diff options
author | Erik Eckstein <eeckstein@apple.com> | 2016-11-11 21:15:13 +0000 |
---|---|---|
committer | Erik Eckstein <eeckstein@apple.com> | 2016-11-11 21:15:13 +0000 |
commit | 4d6fb72aa93dee764f2dac5dcf324bf45f062e4b (patch) | |
tree | 14288591bdfa8b1f33a73061f8f081ec70155bab /llvm/lib/Transforms/Utils/FunctionComparator.cpp | |
parent | 653e3f4e197d6d27710f09366bf9542ea617594f (diff) | |
download | bcm5719-llvm-4d6fb72aa93dee764f2dac5dcf324bf45f062e4b.tar.gz bcm5719-llvm-4d6fb72aa93dee764f2dac5dcf324bf45f062e4b.zip |
Make the FunctionComparator of the MergeFunctions pass a stand-alone utility.
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
llvm-svn: 286632
Diffstat (limited to 'llvm/lib/Transforms/Utils/FunctionComparator.cpp')
-rw-r--r-- | llvm/lib/Transforms/Utils/FunctionComparator.cpp | 922 |
1 files changed, 922 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/FunctionComparator.cpp b/llvm/lib/Transforms/Utils/FunctionComparator.cpp new file mode 100644 index 00000000000..6884b403e92 --- /dev/null +++ b/llvm/lib/Transforms/Utils/FunctionComparator.cpp @@ -0,0 +1,922 @@ +//===- FunctionComparator.h - Function Comparator -------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the FunctionComparator and GlobalNumberState classes +// which are used by the MergeFunctions pass for comparing functions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/FunctionComparator.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "functioncomparator" + +int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { + if (L < R) return -1; + if (L > R) return 1; + return 0; +} + +int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const { + if ((int)L < (int)R) return -1; + if ((int)L > (int)R) return 1; + return 0; +} + +int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { + if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) + return Res; + if (L.ugt(R)) return 1; + if (R.ugt(L)) return -1; + return 0; +} + +int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { + // Floats are ordered first by semantics (i.e. float, double, half, etc.), + // then by value interpreted as a bitstring (aka APInt). + const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); + if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), + APFloat::semanticsPrecision(SR))) + return Res; + if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), + APFloat::semanticsMaxExponent(SR))) + return Res; + if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), + APFloat::semanticsMinExponent(SR))) + return Res; + if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), + APFloat::semanticsSizeInBits(SR))) + return Res; + return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); +} + +int FunctionComparator::cmpMem(StringRef L, StringRef R) const { + // Prevent heavy comparison, compare sizes first. + if (int Res = cmpNumbers(L.size(), R.size())) + return Res; + + // Compare strings lexicographically only when it is necessary: only when + // strings are equal in size. + return L.compare(R); +} + +int FunctionComparator::cmpAttrs(const AttributeSet L, + const AttributeSet R) const { + if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) + return Res; + + for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { + AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), + RE = R.end(i); + for (; LI != LE && RI != RE; ++LI, ++RI) { + Attribute LA = *LI; + Attribute RA = *RI; + if (LA < RA) + return -1; + if (RA < LA) + return 1; + } + if (LI != LE) + return 1; + if (RI != RE) + return -1; + } + return 0; +} + +int FunctionComparator::cmpRangeMetadata(const MDNode *L, + const MDNode *R) const { + if (L == R) + return 0; + if (!L) + return -1; + if (!R) + return 1; + // Range metadata is a sequence of numbers. Make sure they are the same + // sequence. + // TODO: Note that as this is metadata, it is possible to drop and/or merge + // this data when considering functions to merge. Thus this comparison would + // return 0 (i.e. equivalent), but merging would become more complicated + // because the ranges would need to be unioned. It is not likely that + // functions differ ONLY in this metadata if they are actually the same + // function semantically. + if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) + return Res; + for (size_t I = 0; I < L->getNumOperands(); ++I) { + ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); + ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); + if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) + return Res; + } + return 0; +} + +int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, + const Instruction *R) const { + ImmutableCallSite LCS(L); + ImmutableCallSite RCS(R); + + assert(LCS && RCS && "Must be calls or invokes!"); + assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); + + if (int Res = + cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) + return Res; + + for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { + auto OBL = LCS.getOperandBundleAt(i); + auto OBR = RCS.getOperandBundleAt(i); + + if (int Res = OBL.getTagName().compare(OBR.getTagName())) + return Res; + + if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) + return Res; + } + + return 0; +} + +/// Constants comparison: +/// 1. Check whether type of L constant could be losslessly bitcasted to R +/// type. +/// 2. Compare constant contents. +/// For more details see declaration comments. +int FunctionComparator::cmpConstants(const Constant *L, + const Constant *R) const { + + Type *TyL = L->getType(); + Type *TyR = R->getType(); + + // Check whether types are bitcastable. This part is just re-factored + // Type::canLosslesslyBitCastTo method, but instead of returning true/false, + // we also pack into result which type is "less" for us. + int TypesRes = cmpTypes(TyL, TyR); + if (TypesRes != 0) { + // Types are different, but check whether we can bitcast them. + if (!TyL->isFirstClassType()) { + if (TyR->isFirstClassType()) + return -1; + // Neither TyL nor TyR are values of first class type. Return the result + // of comparing the types + return TypesRes; + } + if (!TyR->isFirstClassType()) { + if (TyL->isFirstClassType()) + return 1; + return TypesRes; + } + + // Vector -> Vector conversions are always lossless if the two vector types + // have the same size, otherwise not. + unsigned TyLWidth = 0; + unsigned TyRWidth = 0; + + if (auto *VecTyL = dyn_cast<VectorType>(TyL)) + TyLWidth = VecTyL->getBitWidth(); + if (auto *VecTyR = dyn_cast<VectorType>(TyR)) + TyRWidth = VecTyR->getBitWidth(); + + if (TyLWidth != TyRWidth) + return cmpNumbers(TyLWidth, TyRWidth); + + // Zero bit-width means neither TyL nor TyR are vectors. + if (!TyLWidth) { + PointerType *PTyL = dyn_cast<PointerType>(TyL); + PointerType *PTyR = dyn_cast<PointerType>(TyR); + if (PTyL && PTyR) { + unsigned AddrSpaceL = PTyL->getAddressSpace(); + unsigned AddrSpaceR = PTyR->getAddressSpace(); + if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) + return Res; + } + if (PTyL) + return 1; + if (PTyR) + return -1; + + // TyL and TyR aren't vectors, nor pointers. We don't know how to + // bitcast them. + return TypesRes; + } + } + + // OK, types are bitcastable, now check constant contents. + + if (L->isNullValue() && R->isNullValue()) + return TypesRes; + if (L->isNullValue() && !R->isNullValue()) + return 1; + if (!L->isNullValue() && R->isNullValue()) + return -1; + + auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); + auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); + if (GlobalValueL && GlobalValueR) { + return cmpGlobalValues(GlobalValueL, GlobalValueR); + } + + if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) + return Res; + + if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { + const auto *SeqR = cast<ConstantDataSequential>(R); + // This handles ConstantDataArray and ConstantDataVector. Note that we + // compare the two raw data arrays, which might differ depending on the host + // endianness. This isn't a problem though, because the endiness of a module + // will affect the order of the constants, but this order is the same + // for a given input module and host platform. + return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); + } + + switch (L->getValueID()) { + case Value::UndefValueVal: + case Value::ConstantTokenNoneVal: + return TypesRes; + case Value::ConstantIntVal: { + const APInt &LInt = cast<ConstantInt>(L)->getValue(); + const APInt &RInt = cast<ConstantInt>(R)->getValue(); + return cmpAPInts(LInt, RInt); + } + case Value::ConstantFPVal: { + const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); + const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); + return cmpAPFloats(LAPF, RAPF); + } + case Value::ConstantArrayVal: { + const ConstantArray *LA = cast<ConstantArray>(L); + const ConstantArray *RA = cast<ConstantArray>(R); + uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); + uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); + if (int Res = cmpNumbers(NumElementsL, NumElementsR)) + return Res; + for (uint64_t i = 0; i < NumElementsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), + cast<Constant>(RA->getOperand(i)))) + return Res; + } + return 0; + } + case Value::ConstantStructVal: { + const ConstantStruct *LS = cast<ConstantStruct>(L); + const ConstantStruct *RS = cast<ConstantStruct>(R); + unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); + unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); + if (int Res = cmpNumbers(NumElementsL, NumElementsR)) + return Res; + for (unsigned i = 0; i != NumElementsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), + cast<Constant>(RS->getOperand(i)))) + return Res; + } + return 0; + } + case Value::ConstantVectorVal: { + const ConstantVector *LV = cast<ConstantVector>(L); + const ConstantVector *RV = cast<ConstantVector>(R); + unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); + unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); + if (int Res = cmpNumbers(NumElementsL, NumElementsR)) + return Res; + for (uint64_t i = 0; i < NumElementsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), + cast<Constant>(RV->getOperand(i)))) + return