summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Utils/FunctionComparator.cpp
diff options
context:
space:
mode:
authorErik Eckstein <eeckstein@apple.com>2016-11-11 21:15:13 +0000
committerErik Eckstein <eeckstein@apple.com>2016-11-11 21:15:13 +0000
commit4d6fb72aa93dee764f2dac5dcf324bf45f062e4b (patch)
tree14288591bdfa8b1f33a73061f8f081ec70155bab /llvm/lib/Transforms/Utils/FunctionComparator.cpp
parent653e3f4e197d6d27710f09366bf9542ea617594f (diff)
downloadbcm5719-llvm-4d6fb72aa93dee764f2dac5dcf324bf45f062e4b.tar.gz
bcm5719-llvm-4d6fb72aa93dee764f2dac5dcf324bf45f062e4b.zip
Make the FunctionComparator of the MergeFunctions pass a stand-alone utility.
This is pure refactoring. NFC. This change moves the FunctionComparator (together with the GlobalNumberState utility) in to a separate file so that it can be used by other passes. For example, the SwiftMergeFunctions pass in the Swift compiler: https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp Details of the change: *) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp *) Make FunctionComparator member functions protected (instead of private) so that a derived comparator class can use them. Following refactoring helps to share code between the base FunctionComparator class and a derived class: *) Add a beginCompare() function *) Move some basic function property comparisons into a separate function compareSignature() *) Do the GEP comparison inside cmpOperations() which now has a new needToCmpOperands reference parameter https://reviews.llvm.org/D25385 llvm-svn: 286632
Diffstat (limited to 'llvm/lib/Transforms/Utils/FunctionComparator.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/FunctionComparator.cpp922
1 files changed, 922 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/FunctionComparator.cpp b/llvm/lib/Transforms/Utils/FunctionComparator.cpp
new file mode 100644
index 00000000000..6884b403e92
--- /dev/null
+++ b/llvm/lib/Transforms/Utils/FunctionComparator.cpp
@@ -0,0 +1,922 @@
+//===- FunctionComparator.h - Function Comparator -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the FunctionComparator and GlobalNumberState classes
+// which are used by the MergeFunctions pass for comparing functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/FunctionComparator.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "functioncomparator"
+
+int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
+ if (L < R) return -1;
+ if (L > R) return 1;
+ return 0;
+}
+
+int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
+ if ((int)L < (int)R) return -1;
+ if ((int)L > (int)R) return 1;
+ return 0;
+}
+
+int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
+ if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
+ return Res;
+ if (L.ugt(R)) return 1;
+ if (R.ugt(L)) return -1;
+ return 0;
+}
+
+int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
+ // Floats are ordered first by semantics (i.e. float, double, half, etc.),
+ // then by value interpreted as a bitstring (aka APInt).
+ const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
+ if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
+ APFloat::semanticsPrecision(SR)))
+ return Res;
+ if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
+ APFloat::semanticsMaxExponent(SR)))
+ return Res;
+ if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
+ APFloat::semanticsMinExponent(SR)))
+ return Res;
+ if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
+ APFloat::semanticsSizeInBits(SR)))
+ return Res;
+ return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
+}
+
+int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
+ // Prevent heavy comparison, compare sizes first.
+ if (int Res = cmpNumbers(L.size(), R.size()))
+ return Res;
+
+ // Compare strings lexicographically only when it is necessary: only when
+ // strings are equal in size.
+ return L.compare(R);
+}
+
+int FunctionComparator::cmpAttrs(const AttributeSet L,
+ const AttributeSet R) const {
+ if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
+ return Res;
+
+ for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
+ AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
+ RE = R.end(i);
+ for (; LI != LE && RI != RE; ++LI, ++RI) {
+ Attribute LA = *LI;
+ Attribute RA = *RI;
+ if (LA < RA)
+ return -1;
+ if (RA < LA)
+ return 1;
+ }
+ if (LI != LE)
+ return 1;
+ if (RI != RE)
+ return -1;
+ }
+ return 0;
+}
+
+int FunctionComparator::cmpRangeMetadata(const MDNode *L,
+ const MDNode *R) const {
+ if (L == R)
+ return 0;
+ if (!L)
+ return -1;
+ if (!R)
+ return 1;
+ // Range metadata is a sequence of numbers. Make sure they are the same
+ // sequence.
