode *Node = WorkStack.back().DTN; + DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; + IncomingVal = WorkStack.back().IncomingVal; + + if (ChildIt == Node->end()) { + WorkStack.pop_back(); + } else { + DomTreeNode *Child = *ChildIt; + ++WorkStack.back().ChildIt; + BasicBlock *BB = Child->getBlock(); + Visited.insert(BB); + IncomingVal = renameBlock(BB, IncomingVal); + WorkStack.push_back({Child, Child->begin(), IncomingVal}); + } + } +} + +/// \brief Compute dominator levels, used by the phi insertion algorithm above. +void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) { + for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); + DFI != DFE; ++DFI) + DomLevels[*DFI] = DFI.getPathLength() - 1; +} + +/// \brief This handles unreachable block acccesses by deleting phi nodes in +/// unreachable blocks, and marking all other unreachable MemoryAccess's as +/// being uses of the live on entry definition. +void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { + assert(!DT->isReachableFromEntry(BB) && + "Reachable block found while handling unreachable blocks"); + + auto It = PerBlockAccesses.find(BB); + if (It == PerBlockAccesses.end()) + return; + + auto &Accesses = It->second; + for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { + auto Next = std::next(AI); + // If we have a phi, just remove it. We are going to replace all + // users with live on entry. + if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) + UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); + else + Accesses->erase(AI); + AI = Next; + } +} + +MemorySSA::MemorySSA(Function &Func) + : AA(nullptr), DT(nullptr), F(Func), LiveOnEntryDef(nullptr), + Walker(nullptr), NextID(0) {} + +MemorySSA::~MemorySSA() { + // Drop all our references + for (const auto &Pair : PerBlockAccesses) + for (MemoryAccess &MA : *Pair.second) + MA.dropAllReferences(); +} + +MemorySSA::AccessListType *MemorySSA::getOrCreateAccessList(BasicBlock *BB) { + auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); + + if (Res.second) + Res.first->second = make_unique<AccessListType>(); + return Res.first->second.get(); +} + +MemorySSAWalker *MemorySSA::buildMemorySSA(AliasAnalysis *AA, + DominatorTree *DT) { + if (Walker) + return Walker; + + assert(!this->AA && !this->DT && + "MemorySSA without a walker already has AA or DT?"); + + auto *Result = new CachingMemorySSAWalker(this, AA, DT); + this->AA = AA; + this->DT = DT; + + // We create an access to represent "live on entry", for things like + // arguments or users of globals, where the memory they use is defined before + // the beginning of the function. We do not actually insert it into the IR. + // We do not define a live on exit for the immediate uses, and thus our + // semantics do *not* imply that something with no immediate uses can simply + // be removed. + BasicBlock &StartingPoint = F.getEntryBlock(); + LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, + &StartingPoint, NextID++); + + // We maintain lists of memory accesses per-block, trading memory for time. We + // could just look up the memory access for every possible instruction in the + // stream. + SmallPtrSet<BasicBlock *, 32> DefiningBlocks; + + // Go through each block, figure out where defs occur, and chain together all + // the accesses. + for (BasicBlock &B : F) { + AccessListType *Accesses = nullptr; + for (Instruction &I : B) { + MemoryAccess *MA = createNewAccess(&I, true); + if (!MA) + continue; + if (isa<MemoryDef>(MA)) + DefiningBlocks.insert(&B); + if (!Accesses) + Accesses = getOrCreateAccessList(&B); + Accesses->push_back(MA); + } + } + + // Determine where our MemoryPhi's should go + IDFCalculator IDFs(*DT); + IDFs.setDefiningBlocks(DefiningBlocks); + SmallVector<BasicBlock *, 32> IDFBlocks; + IDFs.calculate(IDFBlocks); + + // Now place MemoryPhi nodes. + for (auto &BB : IDFBlocks) { + // Insert phi node + AccessListType *Accesses = getOrCreateAccessList(BB); + MemoryPhi *Phi = new MemoryPhi(F.getContext(), BB, NextID++); + InstructionToMemoryAccess.insert(std::make_pair(BB, Phi)); + // Phi's always are placed at the front of the block. + Accesses->push_front(Phi); + } + + // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get + // filled in with all blocks. + SmallPtrSet<BasicBlock *, 