Res; + } + return 0; + } + case Value::ConstantExprVal: { + const ConstantExpr *LE = cast<ConstantExpr>(L); + const ConstantExpr *RE = cast<ConstantExpr>(R); + unsigned NumOperandsL = LE->getNumOperands(); + unsigned NumOperandsR = RE->getNumOperands(); + if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) + return Res; + for (unsigned i = 0; i < NumOperandsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), + cast<Constant>(RE->getOperand(i)))) + return Res; + } + return 0; + } + case Value::BlockAddressVal: { + const BlockAddress *LBA = cast<BlockAddress>(L); + const BlockAddress *RBA = cast<BlockAddress>(R); + if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) + return Res; + if (LBA->getFunction() == RBA->getFunction()) { + // They are BBs in the same function. Order by which comes first in the + // BB order of the function. This order is deterministic. + Function* F = LBA->getFunction(); + BasicBlock *LBB = LBA->getBasicBlock(); + BasicBlock *RBB = RBA->getBasicBlock(); + if (LBB == RBB) + return 0; + for(BasicBlock &BB : F->getBasicBlockList()) { + if (&BB == LBB) { + assert(&BB != RBB); + return -1; + } + if (&BB == RBB) + return 1; + } + llvm_unreachable("Basic Block Address does not point to a basic block in " + "its function."); + return -1; + } else { + // cmpValues said the functions are the same. So because they aren't + // literally the same pointer, they must respectively be the left and + // right functions. + assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); + // cmpValues will tell us if these are equivalent BasicBlocks, in the + // context of their respective functions. + return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); + } + } + default: // Unknown constant, abort. + DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); + llvm_unreachable("Constant ValueID not recognized."); + return -1; + } +} + +int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const { + return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R)); +} + +/// cmpType - compares two types, +/// defines total ordering among the types set. +/// See method declaration comments for more details. +int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { + PointerType *PTyL = dyn_cast<PointerType>(TyL); + PointerType *PTyR = dyn_cast<PointerType>(TyR); + + const DataLayout &DL = FnL->getParent()->getDataLayout(); + if (PTyL && PTyL->getAddressSpace() == 0) + TyL = DL.getIntPtrType(TyL); + if (PTyR && PTyR->getAddressSpace() == 0) + TyR = DL.getIntPtrType(TyR); + + if (TyL == TyR) + return 0; + + if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) + return Res; + + switch (TyL->getTypeID()) { + default: + llvm_unreachable("Unknown type!"); + // Fall through in Release mode. + LLVM_FALLTHROUGH; + case Type::IntegerTyID: + return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), + cast<IntegerType>(TyR)->getBitWidth()); + case Type::VectorTyID: { + VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); + if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) + return Res; + return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); + } + // TyL == TyR would have returned true earlier, because types are uniqued. + case Type::VoidTyID: + case Type::FloatTyID: + case Type::DoubleTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + case Type::LabelTyID: + case Type::MetadataTyID: + case Type::TokenTyID: + return 0; + + case Type::PointerTyID: { + assert(PTyL && PTyR && "Both types must be pointers here."); + return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); + } + + case Type::StructTyID: { + StructType *STyL = cast<StructType>(TyL); + StructType *STyR = cast<StructType>(TyR); + if (STyL->getNumElements() != STyR->getNumElements()) + return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); + + if (STyL->isPacked() != STyR->isPacked()) + return cmpNumbers(STyL->isPacked(), STyR->isPacked()); + + for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { + if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) + return Res; + } + return 0; + } + + case Type::FunctionTyID: { + FunctionType *FTyL = cast<FunctionType>(TyL); + FunctionType *FTyR = cast<FunctionType>(TyR); + if (FTyL->getNumParams() != FTyR->getNumParams()) + return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); + + if (FTyL->isVarArg() != FTyR->isVarArg()) + return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); + + if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) + return Res; + + for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { + if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) + return Res; + } + return 0; + } + + case Type::ArrayTyID: { + ArrayType *ATyL = cast<ArrayType>(TyL); + ArrayType *ATyR = cast<ArrayType>(TyR); + if (ATyL->getNumElements() != ATyR->getNumElements()) + return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); + return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); + } + } +} + +// Determine whether the two operations are the same except that pointer-to-A +// and pointer-to-B are equivalent. This should