summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Scalar/LoopSimplify.cpp
diff options
context:
space:
mode:
authorJeff Cohen <jeffc@jolt-lang.org>2005-10-26 05:36:51 +0000
committerJeff Cohen <jeffc@jolt-lang.org>2005-10-26 05:36:51 +0000
commit2b8cbf319caa41be791c877f6cd44f985235da08 (patch)
tree6017b569445a0cfaedb03723f11ad71715241ccc /llvm/lib/Transforms/Scalar/LoopSimplify.cpp
parentb2f98015557f179d3bb98132a9e51e23efd719ce (diff)
downloadbcm5719-llvm-2b8cbf319caa41be791c877f6cd44f985235da08.tar.gz
bcm5719-llvm-2b8cbf319caa41be791c877f6cd44f985235da08.zip
Update Visual Studio projects to reflect moved file.
llvm-svn: 23998
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopSimplify.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/LoopSimplify.cpp855
1 files changed, 0 insertions, 855 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopSimplify.cpp b/llvm/lib/Transforms/Scalar/LoopSimplify.cpp
deleted file mode 100644
index 2df10ce92f4..00000000000
--- a/llvm/lib/Transforms/Scalar/LoopSimplify.cpp
+++ /dev/null
@@ -1,855 +0,0 @@
-//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass performs several transformations to transform natural loops into a
-// simpler form, which makes subsequent analyses and transformations simpler and
-// more effective.
-//
-// Loop pre-header insertion guarantees that there is a single, non-critical
-// entry edge from outside of the loop to the loop header. This simplifies a
-// number of analyses and transformations, such as LICM.
-//
-// Loop exit-block insertion guarantees that all exit blocks from the loop
-// (blocks which are outside of the loop that have predecessors inside of the
-// loop) only have predecessors from inside of the loop (and are thus dominated
-// by the loop header). This simplifies transformations such as store-sinking
-// that are built into LICM.
-//
-// This pass also guarantees that loops will have exactly one backedge.
-//
-// Note that the simplifycfg pass will clean up blocks which are split out but
-// end up being unnecessary, so usage of this pass should not pessimize
-// generated code.
-//
-// This pass obviously modifies the CFG, but updates loop information and
-// dominator information.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constant.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/Type.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/Dominators.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-using namespace llvm;
-
-namespace {
- Statistic<>
- NumInserted("loopsimplify", "Number of pre-header or exit blocks inserted");
- Statistic<>
- NumNested("loopsimplify", "Number of nested loops split out");
-
- struct LoopSimplify : public FunctionPass {
- // AA - If we have an alias analysis object to update, this is it, otherwise
- // this is null.
- AliasAnalysis *AA;
-
- virtual bool runOnFunction(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- // We need loop information to identify the loops...
- AU.addRequired<LoopInfo>();
- AU.addRequired<DominatorSet>();
- AU.addRequired<DominatorTree>();
-
- AU.addPreserved<LoopInfo>();
- AU.addPreserved<DominatorSet>();
- AU.addPreserved<ImmediateDominators>();
- AU.addPreserved<DominatorTree>();
- AU.addPreserved<DominanceFrontier>();
- AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
- }
- private:
- bool ProcessLoop(Loop *L);
- BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix,
- const std::vector<BasicBlock*> &Preds);
- BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
- void InsertPreheaderForLoop(Loop *L);
- Loop *SeparateNestedLoop(Loop *L);
- void InsertUniqueBackedgeBlock(Loop *L);
-
- void UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
- std::vector<BasicBlock*> &PredBlocks);
- };
-
- RegisterOpt<LoopSimplify>
- X("loopsimplify", "Canonicalize natural loops", true);
-}
-
-// Publically exposed interface to pass...
-const PassInfo *llvm::LoopSimplifyID = X.getPassInfo();
-FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
-
-/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
-/// it in any convenient order) inserting preheaders...