+ // TODO: Note that as this is metadata, it is possible to drop and/or merge
+ // this data when considering functions to merge. Thus this comparison would
+ // return 0 (i.e. equivalent), but merging would become more complicated
+ // because the ranges would need to be unioned. It is not likely that
+ // functions differ ONLY in this metadata if they are actually the same
+ // function semantically.
+ if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
+ return Res;
+ for (size_t I = 0; I < L->getNumOperands(); ++I) {
+ ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
+ ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
+ if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
+ return Res;
+ }
+ return 0;
+}
+
+int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
+ const Instruction *R) const {
+ ImmutableCallSite LCS(L);
+ ImmutableCallSite RCS(R);
+
+ assert(LCS && RCS && "Must be calls or invokes!");
+ assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
+
+ if (int Res =
+ cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
+ return Res;
+
+ for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
+ auto OBL = LCS.getOperandBundleAt(i);
+ auto OBR = RCS.getOperandBundleAt(i);
+
+ if (int Res = OBL.getTagName().compare(OBR.getTagName()))
+ return Res;
+
+ if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
+ return Res;
+ }
+
+ return 0;
+}
+
+/// Constants comparison:
+/// 1. Check whether type of L constant could be losslessly bitcasted to R
+/// type.
+/// 2. Compare constant contents.
+/// For more details see declaration comments.
+int FunctionComparator::cmpConstants(const Constant *L,
+ const Constant *R) const {
+
+ Type *TyL = L->getType();
+ Type *TyR = R->getType();
+
+ // Check whether types are bitcastable. This part is just re-factored
+ // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
+ // we also pack into result which type is "less" for us.
+ int TypesRes = cmpTypes(TyL, TyR);
+ if (TypesRes != 0) {
+ // Types are different, but check whether we can bitcast them.
+ if (!TyL->isFirstClassType()) {
+ if (TyR->isFirstClassType())
+ return -1;
+ // Neither TyL nor TyR are values of first class type. Return the result
+ // of comparing the types
+ return TypesRes;
+ }
+ if (!TyR->isFirstClassType()) {
+ if (TyL->isFirstClassType())
+ return 1;
+ return TypesRes;
+ }
+
+ // Vector -> Vector conversions are always lossless if the two vector types
+ // have the same size, otherwise not.
+ unsigned TyLWidth = 0;
+ unsigned TyRWidth = 0;
+
+ if (auto *VecTyL = dyn_cast<VectorType>(TyL))
+ TyLWidth = VecTyL->getBitWidth();
+ if (auto *VecTyR = dyn_cast<VectorType>(TyR))
+ TyRWidth = VecTyR->getBitWidth();
+
+ if (TyLWidth != TyRWidth)
+ return cmpNumbers(TyLWidth, TyRWidth);
+
+ // Zero bit-width means neither TyL nor TyR are vectors.
+ if (!TyLWidth) {
+ PointerType *PTyL = dyn_cast<PointerType>(TyL);
+ PointerType *PTyR = dyn_cast<PointerType>(TyR);
+ if (PTyL && PTyR) {
+ unsigned AddrSpaceL = PTyL->getAddressSpace();
+ unsigned AddrSpaceR = PTyR->getAddressSpace();
+ if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
+ return Res;
+ }
+ if (PTyL)
+ return 1;
+ if (PTyR)
+ return -1;
+
+ // TyL and TyR aren't vectors, nor pointers. We don't know how to
+ // bitcast them.
+ return TypesRes;
+ }
+ }
+
+ // OK, types are bitcastable, now check constant contents.