be kept in sync with +// Instruction::isSameOperationAs. +// Read method declaration comments for more details. +int FunctionComparator::cmpOperations(const Instruction *L, + const Instruction *R, + bool &needToCmpOperands) const { + needToCmpOperands = true; + if (int Res = cmpValues(L, R)) + return Res; + + // Differences from Instruction::isSameOperationAs: + // * replace type comparison with calls to cmpTypes. + // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top. + // * because of the above, we don't test for the tail bit on calls later on. + if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) + return Res; + + if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) { + needToCmpOperands = false; + const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R); + if (int Res = + cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) + return Res; + return cmpGEPs(GEPL, GEPR); + } + + if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) + return Res; + + if (int Res = cmpTypes(L->getType(), R->getType())) + return Res; + + if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), + R->getRawSubclassOptionalData())) + return Res; + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same type + for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { + if (int Res = + cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) + return Res; + } + + // Check special state that is a part of some instructions. + if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { + if (int Res = cmpTypes(AI->getAllocatedType(), + cast<AllocaInst>(R)->getAllocatedType())) + return Res; + return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()); + } + if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { + if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) + return Res; + if (int Res = + cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) + return Res; + if (int Res = + cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) + return Res; + if (int Res = + cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) + return Res; + return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), + cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); + } + if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { + if (int Res = + cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) + return Res; + if (int Res = + cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) + return Res; + if (int Res = + cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) + return Res; + return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); + } + if (const CmpInst *CI = dyn_cast<CmpInst>(L)) + return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); + if (const CallInst *CI = dyn_cast<CallInst>(L)) { + if (int Res = cmpNumbers(CI->getCallingConv(), + cast<CallInst>(R)->getCallingConv())) + return Res; + if (int Res = + cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) + return Res; + if (int Res = cmpOperandBundlesSchema(CI, R)) + return Res; + return cmpRangeMetadata( + CI->getMetadata(LLVMContext::MD_range), + cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); + } + if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { + if (int Res = cmpNumbers(II->getCallingConv(), + cast<InvokeInst>(R)->getCallingConv())) + return Res; + if (int Res = + cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) + return Res; + if (int Res = cmpOperandBundlesSchema(II, R)) + return Res; + return cmpRangeMetadata( + II->getMetadata(LLVMContext::MD_range), + cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); + } + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { + ArrayRef<unsigned> LIndices = IVI->getIndices(); + ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); + if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) + return Res; + for (size_t i = 0, e = LIndices.size(); i != e; ++i) { + if (int Res = cmpNumbers(LIndices[i], RIndices[i])) + return Res; + } + return 0; + } + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { + ArrayRef<unsigned> LIndices = EVI->getIndices(); + ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); + if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) + return Res; + for (size_t i = 0, e = LIndices.size(); i != e; ++i) { + if (int Res = cmpNumbers(LIndices[i], RIndices[i])) + return Res; + } + } + if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { + if (int Res = + cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) + return Res; + return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); + } + if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { + if (int Res = cmpNumbers(CXI->isVolatile(), + cast<AtomicCmpXchgInst>(R)->isVolatile())) + return Res; + if (int Res = cmpNumbers(CXI->isWeak(), + cast<AtomicCmpXchgInst>(R)->isWeak())) + return Res; + if (int Res = + cmpOrderings(CXI->getSuccessOrdering(), + cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) + return Res; + if (int Res = + cmpOrderings(CXI->getFailureOrdering(), + cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) + return Res; + return