-///
-bool LoopSimplify::runOnFunction(Function &F) {
- bool Changed = false;
- LoopInfo &LI = getAnalysis<LoopInfo>();
- AA = getAnalysisToUpdate<AliasAnalysis>();
-
- for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
- Changed |= ProcessLoop(*I);
-
- return Changed;
-}
-
-
-/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
-/// all loops have preheaders.
-///
-bool LoopSimplify::ProcessLoop(Loop *L) {
- bool Changed = false;
-
- // Check to see that no blocks (other than the header) in the loop have
- // predecessors that are not in the loop. This is not valid for natural
- // loops, but can occur if the blocks are unreachable. Since they are
- // unreachable we can just shamelessly destroy their terminators to make them
- // not branch into the loop!
- assert(L->getBlocks()[0] == L->getHeader() &&
- "Header isn't first block in loop?");
- for (unsigned i = 1, e = L->getBlocks().size(); i != e; ++i) {
- BasicBlock *LoopBB = L->getBlocks()[i];
- Retry:
- for (pred_iterator PI = pred_begin(LoopBB), E = pred_end(LoopBB);
- PI != E; ++PI)
- if (!L->contains(*PI)) {
- // This predecessor is not in the loop. Kill its terminator!
- BasicBlock *DeadBlock = *PI;
- for (succ_iterator SI = succ_begin(DeadBlock), E = succ_end(DeadBlock);
- SI != E; ++SI)
- (*SI)->removePredecessor(DeadBlock); // Remove PHI node entries
-
- // Delete the dead terminator.
- if (AA) AA->deleteValue(&DeadBlock->back());
- DeadBlock->getInstList().pop_back();
-
- Value *RetVal = 0;
- if (LoopBB->getParent()->getReturnType() != Type::VoidTy)
- RetVal = Constant::getNullValue(LoopBB->getParent()->getReturnType());
- new ReturnInst(RetVal, DeadBlock);
- goto Retry; // We just invalidated the pred_iterator. Retry.
- }
- }
-
- // Does the loop already have a preheader? If so, don't modify the loop...
- if (L->getLoopPreheader() == 0) {
- InsertPreheaderForLoop(L);
- NumInserted++;
- Changed = true;
- }
-
- // Next, check to make sure that all exit nodes of the loop only have
- // predecessors that are inside of the loop. This check guarantees that the
- // loop preheader/header will dominate the exit blocks. If the exit block has
- // predecessors from outside of the loop, split the edge now.
- std::vector<BasicBlock*> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
-
- SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
- for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
- E = ExitBlockSet.end(); I != E; ++I) {
- BasicBlock *ExitBlock = *I;
- for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
- PI != PE; ++PI)
- if (!L->contains(*PI)) {
- RewriteLoopExitBlock(L, ExitBlock);
- NumInserted++;
- Changed = true;
- break;
- }
- }
-
- // If the header has more than two predecessors at this point (from the
- // preheader and from multiple backedges), we must adjust the loop.
- if (L->getNumBackEdges() != 1) {
- // If this is really a nested loop, rip it out into a child loop.
- if (Loop *NL = SeparateNestedLoop(L)) {
- ++NumNested;
- // This is a big restructuring change, reprocess the whole loop.
- ProcessLoop(NL);
- return true;
- }
-
- InsertUniqueBackedgeBlock(L);
- NumInserted++;
- Changed = true;
- }
-
- // Scan over the PHI nodes in the loop header. Since they now have only two
- // incoming values (the loop is canonicalized), we may have simplified the PHI
- // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
- PHINode *PN;
- DominatorSet &DS = getAnalysis<DominatorSet>();
- for (BasicBlock::iterator I = L->getHeader()->begin();
- (PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = PN->hasConstantValue()) {
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- }
-
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- Changed |= ProcessLoop(*I);
-
- return Changed;
-}
-
-/// SplitBlockPredecessors - Split the specified block into two blocks. We want
-/// to move the predecessors specified in the Preds list to point to the new
-/// block, leaving the remaining predecessors pointing to BB. This method
-/// updates the SSA PHINode's, but no other analyses.
-///
-BasicBlock *LoopSimplify::SplitBlockPredecessors(BasicBlock *BB,
- const char *Suffix,
- const std::vector<BasicBlock*> &Preds) {
-
- // Create new basic block, insert right before the original block...
- BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB->getParent(), BB);
-
- // The preheader first gets an unconditional branch to the loop header...
- BranchInst *BI = new BranchInst(BB, NewBB);
-
- // For every PHI node in the block, insert a PHI node into NewBB where the
- // incoming values from the out of loop edges are moved to NewBB. We have two
- // possible cases here. If the loop is dead, we just insert dummy entries
- // into the PHI nodes for the new edge. If the loop is not dead, we move the
- // incoming edges in BB into new PHI nodes in NewBB.
- //
- if (!Preds.empty()) { // Is the loop not obviously dead?
- // Check to see if the values being merged into the new block need PHI
- // nodes. If so, insert them.
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
- PHINode *PN = cast<PHINode>(I);
- ++I;
-
- // Check to see if all of the values coming in are the same. If so, we
- // don't need to create a new PHI node.
- Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
- for (unsigned i = 1, e = Preds.size(); i != e; ++i)
- if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
- InVal = 0;
- break;
- }
-
- // If the values coming into the block are not the same, we need a PHI.
- if (InVal == 0) {
- // Create the new PHI node, insert it into NewBB at the end of the block
- PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI);
- if (AA) AA->copyValue(PN, NewPHI);
-
- // Move all of the edges from blocks outside the loop to the new PHI
- for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
- Value *V = PN->removeIncomingValue(Preds[i], false);
- NewPHI->addIncoming(V, Preds[i]);
- }
- InVal = NewPHI;
- } else {
- // Remove all of the edges coming into the PHI nodes from outside of the
- // block.
- for (unsigned i = 0, e = Preds.size(); i != e; ++i)
- PN->removeIncomingValue(Preds[i], false);
- }
-
- // Add an incoming value to the PHI node in the loop for the preheader
- // edge.
- PN->addIncoming(InVal, NewBB);
-
- // Can we eliminate this phi node now?
- if (Value *V = PN->hasConstantValue(true)) {
- if (!isa<Instruction>(V) ||
- getAnalysis<DominatorSet>().dominates(cast<Instruction>(V), PN)) {
- PN->replaceAllUsesWith(V);
- if (AA) AA->deleteValue(PN);
- BB->getInstList().erase(PN);
- }
- }
- }
-
- // Now that the PHI nodes are updated, actually move the edges from
- // Preds to point to NewBB instead of BB.
- //
- for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
- TerminatorInst *TI = Preds[i]->getTerminator();
- for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s)
- if (TI->getSuccessor(s) == BB)
- TI->setSuccessor(s, NewBB);
- }
-
- } else { // Otherwise the loop is dead...
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Insert dummy values as the incoming value...
- PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB);
- }
- }
- return NewBB;
-}
-
-/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
-/// preheader, this method is called to insert one. This method has two phases:
-/// preheader insertion and analysis updating.
-///
-void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
- BasicBlock *Header = L->getHeader();
-
- // Compute the set of predecessors of the loop that are not in the loop.
- std::vector<BasicBlock*> OutsideBlocks;
- for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
- PI != PE; ++PI)
- if (!L->contains(*PI)) // Coming in from outside the loop?
- OutsideBlocks.push_back(*PI); // Keep track of it...
-
- // Split out the loop pre-header
- BasicBlock *NewBB =
- SplitBlockPredecessors(Header, ".preheader", OutsideBlocks);
-
- //===--------------------------------------------------------------------===//
- // Update analysis results now that we have performed the transformation
- //
-
- // We know that we have loop information to update... update it now.
- if (Loop *Parent = L->getParentLoop())
- Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
-
- DominatorSet &DS = getAnalysis<DominatorSet>(); // Update dominator info
- DominatorTree &DT = getAnalysis<DominatorTree>();
-
-
- // Update the dominator tree information.
- // The immediate dominator of the preheader is the immediate dominator of
- // the old header.