+
+ if (L->isNullValue() && R->isNullValue())
+ return TypesRes;
+ if (L->isNullValue() && !R->isNullValue())
+ return 1;
+ if (!L->isNullValue() && R->isNullValue())
+ return -1;
+
+ auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
+ auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
+ if (GlobalValueL && GlobalValueR) {
+ return cmpGlobalValues(GlobalValueL, GlobalValueR);
+ }
+
+ if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
+ return Res;
+
+ if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
+ const auto *SeqR = cast<ConstantDataSequential>(R);
+ // This handles ConstantDataArray and ConstantDataVector. Note that we
+ // compare the two raw data arrays, which might differ depending on the host
+ // endianness. This isn't a problem though, because the endiness of a module
+ // will affect the order of the constants, but this order is the same
+ // for a given input module and host platform.
+ return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
+ }
+
+ switch (L->getValueID()) {
+ case Value::UndefValueVal:
+ case Value::ConstantTokenNoneVal:
+ return TypesRes;
+ case Value::ConstantIntVal: {
+ const APInt &LInt = cast<ConstantInt>(L)->getValue();
+ const APInt &RInt = cast<ConstantInt>(R)->getValue();
+ return cmpAPInts(LInt, RInt);
+ }
+ case Value::ConstantFPVal: {
+ const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
+ const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
+ return cmpAPFloats(LAPF, RAPF);
+ }
+ case Value::ConstantArrayVal: {
+ const ConstantArray *LA = cast<ConstantArray>(L);
+ const ConstantArray *RA = cast<ConstantArray>(R);
+ uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
+ uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
+ if (int Res = cmpNumbers(NumElementsL, NumElementsR))
+ return Res;
+ for (uint64_t i = 0; i < NumElementsL; ++i) {
+ if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
+ cast<Constant>(RA->getOperand(i))))
+ return Res;
+ }
+ return 0;
+ }
+ case Value::ConstantStructVal: {
+ const ConstantStruct *LS = cast<ConstantStruct>(L);
+ const ConstantStruct *RS = cast<ConstantStruct>(R);
+ unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
+ unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
+ if (int Res = cmpNumbers(NumElementsL, NumElementsR))
+ return Res;
+ for (unsigned i = 0; i != NumElementsL; ++i) {
+ if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
+ cast<Constant>(RS->getOperand(i))))
+ return Res;
+ }
+ return 0;
+ }
+ case Value::ConstantVectorVal: {
+ const ConstantVector *LV = cast<ConstantVector>(L);
+ const ConstantVector *RV = cast<ConstantVector>(R);
+ unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
+ unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
+ if (int Res = cmpNumbers(NumElementsL, NumElementsR))
+ return Res;
+ for (uint64_t i = 0; i < NumElementsL; ++i) {
+ if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
+ cast<Constant>(RV->getOperand(i))))
+ return Res;
+ }
+ return 0;
+ }
+ case Value::ConstantExprVal: {
+ const ConstantExpr *LE = cast<ConstantExpr>(L);
+ const ConstantExpr *RE = cast<ConstantExpr>(R);
+ unsigned NumOperandsL = LE->getNumOperands();
+ unsigned NumOperandsR = RE->getNumOperands();
+ if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
+ return Res;
+ for (unsigned i = 0; i < NumOperandsL; ++i) {
+ if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
+ cast<Constant>(RE->getOperand(i))))
+ return Res;
+ }
+ return 0;
+ }
+ case Value::BlockAddressVal: {
+ const BlockAddress *LBA = cast<BlockAddress>(L);
+ const BlockAddress *RBA = cast<BlockAddress>(R);
+ if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
+ return Res;
+ if (LBA->getFunction() == RBA->getFunction()) {
+ // They are BBs in the same function. Order by which comes first in the
+ // BB order of the function. This order is deterministic.
+ Function* F = LBA->getFunction();
+ BasicBlock *LBB = LBA->getBasicBlock();
+ BasicBlock *RBB = RBA->getBasicBlock();
+ if (LBB == RBB)
+ return 0;
+ for(BasicBlock &BB : F->getBasicBlockList()) {
+ if (&BB == LBB) {
+ assert(&BB != RBB);
+ return -1;
+ }
+ if (&BB == RBB)
+ return 1;
+ }
+ llvm_unreachable("Basic Block Address does not point to a basic block in "
+ "its function.");
+ return -1;
+ } else {
+ // cmpValues said the functions are the same. So because they aren't
+ // literally the same pointer, they must respectively be the left and
+ // right functions.
+ assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
+ // cmpValues will tell us if these are equivalent BasicBlocks, in the
+ // context of their respective functions.
+ return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
+ }
+ }
+ default: // Unknown constant, abort.
+ DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
+ llvm_unreachable("Constant ValueID not recognized.");
+ return -1;
+ }
+}
+
+int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
+ return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
+}
+
+/// cmpType - compares two types,
+/// defines total ordering among the types set.
+/// See method declaration comments for more details.
+int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
+ PointerType *PTyL = dyn_cast<PointerType>(TyL);
+ PointerType *PTyR = dyn_cast<PointerType>(TyR);
+
+ const DataLayout &DL = FnL->getParent()->getDataLayout();
+ if (PTyL && PTyL->getAddressSpace() == 0)
+ TyL = DL.getIntPtrType(TyL);
+ if (PTyR && PTyR->getAddressSpace() == 0)
+ TyR = DL.getIntPtrType(TyR);
+
+ if (TyL == TyR)
+ return 0;
+
+ if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
+ return Res;
+
+ switch (TyL->getTypeID()) {
+ default:
+ llvm_unreachable("Unknown type!");
+ // Fall through in Release mode.
+ LLVM_FALLTHROUGH;
+ case Type::IntegerTyID:
+ return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
+ cast<IntegerType>(TyR)->getBitWidth());
+ case Type::VectorTyID: {
+ VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
+ if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
+ return Res;
+ return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
+ }
+ // TyL == TyR would have returned true earlier, because types are uniqued.
+ case Type::VoidTyID:
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ case Type::LabelTyID:
+ case Type::MetadataTyID:
+ case Type::TokenTyID:
+ return 0;
+
+ case Type::PointerTyID: {
+ assert(PTyL && PTyR && "Both types must be pointers here.");
+ return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
+ }
+
+ case Type::StructTyID: {
+ StructType *STyL = cast<StructType>(TyL);
+ StructType *STyR = cast<StructType>(TyR);
+ if (STyL->getNumElements() != STyR->getNumElements())
+ return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
+
+ if (STyL->isPacked() != STyR->isPacked())
+ return cmpNumbers(STyL->isPacked(), STyR->isPacked());
+
+ for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
+ if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
+ return Res;
+ }
+ return 0;
+ }
+
+ case Type::FunctionTyID: {
+ FunctionType *FTyL = cast<FunctionType>(TyL);
+ FunctionType *FTyR = cast<FunctionType>(TyR);
+ if (FTyL->getNumParams() != FTyR->getNumParams())
+ return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
+
+ if (FTyL->isVarArg() != FTyR->isVarArg())
+ return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
+
+ if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
+ return Res;
+
+ for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
+ if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
+ return Res;
+ }
+ return 0;
+ }
+
+ case Type::ArrayTyID: {
+ ArrayType *ATyL = cast<ArrayType>(TyL);
+ ArrayType *ATyR = cast<ArrayType>(TyR);
+ if (ATyL->getNumElements() != ATyR->getNumElements())
+ return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
+ return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
+ }
+ }
+}
+
+// Determine whether the two operations are the same except that pointer-to-A
+// and pointer-to-B are equivalent. This should be kept in sync with
+// Instruction::isSameOperationAs.
+// Read method declaration comments for more details.
+int FunctionComparator::cmpOperations(const Instruction *L,
+ const Instruction *R,
+ bool &needToCmpOperands) const {
+ needToCmpOperands = true;
+ if (int Res = cmpValues(L, R))
+ return Res;
+
+ // Differences from Instruction::isSameOperationAs:
+ // * replace type comparison with calls to cmpTypes.
+ // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
+ // * because of the above, we don't test for the tail bit on calls later on.
+ if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
+ return Res;
+
+ if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
+ needToCmpOperands = false;
+ const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
+ if (int Res =
+ cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
+ return Res;
+ return cmpGEPs(GEPL, GEPR);
+ }
+
+ if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
+ return Res;
+
+ if (int Res = cmpTypes(L->getType(), R->getType()))
+ return Res;
+
+ if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
+ R->getRawSubclassOptionalData()))
+ return Res;
+
+ // We have two instructions of identical opcode and #operands. Check to see
+ // if all operands are the same type
+ for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
+ if (int Res =
+ cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
+ return Res;
+ }
+
+ // Check special state that is a part of some instructions.