cmpNumbers(CXI->getSynchScope(), + cast<AtomicCmpXchgInst>(R)->getSynchScope()); + } + if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { + if (int Res = cmpNumbers(RMWI->getOperation(), + cast<AtomicRMWInst>(R)->getOperation())) + return Res; + if (int Res = cmpNumbers(RMWI->isVolatile(), + cast<AtomicRMWInst>(R)->isVolatile())) + return Res; + if (int Res = cmpOrderings(RMWI->getOrdering(), + cast<AtomicRMWInst>(R)->getOrdering())) + return Res; + return cmpNumbers(RMWI->getSynchScope(), + cast<AtomicRMWInst>(R)->getSynchScope()); + } + if (const PHINode *PNL = dyn_cast<PHINode>(L)) { + const PHINode *PNR = cast<PHINode>(R); + // Ensure that in addition to the incoming values being identical + // (checked by the caller of this function), the incoming blocks + // are also identical. + for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) { + if (int Res = + cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i))) + return Res; + } + } + return 0; +} + +// Determine whether two GEP operations perform the same underlying arithmetic. +// Read method declaration comments for more details. +int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, + const GEPOperator *GEPR) const { + + unsigned int ASL = GEPL->getPointerAddressSpace(); + unsigned int ASR = GEPR->getPointerAddressSpace(); + + if (int Res = cmpNumbers(ASL, ASR)) + return Res; + + // When we have target data, we can reduce the GEP down to the value in bytes + // added to the address. + const DataLayout &DL = FnL->getParent()->getDataLayout(); + unsigned BitWidth = DL.getPointerSizeInBits(ASL); + APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); + if (GEPL->accumulateConstantOffset(DL, OffsetL) && + GEPR->accumulateConstantOffset(DL, OffsetR)) + return cmpAPInts(OffsetL, OffsetR); + if (int Res = cmpTypes(GEPL->getSourceElementType(), + GEPR->getSourceElementType())) + return Res; + + if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) + return Res; + + for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { + if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) + return Res; + } + + return 0; +} + +int FunctionComparator::cmpInlineAsm(const InlineAsm *L, + const InlineAsm *R) const { + // InlineAsm's are uniqued. If they are the same pointer, obviously they are + // the same, otherwise compare the fields. + if (L == R) + return 0; + if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) + return Res; + if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) + return Res; + if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) + return Res; + if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) + return Res; + if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) + return Res; + if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) + return Res; + llvm_unreachable("InlineAsm blocks were not uniqued."); + return 0; +} + +/// Compare two values used by the two functions under pair-wise comparison. If +/// this is the first time the values are seen, they're added to the mapping so +/// that we will detect mismatches on next use. +/// See comments in declaration for more details. +int FunctionComparator::cmpValues(const Value *L, const Value *R) const { + // Catch self-reference case. + if (L == FnL) { + if (R == FnR) + return 0; + return -1; + } + if (R == FnR) { + if (L == FnL) + return 0; + return 1; + } + + const Constant *ConstL = dyn_cast<Constant>(L); + const Constant *ConstR = dyn_cast<Constant>(R); + if (ConstL && ConstR) { + if (L == R) + return 0; + return cmpConstants(ConstL, ConstR); + } + + if (ConstL) + return 1; + if (ConstR) + return -1; + + const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); + const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); + + if (InlineAsmL && InlineAsmR) + return cmpInlineAsm(InlineAsmL, InlineAsmR); + if (InlineAsmL) + return 1; + if (InlineAsmR) + return -1; + + auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), + RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); + + return cmpNumbers(LeftSN.first->second, RightSN.first->second); +} + +// Test whether two basic blocks have equivalent behaviour. +int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, + const BasicBlock *BBR) const { + BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); + BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); + + do { + bool needToCmpOperands = true; + if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands)) + return Res; + if (needToCmpOperands) { + assert(InstL->getNumOperands() == InstR->getNumOperands()); + + for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { + Value *OpL = InstL->getOperand(i); + Value *OpR = InstR->getOperand(i); + if (int Res = cmpValues(OpL, OpR)) + return Res; + // cmpValues should ensure this is true. + assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); + } + } + + ++InstL; + ++InstR; + } while (InstL != InstLE && InstR != InstRE); + + if (InstL != InstLE && InstR == InstRE) + return 1; + if (InstL == InstLE && InstR != InstRE) + return -1; + return 0; +} + +int FunctionComparator::compareSignature() const { + if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) + return Res; + + if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) + return Res; + + if (FnL->hasGC()) { + if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) + return Res; + } + + if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) + return Res; + + if (FnL->hasSection()) { + if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) + return Res; + } + + if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) + return Res; + + // TODO: if it's internal and only used in direct calls, we could handle this + // case too. + if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) + return Res; + + if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) + return Res; + + assert(FnL->arg_size() == FnR->arg_size() && + "Identically typed functions have different numbers of args!"); + + // Visit the arguments so that they get enumerated in the order they're + // passed in. + for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), + ArgRI = FnR->arg_begin(), + ArgLE = FnL->arg_end(); + ArgLI != ArgLE; ++ArgLI, ++ArgRI) { + if (cmpValues(&*ArgLI, &*ArgRI) != 0) + llvm_unreachable("Arguments repeat!"); + } + return 0; +} + +// Test whether the two functions have equivalent behaviour. +int FunctionComparator::compare() { + beginCompare(); + + if (int Res = compareSignature()) + return Res; + + // We do a CFG-ordered walk since the actual ordering of the blocks in the + // linked list is immaterial. Our walk starts at the entry block for both + // functions, then takes each block from each terminator in order. As an + // artifact, this also means that unreachable blocks are ignored. + SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; + SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1. + + FnLBBs.push_back(&FnL->getEntryBlock()); + FnRBBs.push_back(&FnR->getEntryBlock()); + + VisitedBBs.insert(FnLBBs[0]); + while (!FnLBBs.empty()) { + const BasicBlock *BBL = FnLBBs.pop_back_val(); + const BasicBlock *BBR = FnRBBs.pop_back_val(); + + if (int Res = cmpValues(BBL, BBR)) + return Res; + + if (int Res = cmpBasicBlocks(BBL, BBR)) + return Res; + + const TerminatorInst *TermL = BBL->getTerminator(); + const TerminatorInst *TermR = BBR->getTerminator(); + + assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); + for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) + continue; + + FnLBBs.push_back(TermL->getSuccessor(i)); + FnRBBs.push_back(TermR->getSuccessor(i)); + } + } + return 0; +} + +namespace { + +// Accumulate the hash of a sequence of 64-bit integers. This is similar to a +// hash of a sequence of 64bit ints, but the entire input does not need to be +// available at once. This interface is necessary for functionHash because it +// needs to accumulate the hash as the structure of the function is traversed +// without saving these values to an intermediate buffer. This form of hashing +// is not often needed, as usually the object to hash is just read from a +// buffer. +class HashAccumulator64 { + uint64_t Hash; +public: + // Initialize to random constant, so the state isn't zero. + HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } + void add(uint64_t V) { + Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); + } + // No finishing is required, because the entire hash value is used. + uint64_t getHash() { return Hash; } +}; +} // end anonymous namespace + +// A function hash is calculated by considering only the number of arguments and +// whether a function is varargs, the order of basic blocks (given by the +// successors of each basic block in depth first order), and the order of +// opcodes of each instruction within each of these basic blocks. This mirrors +// the strategy compare() uses to compare functions by walking the BBs in depth +// first order and comparing each instruction in sequence. Because this hash +// does not look at the operands, it is insensitive to things such as the +// target of calls and the constants used in the function, which makes it useful +// when possibly merging functions which are the same modulo constants and call +// targets. +FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { + HashAccumulator64 H; + H.add(F.isVarArg()); + H.add(F.arg_size()); + + SmallVector<const BasicBlock *, 8> BBs; + SmallSet<const BasicBlock *, 16> VisitedBBs; + + // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), + // accumulating the hash of the function "structure." (BB and opcode sequence) + BBs.push_back(&F.getEntryBlock()); + VisitedBBs.insert(BBs[0]); + while (!BBs.empty()) { + const BasicBlock *BB = BBs.pop_back_val(); + // This random value acts as a block header, as otherwise the partition of + // opcodes into BBs wouldn't affect the hash, only the order of the opcodes + H.add(45798); + for (auto &Inst : *BB) { + H.add(Inst.getOpcode()); + } + const TerminatorInst *Term = BB->getTerminator(); + for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(Term->getSuccessor(i)).second) + continue; + BBs.push_back(Term->getSuccessor(i)); + } + } + return H.getHash(); +} + + |