- DominatorTree::Node *PHDomTreeNode =
- DT.createNewNode(NewBB, DT.getNode(Header)->getIDom());
-
- // Change the header node so that PNHode is the new immediate dominator
- DT.changeImmediateDominator(DT.getNode(Header), PHDomTreeNode);
-
- {
- // The blocks that dominate NewBB are the blocks that dominate Header,
- // minus Header, plus NewBB.
- DominatorSet::DomSetType DomSet = DS.getDominators(Header);
- DomSet.erase(Header); // Header does not dominate us...
- DS.addBasicBlock(NewBB, DomSet);
-
- // The newly created basic block dominates all nodes dominated by Header.
- for (df_iterator<DominatorTree::Node*> DFI = df_begin(PHDomTreeNode),
- E = df_end(PHDomTreeNode); DFI != E; ++DFI)
- DS.addDominator((*DFI)->getBlock(), NewBB);
- }
-
- // Update immediate dominator information if we have it...
- if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
- // Whatever i-dominated the header node now immediately dominates NewBB
- ID->addNewBlock(NewBB, ID->get(Header));
-
- // The preheader now is the immediate dominator for the header node...
- ID->setImmediateDominator(Header, NewBB);
- }
-
- // Update dominance frontier information...
- if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
- // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates
- // everything that Header does, and it strictly dominates Header in
- // addition.
- assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?");
- DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second;
- NewDFSet.erase(Header);
- DF->addBasicBlock(NewBB, NewDFSet);
-
- // Now we must loop over all of the dominance frontiers in the function,
- // replacing occurrences of Header with NewBB in some cases. If a block
- // dominates a (now) predecessor of NewBB, but did not strictly dominate
- // Header, it will have Header in it's DF set, but should now have NewBB in
- // its set.
- for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) {
- // Get all of the dominators of the predecessor...
- const DominatorSet::DomSetType &PredDoms =
- DS.getDominators(OutsideBlocks[i]);
- for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
- PDE = PredDoms.end(); PDI != PDE; ++PDI) {
- BasicBlock *PredDom = *PDI;
- // If the loop header is in DF(PredDom), then PredDom didn't dominate
- // the header but did dominate a predecessor outside of the loop. Now
- // we change this entry to include the preheader in the DF instead of
- // the header.
- DominanceFrontier::iterator DFI = DF->find(PredDom);
- assert(DFI != DF->end() && "No dominance frontier for node?");
- if (DFI->second.count(Header)) {
- DF->removeFromFrontier(DFI, Header);
- DF->addToFrontier(DFI, NewBB);
- }
- }
- }
- }
-}
-
-/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
-/// blocks. This method is used to split exit blocks that have predecessors
-/// outside of the loop.
-BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
- DominatorSet &DS = getAnalysis<DominatorSet>();
-
- std::vector<BasicBlock*> LoopBlocks;
- for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
- if (L->contains(*I))
- LoopBlocks.push_back(*I);
-
- assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
- BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks);
-
- // Update Loop Information - we know that the new block will be in the parent
- // loop of L.
- if (Loop *Parent = L->getParentLoop())
- Parent->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
-
- // Update dominator information (set, immdom, domtree, and domfrontier)
- UpdateDomInfoForRevectoredPreds(NewBB, LoopBlocks);
- return NewBB;
-}
-
-/// AddBlockAndPredsToSet - Add the specified block, and all of its
-/// predecessors, to the specified set, if it's not already in there. Stop
-/// predecessor traversal when we reach StopBlock.
-static void AddBlockAndPredsToSet(BasicBlock *BB, BasicBlock *StopBlock,
- std::set<BasicBlock*> &Blocks) {
- if (!Blocks.insert(BB).second) return; // already processed.
- if (BB == StopBlock) return; // Stop here!
-
- for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
- AddBlockAndPredsToSet(*I, StopBlock, Blocks);
-}
-
-/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
-/// PHI node that tells us how to partition the loops.
-static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorSet &DS,
- AliasAnalysis *AA) {
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
- PHINode *PN = cast<PHINode>(I);
- ++I;
- if (Value *V = PN->hasConstantValue())
- if (!isa<Instruction>(V) || DS.dominates(cast<Instruction>(V), PN)) {
- // This is a degenerate PHI already, don't modify it!