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
+ if (int Res = cmpTypes(AI->getAllocatedType(),
+ cast<AllocaInst>(R)->getAllocatedType()))
+ return Res;
+ return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
+ }
+ if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
+ if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
+ return Res;
+ if (int Res =
+ cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
+ return Res;
+ if (int Res =
+ cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
+ return Res;
+ if (int Res =
+ cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
+ return Res;
+ return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
+ cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
+ }
+ if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
+ if (int Res =
+ cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
+ return Res;
+ if (int Res =
+ cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
+ return Res;
+ if (int Res =
+ cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
+ return Res;
+ return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
+ }
+ if (const CmpInst *CI = dyn_cast<CmpInst>(L))
+ return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
+ if (const CallInst *CI = dyn_cast<CallInst>(L)) {
+ if (int Res = cmpNumbers(CI->getCallingConv(),
+ cast<CallInst>(R)->getCallingConv()))
+ return Res;
+ if (int Res =
+ cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
+ return Res;
+ if (int Res = cmpOperandBundlesSchema(CI, R))
+ return Res;
+ return cmpRangeMetadata(
+ CI->getMetadata(LLVMContext::MD_range),
+ cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
+ }
+ if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
+ if (int Res = cmpNumbers(II->getCallingConv(),
+ cast<InvokeInst>(R)->getCallingConv()))
+ return Res;
+ if (int Res =
+ cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
+ return Res;
+ if (int Res = cmpOperandBundlesSchema(II, R))
+ return Res;
+ return cmpRangeMetadata(
+ II->getMetadata(LLVMContext::MD_range),
+ cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
+ }
+ if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
+ ArrayRef<unsigned> LIndices = IVI->getIndices();
+ ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
+ if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
+ return Res;
+ for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
+ if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
+ return Res;
+ }
+ return 0;
+ }
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
+ ArrayRef<unsigned> LIndices = EVI->getIndices();
+ ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
+ if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
+ return Res;
+ for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
+ if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
+ return Res;
+ }
+ }
+ if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
+ if (int Res =
+ cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
+ return Res;
+ return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
+ }
+ if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
+ if (int Res = cmpNumbers(CXI->isVolatile(),
+ cast<AtomicCmpXchgInst>(R)->isVolatile()))
+ return Res;
+ if (int Res = cmpNumbers(CXI->isWeak(),
+ cast<AtomicCmpXchgInst>(R)->isWeak()))
+ return Res;
+ if (int Res =
+ cmpOrderings(CXI->getSuccessOrdering(),
+ cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
+ return Res;
+ if (int Res =
+ cmpOrderings(CXI->getFailureOrdering(),
+ cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
+ return Res;
+ return cmpNumbers(CXI->getSynchScope(),
+ cast<AtomicCmpXchgInst>(R)->getSynchScope());
+ }
+ if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
+ if (int Res = cmpNumbers(RMWI->getOperation(),
+ cast<AtomicRMWInst>(R)->getOperation()))
+ return Res;
+ if (int Res = cmpNumbers(RMWI->isVolatile(),
+ cast<AtomicRMWInst>(R)->isVolatile()))
+ return Res;
+ if (int Res = cmpOrderings(RMWI->getOrdering(),
+ cast<AtomicRMWInst>(R)->getOrdering()))
+ return Res;
+ return cmpNumbers(RMWI->getSynchScope(),
+ cast<AtomicRMWInst>(R)->getSynchScope());
+ }
+ if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
+ const PHINode *PNR = cast<PHINode>(R);
+ // Ensure that in addition to the incoming values being identical
+ // (checked by the caller of this function), the incoming blocks
+ // are also identical.
+ for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
+ if (int Res =
+ cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
+ return Res;
+ }
+ }
+ return 0;
+}
+
+// Determine whether two GEP operations perform the same underlying arithmetic.
+// Read method declaration comments for more details.