16> Visited; + renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); + + // Now optimize the MemoryUse's defining access to point to the nearest + // dominating clobbering def. + // This ensures that MemoryUse's that are killed by the same store are + // immediate users of that store, one of the invariants we guarantee. + for (auto DomNode : depth_first(DT)) { + BasicBlock *BB = DomNode->getBlock(); + auto AI = PerBlockAccesses.find(BB); + if (AI == PerBlockAccesses.end()) + continue; + AccessListType *Accesses = AI->second.get(); + for (auto &MA : *Accesses) { + if (auto *MU = dyn_cast<MemoryUse>(&MA)) { + Instruction *Inst = MU->getMemoryInst(); + MU->setDefiningAccess(Result->getClobberingMemoryAccess(Inst)); + } + } + } + + // Mark the uses in unreachable blocks as live on entry, so that they go + // somewhere. + for (auto &BB : F) + if (!Visited.count(&BB)) + markUnreachableAsLiveOnEntry(&BB); + + Walker = Result; + return Walker; +} + +/// \brief Helper function to create new memory accesses +MemoryAccess *MemorySSA::createNewAccess(Instruction *I, bool IgnoreNonMemory) { + // Find out what affect this instruction has on memory. + ModRefInfo ModRef = AA->getModRefInfo(I); + bool Def = bool(ModRef & MRI_Mod); + bool Use = bool(ModRef & MRI_Ref); + + // It's possible for an instruction to not modify memory at all. During + // construction, we ignore them. + if (IgnoreNonMemory && !Def && !Use) + return nullptr; + + assert((Def || Use) && + "Trying to create a memory access with a non-memory instruction"); + + MemoryUseOrDef *MA; + if (Def) + MA = new MemoryDef(I->getModule()->getContext(), nullptr, I, I->getParent(), + NextID++); + else + MA = + new MemoryUse(I->getModule()->getContext(), nullptr, I, I->getParent()); + InstructionToMemoryAccess.insert(std::make_pair(I, MA)); + return MA; +} + +MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, + enum InsertionPlace Where) { + // Handle the initial case + if (Where == Beginning) + // The only thing that could define us at the beginning is a phi node + if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) + return Phi; + + DomTreeNode *CurrNode = DT->getNode(UseBlock); + // Need to be defined by our dominator + if (Where == Beginning) + CurrNode = CurrNode->getIDom(); + Where = End; + while (CurrNode) { + auto It = PerBlockAccesses.find(CurrNode->getBlock()); + if (It != PerBlockAccesses.end()) { + auto &Accesses = It->second; + for (auto RAI = Accesses->rbegin(), RAE = Accesses->rend(); RAI != RAE; + ++RAI) { + if (isa<MemoryDef>(*RAI) || isa<MemoryPhi>(*RAI)) + return &*RAI; + } + } + CurrNode = CurrNode->getIDom(); + } + return LiveOnEntryDef.get(); +} + +/// \brief Returns true if \p Replacer dominates \p Replacee . +bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, + const MemoryAccess *Replacee) const { + if (isa<MemoryUseOrDef>(Replacee)) + return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); + const auto *MP = cast<MemoryPhi>(Replacee); + // For a phi node, the use occurs in the predecessor block of the phi node. + // Since we may occur multiple times in the phi node, we have to check each + // operand to ensure Replacer dominates each operand where Replacee occurs. + for (const Use &Arg : MP->operands()) { + if (Arg != Replacee && + !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) + return false; + } + return true; +} + +void MemorySSA::print(raw_ostream &OS) const { + MemorySSAAnnotatedWriter Writer(this); + F.print(OS, &Writer); +} + +void MemorySSA::dump() const { + MemorySSAAnnotatedWriter Writer(this); + F.print(dbgs(), &Writer); +} + +/// \brief Verify the domination properties of MemorySSA by checking that each +/// definition dominates all of its uses. +void MemorySSA::verifyDomination(Function &F) { + for (BasicBlock &B : F) { + // Phi nodes are attached to basic blocks + if (MemoryPhi *MP = getMemoryAccess(&B)) { + for (User *U : MP->users()) { + BasicBlock *UseBlock; + // Phi operands are used on edges, we simulate the right domination by + // acting as if the use occurred at the end of the predecessor block. + if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) { + for (const auto &Arg : P->operands()) { + if (Arg == MP) { + UseBlock = P->getIncomingBlock(Arg); + break; + } + } + } else { + UseBlock = cast<MemoryAccess>(U)->getBlock(); + } + assert(DT->dominates(MP->getBlock(), UseBlock) && + "Memory PHI does not dominate it's uses"); + } + } + + for (Instruction &I : B) { + MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); + if (!MD) + continue; + + for (const auto &U : MD->users()) { + BasicBlock *UseBlock; + // Things are allowed to flow to phi nodes over their predecessor edge. + if (auto *P = dyn_cast<MemoryPhi>(U)) { + for (const auto &Arg : P->operands()) { + if (Arg == MD) { + UseBlock = P->getIncomingBlock(Arg); + break; + } + } + } else { + UseBlock = cast<MemoryAccess>(U)->getBlock(); + } + assert(DT->dominates(MD->getBlock(), UseBlock) && + "Memory Def does not dominate it's uses"); + } + } + } +} + +/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use +/// appears in the use list of \p Def. +/// +/// llvm_unreachable is used instead of asserts because this may be called in +/// a build without asserts. In that case, we don't want this to turn into a +/// nop. +void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) { + // The live on entry use may cause us to get a NULL def here + if (!Def) { + if (!isLiveOnEntryDef(Use)) + llvm_unreachable("Null def but use not point to live on entry def"); + } else if (std::find(Def->user_begin(), Def->user_end(), Use) == + Def->user_end()) { + llvm_unreachable("Did not find use in def's use list"); + } +} + +/// \brief Verify the immediate use information, by walking all the memory +/// accesses and verifying that, for each use, it appears in the +/// appropriate def's use list +void MemorySSA::verifyDefUses(Function &F) { + for (BasicBlock &B : F) { + // Phi nodes are attached to basic blocks + if (MemoryPhi *Phi = getMemoryAccess(&B)) + for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) + verifyUseInDefs(Phi->getIncomingValue(I), Phi); + + for (Instruction &I : B) { + if (MemoryAccess *MA = getMemoryAccess(&I)) { + assert(isa<MemoryUseOrDef>(MA) && + "Found a phi node not attached to a bb"); + verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA); + } + } + } +} + +MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const { + return InstructionToMemoryAccess.lookup(I); +} + +MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { + return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB)); +} + +/// \brief Determine, for two memory accesses in the same block, +/// whether \p Dominator dominates \p Dominatee. +/// \returns True if \p Dominator dominates \p Dominatee. +bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, + const MemoryAccess *Dominatee) const { + + assert((Dominator->getBlock() == Dominatee->getBlock()) && + "Asking for local domination when accesses are in different blocks!"); + // Get the access list for the block + const AccessListType *AccessList = getBlockAccesses(Dominator->getBlock()); + AccessListType::const_reverse_iterator It(Dominator->getIterator()); + + // If we hit the beginning of the access list before we hit dominatee, we must + // dominate it + return std::none_of(It, AccessList->rend(), + [&](const MemoryAccess &MA) { return &MA == Dominatee; }); +} + +const static char LiveOnEntryStr[] = "liveOnEntry"; + +void MemoryDef::print(raw_ostream &OS) const { + MemoryAccess *UO = getDefiningAccess(); + + OS << getID() << " = MemoryDef("; + if (UO && UO->getID()) + OS << UO->getID(); + else + OS << LiveOnEntryStr; + OS << ')'; +} + +void MemoryPhi::print(raw_ostream &OS) const { + bool First = true; + OS << getID() << " = MemoryPhi("; + for (const auto &Op : operands()) { + BasicBlock *BB = getIncomingBlock(Op); + MemoryAccess *MA = cast<MemoryAccess>(Op); + if (!First) + OS << ','; + else + First = false; + + OS << '{'; + if (BB->hasName()) + OS << BB->getName(); + else + BB->printAsOperand(OS, false); + OS << ','; + if (unsigned ID = MA->getID()) + OS << ID; + else + OS << LiveOnEntryStr; + OS << '}'; + } + OS << ')'; +} + +MemoryAccess::~MemoryAccess() {} + +void MemoryUse::print(raw_ostream &OS) const { + MemoryAccess *UO = getDefiningAccess(); + OS << "MemoryUse("; + if (UO && UO->getID()) + OS << UO->getID(); + else + OS << LiveOnEntryStr; + OS << ')'; +} + +void MemoryAccess::dump() const { + print(dbgs()); + dbgs() << "\n"; +} + +char MemorySSAPrinterPass::ID = 