- PN->replaceAllUsesWith(V);
- if (AA) AA->deleteValue(PN);
- PN->eraseFromParent();
- continue;
- }
-
- // Scan this PHI node looking for a use of the PHI node by itself.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == PN &&
- L->contains(PN->getIncomingBlock(i)))
- // We found something tasty to remove.
- return PN;
- }
- return 0;
-}
-
-/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
-/// them out into a nested loop. This is important for code that looks like
-/// this:
-///
-/// Loop:
-/// ...
-/// br cond, Loop, Next
-/// ...
-/// br cond2, Loop, Out
-///
-/// To identify this common case, we look at the PHI nodes in the header of the
-/// loop. PHI nodes with unchanging values on one backedge correspond to values
-/// that change in the "outer" loop, but not in the "inner" loop.
-///
-/// If we are able to separate out a loop, return the new outer loop that was
-/// created.
-///
-Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
- PHINode *PN = FindPHIToPartitionLoops(L, getAnalysis<DominatorSet>(), AA);
- if (PN == 0) return 0; // No known way to partition.
-
- // Pull out all predecessors that have varying values in the loop. This
- // handles the case when a PHI node has multiple instances of itself as
- // arguments.
- std::vector<BasicBlock*> OuterLoopPreds;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) != PN ||
- !L->contains(PN->getIncomingBlock(i)))
- OuterLoopPreds.push_back(PN->getIncomingBlock(i));
-
- BasicBlock *Header = L->getHeader();
- BasicBlock *NewBB = SplitBlockPredecessors(Header, ".outer", OuterLoopPreds);
-
- // Update dominator information (set, immdom, domtree, and domfrontier)
- UpdateDomInfoForRevectoredPreds(NewBB, OuterLoopPreds);
-
- // Create the new outer loop.
- Loop *NewOuter = new Loop();
-
- LoopInfo &LI = getAnalysis<LoopInfo>();
-
- // Change the parent loop to use the outer loop as its child now.
- if (Loop *Parent = L->getParentLoop())
- Parent->replaceChildLoopWith(L, NewOuter);
- else
- LI.changeTopLevelLoop(L, NewOuter);
-
- // This block is going to be our new header block: add it to this loop and all
- // parent loops.
- NewOuter->addBasicBlockToLoop(NewBB, getAnalysis<LoopInfo>());
-
- // L is now a subloop of our outer loop.
- NewOuter->addChildLoop(L);
-
- for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
- NewOuter->addBlockEntry(L->getBlocks()[i]);
-
- // Determine which blocks should stay in L and which should be moved out to
- // the Outer loop now.
- DominatorSet &DS = getAnalysis<DominatorSet>();
- std::set<BasicBlock*> BlocksInL;
- for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
- if (DS.dominates(Header, *PI))
- AddBlockAndPredsToSet(*PI, Header, BlocksInL);
-
-
- // Scan all of the loop children of L, moving them to OuterLoop if they are
- // not part of the inner loop.
- for (Loop::iterator I = L->begin(); I != L->end(); )
- if (BlocksInL.count((*I)->getHeader()))
- ++I; // Loop remains in L
- else
- NewOuter->addChildLoop(L->removeChildLoop(I));
-
- // Now that we know which blocks are in L and which need to be moved to
- // OuterLoop, move any blocks that need it.
- for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
- BasicBlock *BB = L->getBlocks()[i];
- if (!BlocksInL.count(BB)) {
- // Move this block to the parent, updating the exit blocks sets
- L->removeBlockFromLoop(BB);
- if (LI[BB] == L)
- LI.changeLoopFor(BB, NewOuter);
- --i;
- }
- }
-
- return NewOuter;
-}
-
-
-
-/// InsertUniqueBackedgeBlock - This method is called when the specified loop
-/// has more than one backedge in it. If this occurs, revector all of these
-/// backedges to target a new basic block and have that block branch to the loop
-/// header. This ensures that loops have exactly one backedge.