+int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
+ const GEPOperator *GEPR) const {
+
+ unsigned int ASL = GEPL->getPointerAddressSpace();
+ unsigned int ASR = GEPR->getPointerAddressSpace();
+
+ if (int Res = cmpNumbers(ASL, ASR))
+ return Res;
+
+ // When we have target data, we can reduce the GEP down to the value in bytes
+ // added to the address.
+ const DataLayout &DL = FnL->getParent()->getDataLayout();
+ unsigned BitWidth = DL.getPointerSizeInBits(ASL);
+ APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
+ if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
+ GEPR->accumulateConstantOffset(DL, OffsetR))
+ return cmpAPInts(OffsetL, OffsetR);
+ if (int Res = cmpTypes(GEPL->getSourceElementType(),
+ GEPR->getSourceElementType()))
+ return Res;
+
+ if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
+ return Res;
+
+ for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
+ if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
+ return Res;
+ }
+
+ return 0;
+}
+
+int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
+ const InlineAsm *R) const {
+ // InlineAsm's are uniqued. If they are the same pointer, obviously they are
+ // the same, otherwise compare the fields.
+ if (L == R)
+ return 0;
+ if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
+ return Res;
+ if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
+ return Res;
+ if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
+ return Res;
+ if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
+ return Res;
+ if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
+ return Res;
+ if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
+ return Res;
+ llvm_unreachable("InlineAsm blocks were not uniqued.");
+ return 0;
+}
+
+/// Compare two values used by the two functions under pair-wise comparison. If
+/// this is the first time the values are seen, they're added to the mapping so
+/// that we will detect mismatches on next use.
+/// See comments in declaration for more details.
+int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
+ // Catch self-reference case.
+ if (L == FnL) {
+ if (R == FnR)
+ return 0;
+ return -1;
+ }
+ if (R == FnR) {
+ if (L == FnL)
+ return 0;
+ return 1;
+ }
+
+ const Constant *ConstL = dyn_cast<Constant>(L);
+ const Constant *ConstR = dyn_cast<Constant>(R);
+ if (ConstL && ConstR) {
+ if (L == R)
+ return 0;
+ return cmpConstants(ConstL, ConstR);
+ }
+
+ if (ConstL)
+ return 1;
+ if (ConstR)
+ return -1;
+
+ const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
+ const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
+
+ if (InlineAsmL && InlineAsmR)
+ return cmpInlineAsm(InlineAsmL, InlineAsmR);
+ if (InlineAsmL)
+ return 1;
+ if (InlineAsmR)
+ return -1;
+
+ auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
+ RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
+
+ return cmpNumbers(LeftSN.first->second, RightSN.first->second);
+}
+
+// Test whether two basic blocks have equivalent behaviour.
+int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
+ const BasicBlock *BBR) const {
+ BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
+ BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
+
+ do {
+ bool needToCmpOperands = true;
+ if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
+ return Res;
+ if (needToCmpOperands) {
+ assert(InstL->getNumOperands() == InstR->getNumOperands());
+
+ for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
+ Value *OpL = InstL->getOperand(i);
+ Value *OpR = InstR->getOperand(i);
+ if (int Res = cmpValues(OpL, OpR))
+ return Res;
+ // cmpValues should ensure this is true.
+ assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
+ }
+ }
+
+ ++InstL;
+ ++InstR;
+ } while (InstL != InstLE && InstR != InstRE);
+
+ if (InstL != InstLE && InstR == InstRE)
+ return 1;
+ if (InstL == InstLE && InstR != InstRE)
+ return -1;
+ return 0;
+}
+
+int FunctionComparator::compareSignature() const {
+ if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
+ return Res;
+
+ if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
+ return Res;
+
+ if (FnL->hasGC()) {
+ if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
+ return Res;
+ }
+
+ if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
+ return Res;
+
+ if (FnL->hasSection()) {
+ if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
+ return Res;
+ }
+
+ if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
+ return Res;
+
+ // TODO: if it's internal and only used in direct calls, we could handle this
+ // case too.
+ if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
+ return Res;
+
+ if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
+ return Res;
+
+ assert(FnL->arg_size() == FnR->arg_size() &&
+ "Identically typed functions have different numbers of args!");
+
+ // Visit the arguments so that they get enumerated in the order they're
+ // passed in.