0; + +MemorySSAPrinterPass::MemorySSAPrinterPass() : FunctionPass(ID) { + initializeMemorySSAPrinterPassPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSAPrinterPass::releaseMemory() { + // Subtlety: Be sure to delete the walker before MSSA, because the walker's + // dtor may try to access MemorySSA. + Walker.reset(); + MSSA.reset(); +} + +void MemorySSAPrinterPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); +} + +bool MemorySSAPrinterPass::doInitialization(Module &M) { + VerifyMemorySSA = + M.getContext() + .template getOption<bool, MemorySSAPrinterPass, + &MemorySSAPrinterPass::VerifyMemorySSA>(); + return false; +} + +void MemorySSAPrinterPass::registerOptions() { + OptionRegistry::registerOption<bool, MemorySSAPrinterPass, + &MemorySSAPrinterPass::VerifyMemorySSA>( + "verify-memoryssa", "Run the Memory SSA verifier", false); +} + +void MemorySSAPrinterPass::print(raw_ostream &OS, const Module *M) const { + MSSA->print(OS); +} + +bool MemorySSAPrinterPass::runOnFunction(Function &F) { + this->F = &F; + MSSA.reset(new MemorySSA(F)); + AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + Walker.reset(MSSA->buildMemorySSA(AA, DT)); + + if (VerifyMemorySSA) { + MSSA->verifyDefUses(F); + MSSA->verifyDomination(F); + } + + return false; +} + +char MemorySSALazy::ID = 0; + +MemorySSALazy::MemorySSALazy() : FunctionPass(ID) { + initializeMemorySSALazyPass(*PassRegistry::getPassRegistry()); +} + +void MemorySSALazy::releaseMemory() { MSSA.reset(); } + +bool MemorySSALazy::runOnFunction(Function &F) { + MSSA.reset(new MemorySSA(F)); + return false; +} + +MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} + +CachingMemorySSAWalker::CachingMemorySSAWalker(MemorySSA *M, AliasAnalysis *A, + DominatorTree *D) + : MemorySSAWalker(M), AA(A), DT(D) {} + +CachingMemorySSAWalker::~CachingMemorySSAWalker() {} + +struct CachingMemorySSAWalker::UpwardsMemoryQuery { + // True if we saw a phi whose predecessor was a backedge + bool SawBackedgePhi; + // True if our original query started off as a call + bool IsCall; + // The pointer location we started the query with. This will be empty if + // IsCall is true. + MemoryLocation StartingLoc; + // This is the instruction we were querying about. + const Instruction *Inst; + // Set of visited Instructions for this query. + DenseSet<MemoryAccessPair> Visited; + // Set of visited call accesses for this query. This is separated out because + // you can always cache and lookup the result of call queries (IE when IsCall + // == true) for every call in the chain. The calls have no AA location + // associated with them with them, and thus, no context dependence. + SmallPtrSet<const MemoryAccess *, 32> VisitedCalls; + // The MemoryAccess we actually got called with, used to test local domination + const MemoryAccess *OriginalAccess; + // The Datalayout for the module we started in + const DataLayout *DL; + + UpwardsMemoryQuery() + : SawBackedgePhi(false), IsCall(false), Inst(nullptr), + OriginalAccess(nullptr), DL(nullptr) {} +}; + +void CachingMemorySSAWalker::doCacheRemove(const MemoryAccess *M, + const UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) { + if (Q.IsCall) + CachedUpwardsClobberingCall.erase(M); + else + CachedUpwardsClobberingAccess.erase({M, Loc}); +} + +void CachingMemorySSAWalker::doCacheInsert(const MemoryAccess *M, + MemoryAccess *Result, + const UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) { + ++NumClobberCacheInserts; + if (Q.IsCall) + CachedUpwardsClobberingCall[M] = Result; + else + CachedUpwardsClobberingAccess[{M, Loc}] = Result; +} + +MemoryAccess *CachingMemorySSAWalker::doCacheLookup(const MemoryAccess *M, + const UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) { + ++NumClobberCacheLookups; + MemoryAccess *Result = nullptr; + + if (Q.IsCall) + Result = CachedUpwardsClobberingCall.lookup(M); + else + Result = CachedUpwardsClobberingAccess.lookup({M, Loc}); + + if (Result) + ++NumClobberCacheHits; + return Result; +} + +bool CachingMemorySSAWalker::instructionClobbersQuery( + const MemoryDef *MD, UpwardsMemoryQuery &Q, + const MemoryLocation &Loc) const { + Instruction *DefMemoryInst = MD->getMemoryInst(); + assert(DefMemoryInst && "Defining instruction not actually an instruction"); + + if (!Q.IsCall) + return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod; + + // If this is a call, mark it for caching + if (ImmutableCallSite(DefMemoryInst)) + Q.VisitedCalls.insert(MD); + ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst)); + return I != MRI_NoModRef; +} + +MemoryAccessPair CachingMemorySSAWalker::UpwardsDFSWalk( + MemoryAccess *StartingAccess, const MemoryLocation &Loc, + UpwardsMemoryQuery &Q, bool FollowingBackedge) { + MemoryAccess *ModifyingAccess = nullptr; + + auto DFI = df_begin(StartingAccess); + for (auto DFE = df_end(StartingAccess); DFI != DFE;) { + MemoryAccess *CurrAccess = *DFI; + if (MSSA->isLiveOnEntryDef(CurrAccess)) + return {CurrAccess, Loc}; + if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc)) + return {CacheResult, Loc}; + // If this is a MemoryDef, check whether it clobbers our current query. + if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) { + // If we hit the top, stop following this path. + // While we can do lookups, we can't sanely do inserts here unless we were + // to track everything we saw along the way, since we don't know where we + // will stop. + if (instructionClobbersQuery(MD, Q, Loc)) { + ModifyingAccess = CurrAccess; + break; + } + } + + // We need to know whether it is a phi so we can track backedges. + // Otherwise, walk all upward defs. + if (!isa<MemoryPhi>(CurrAccess)) { + ++DFI; + continue; + } + + // Recurse on PHI nodes, since we need to change locations. + // TODO: Allow graphtraits on pairs, which would turn this whole function + // into a normal single depth first walk. + MemoryAccess *FirstDef = nullptr; + DFI = DFI.skipChildren(); + const MemoryAccessPair PHIPair(CurrAccess, Loc); + bool VisitedOnlyOne = true; + for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end(); + MPI != MPE; ++MPI) { + // Don't follow this path again if we've followed it once + if (!Q.Visited.insert(*MPI).second) + continue; + + bool Backedge = + !FollowingBackedge && + DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock()); + + MemoryAccessPair CurrentPair = + UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge); + // All the phi arguments should reach the same point if we can bypass + // this phi. The alternative is that they hit this phi node, which + // means we can skip this argument. + if (FirstDef && CurrentPair.first != PHIPair.first && + CurrentPair.first != FirstDef) { + ModifyingAccess = CurrAccess; + break; + } + + if (!FirstDef) + FirstDef = CurrentPair.first; + else + VisitedOnlyOne = false; + } + + // The above loop determines if all arguments of the phi node reach the + // same place. However we skip arguments that are cyclically dependent + // only on the value of this phi node. This means in some cases, we may + // only visit one argument of the phi node, and the above loop will + // happily say that all the arguments are the same. However, in that case, + // we still can't walk past the phi node, because that argument still + // kills the access unless we hit the top of the function when walking + // that argument. + if (VisitedOnlyOne && FirstDef && !MSSA->isLiveOnEntryDef(FirstDef)) + ModifyingAccess = CurrAccess; + } + + if (!ModifyingAccess) + return {MSSA->getLiveOnEntryDef(), Q.StartingLoc}; + + const BasicBlock *OriginalBlock = Q.OriginalAccess->getBlock(); + unsigned N = DFI.getPathLength(); + MemoryAccess *FinalAccess = ModifyingAccess; + for (; N != 0; --N) { + ModifyingAccess = DFI.getPath(N - 1); + BasicBlock *CurrBlock = ModifyingAccess->getBlock(); + if (!FollowingBackedge) + doCacheInsert(ModifyingAccess, FinalAccess, Q, Loc); + if (DT->dominates(CurrBlock, OriginalBlock) && + (CurrBlock != OriginalBlock || !FollowingBackedge || + MSSA->locallyDominates(ModifyingAccess, Q.OriginalAccess))) + break; + } + + // Cache everything else on the way back. The caller should cache + // Q.OriginalAccess for us. + for (; N != 0; --N) { + MemoryAccess *CacheAccess = DFI.getPath(N - 1); + doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); + } + assert(Q.Visited.size() < 1000 && "Visited too much"); + + return {ModifyingAccess, Loc}; +} + +/// \brief Walk the use-def chains starting at \p MA and find +/// the MemoryAccess that actually clobbers Loc. +/// +/// \returns our clobbering memory access +MemoryAccess * +CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess, + UpwardsMemoryQuery &Q) { + return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first; +} + +MemoryAccess * +CachingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *StartingAccess, + MemoryLocation &Loc) { + if (isa<MemoryPhi>(StartingAccess)) + return StartingAccess; + + auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); + if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) + return StartingUseOrDef; + + Instruction *I = StartingUseOrDef->getMemoryInst(); + + // Conservatively, fences are always clobbers, so don't perform the walk if we + // hit a fence. + if (isa<FenceInst>(I)) + return StartingUseOrDef; + + UpwardsMemoryQuery Q; + Q.OriginalAccess = StartingUseOrDef; + Q.StartingLoc = Loc; + Q.Inst = StartingUseOrDef->getMemoryInst(); + Q.IsCall = false; + Q.DL = &Q.Inst->getModule()->getDataLayout(); + + if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc)) + return CacheResult; + + // Unlike the other function, do not walk to the def of a def, because we are + // handed something we already believe is the clobbering access. + MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) + ? StartingUseOrDef->getDefiningAccess() + : StartingUseOrDef; + + MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); + doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc); + DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *StartingUseOrDef << "\n"); + DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *Clobber << "\n"); + return Clobber; +} + +MemoryAccess * +CachingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { + // There should be no way to lookup an instruction and get a phi as the + // access, since we only map BB's to PHI's. So, this must be a use or def. + auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I)); + + // We can't sanely do anything with a FenceInst, they conservatively + // clobber all memory, and have no locations to get pointers from to + // try to disambiguate + if (isa<FenceInst>(I)) + return StartingAccess; + + UpwardsMemoryQuery Q; + Q.OriginalAccess = StartingAccess; + Q.IsCall = bool(ImmutableCallSite(I)); + if (!Q.IsCall) + Q.StartingLoc = MemoryLocation::get(I); + Q.Inst = I; + Q.DL = &Q.Inst->getModule()->getDataLayout(); + if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc)) + return CacheResult; + + // Start with the thing we already think clobbers this location + MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); + + // At this point, DefiningAccess may be the live on entry def. + // If it is, we will not get a better result. + if (MSSA->isLiveOnEntryDef(DefiningAccess)) + return DefiningAccess; + + MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); + doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc); + // TODO: When this implementation is more mature, we may want to figure out + // what this additional caching buys us. It's most likely A Good Thing. + if (Q.IsCall) + for (const MemoryAccess *MA : Q.VisitedCalls) + doCacheInsert(MA, Result, Q, Q.StartingLoc); + + DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *DefiningAccess << "\n"); + DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); + DEBUG(dbgs() << *Result << "\n"); + + return Result; +} + +MemoryAccess * +DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { + MemoryAccess *MA = MSSA->getMemoryAccess(I); + if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) + return Use->getDefiningAccess(); + return MA; +} + +MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( + MemoryAccess *StartingAccess, MemoryLocation &) { + if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) + return Use->getDefiningAccess(); + return StartingAccess; +} +} diff --git a/llvm/lib/Transforms/Utils/Utils.cpp b/llvm/lib/Transforms/Utils/Utils.cpp index ed4f45c6a61..4e5cece048a 100644 --- a/llvm/lib/Transforms/Utils/Utils.cpp +++ b/llvm/lib/Transforms/Utils/Utils.cpp @@ -32,6 +32,8 @@ void llvm::initializeTransformUtils(PassRegistry &Registry) { initializeUnifyFunctionExitNodesPass(Registry); initializeInstSimplifierPass(Registry); initializeMetaRenamerPass(Registry); + initializeMemorySSALazyPass(Registry); + initializeMemorySSAPrinterPassPass(Registry); } /// LLVMInitializeTransformUtils - C binding for initializeTransformUtilsPasses. |