+ for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
+ ArgRI = FnR->arg_begin(),
+ ArgLE = FnL->arg_end();
+ ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
+ if (cmpValues(&*ArgLI, &*ArgRI) != 0)
+ llvm_unreachable("Arguments repeat!");
+ }
+ return 0;
+}
+
+// Test whether the two functions have equivalent behaviour.
+int FunctionComparator::compare() {
+ beginCompare();
+
+ if (int Res = compareSignature())
+ return Res;
+
+ // We do a CFG-ordered walk since the actual ordering of the blocks in the
+ // linked list is immaterial. Our walk starts at the entry block for both
+ // functions, then takes each block from each terminator in order. As an
+ // artifact, this also means that unreachable blocks are ignored.
+ SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
+ SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
+
+ FnLBBs.push_back(&FnL->getEntryBlock());
+ FnRBBs.push_back(&FnR->getEntryBlock());
+
+ VisitedBBs.insert(FnLBBs[0]);
+ while (!FnLBBs.empty()) {
+ const BasicBlock *BBL = FnLBBs.pop_back_val();
+ const BasicBlock *BBR = FnRBBs.pop_back_val();
+
+ if (int Res = cmpValues(BBL, BBR))
+ return Res;
+
+ if (int Res = cmpBasicBlocks(BBL, BBR))
+ return Res;
+
+ const TerminatorInst *TermL = BBL->getTerminator();
+ const TerminatorInst *TermR = BBR->getTerminator();
+
+ assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
+ for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
+ if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
+ continue;
+
+ FnLBBs.push_back(TermL->getSuccessor(i));
+ FnRBBs.push_back(TermR->getSuccessor(i));
+ }
+ }
+ return 0;
+}
+
+namespace {
+
+// Accumulate the hash of a sequence of 64-bit integers. This is similar to a
+// hash of a sequence of 64bit ints, but the entire input does not need to be
+// available at once. This interface is necessary for functionHash because it
+// needs to accumulate the hash as the structure of the function is traversed
+// without saving these values to an intermediate buffer. This form of hashing
+// is not often needed, as usually the object to hash is just read from a
+// buffer.
+class HashAccumulator64 {
+ uint64_t Hash;
+public:
+ // Initialize to random constant, so the state isn't zero.
+ HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
+ void add(uint64_t V) {
+ Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
+ }
+ // No finishing is required, because the entire hash value is used.
+ uint64_t getHash() { return Hash; }
+};
+} // end anonymous namespace
+
+// A function hash is calculated by considering only the number of arguments and
+// whether a function is varargs, the order of basic blocks (given by the
+// successors of each basic block in depth first order), and the order of
+// opcodes of each instruction within each of these basic blocks. This mirrors
+// the strategy compare() uses to compare functions by walking the BBs in depth
+// first order and comparing each instruction in sequence. Because this hash
+// does not look at the operands, it is insensitive to things such as the
+// target of calls and the constants used in the function, which makes it useful
+// when possibly merging functions which are the same modulo constants and call
+// targets.
+FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
+ HashAccumulator64 H;
+ H.add(F.isVarArg());
+ H.add(F.arg_size());
+
+ SmallVector<const BasicBlock *, 8> BBs;
+ SmallSet<const BasicBlock *, 16> VisitedBBs;
+
+ // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
+ // accumulating the hash of the function "structure." (BB and opcode sequence)
+ BBs.push_back(&F.getEntryBlock());
+ VisitedBBs.insert(BBs[0]);
+ while (!BBs.empty()) {
+ const BasicBlock *BB = BBs.pop_back_val();
+ // This random value acts as a block header, as otherwise the partition of
+ // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
+ H.add(45798);
+ for (auto &Inst : *BB) {
+ H.add(Inst.getOpcode());
+ }
+ const TerminatorInst *Term = BB->getTerminator();
+ for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
+ if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
+ continue;
+ BBs.push_back(Term->getSuccessor(i));
+ }
+ }
+ return H.getHash();
+}
+
+
OpenPOWER on IntegriCloud