-///
-void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
- assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
-
- // Get information about the loop
- BasicBlock *Preheader = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- Function *F = Header->getParent();
-
- // Figure out which basic blocks contain back-edges to the loop header.
- std::vector<BasicBlock*> BackedgeBlocks;
- for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
- if (*I != Preheader) BackedgeBlocks.push_back(*I);
-
- // Create and insert the new backedge block...
- BasicBlock *BEBlock = new BasicBlock(Header->getName()+".backedge", F);
- BranchInst *BETerminator = new BranchInst(Header, BEBlock);
-
- // Move the new backedge block to right after the last backedge block.
- Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
- F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
-
- // Now that the block has been inserted into the function, create PHI nodes in
- // the backedge block which correspond to any PHI nodes in the header block.
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".be",
- BETerminator);
- NewPN->reserveOperandSpace(BackedgeBlocks.size());
- if (AA) AA->copyValue(PN, NewPN);
-
- // Loop over the PHI node, moving all entries except the one for the
- // preheader over to the new PHI node.
- unsigned PreheaderIdx = ~0U;
- bool HasUniqueIncomingValue = true;
- Value *UniqueValue = 0;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *IBB = PN->getIncomingBlock(i);
- Value *IV = PN->getIncomingValue(i);
- if (IBB == Preheader) {
- PreheaderIdx = i;
- } else {
- NewPN->addIncoming(IV, IBB);
- if (HasUniqueIncomingValue) {
- if (UniqueValue == 0)
- UniqueValue = IV;
- else if (UniqueValue != IV)
- HasUniqueIncomingValue = false;
- }
- }
- }
-
- // Delete all of the incoming values from the old PN except the preheader's
- assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
- if (PreheaderIdx != 0) {
- PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
- PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
- }
- // Nuke all entries except the zero'th.
- for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
- PN->removeIncomingValue(e-i, false);
-
- // Finally, add the newly constructed PHI node as the entry for the BEBlock.
- PN->addIncoming(NewPN, BEBlock);
-
- // As an optimization, if all incoming values in the new PhiNode (which is a
- // subset of the incoming values of the old PHI node) have the same value,
- // eliminate the PHI Node.
- if (HasUniqueIncomingValue) {
- NewPN->replaceAllUsesWith(UniqueValue);
- if (AA) AA->deleteValue(NewPN);
- BEBlock->getInstList().erase(NewPN);
- }
- }
-
- // Now that all of the PHI nodes have been inserted and adjusted, modify the
- // backedge blocks to just to the BEBlock instead of the header.
- for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
- TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
- for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
- if (TI->getSuccessor(Op) == Header)
- TI->setSuccessor(Op, BEBlock);
- }
-
- //===--- Update all analyses which we must preserve now -----------------===//
-
- // Update Loop Information - we know that this block is now in the current
- // loop and all parent loops.
- L->addBasicBlockToLoop(BEBlock, getAnalysis<LoopInfo>());
-
- // Update dominator information (set, immdom, domtree, and domfrontier)
- UpdateDomInfoForRevectoredPreds(BEBlock, BackedgeBlocks);
-}
-
-/// UpdateDomInfoForRevectoredPreds - This method is used to update the four
-/// different kinds of dominator information (dominator sets, immediate
-/// dominators, dominator trees, and dominance frontiers) after a new block has
-/// been added to the CFG.
-///
-/// This only supports the case when an existing block (known as "NewBBSucc"),
-/// had some of its predecessors factored into a new basic block. This
-/// transformation inserts a new basic block ("NewBB"), with a single
-/// unconditional branch to NewBBSucc, and moves some predecessors of
-/// "NewBBSucc" to now branch to NewBB. These predecessors are listed in
-/// PredBlocks, even though they are the same as
-/// pred_begin(NewBB)/pred_end(NewBB).
-///
-void LoopSimplify::UpdateDomInfoForRevectoredPreds(BasicBlock *NewBB,
- std::vector<BasicBlock*> &PredBlocks) {
- assert(!PredBlocks.empty() && "No predblocks??");
- assert(succ_begin(NewBB) != succ_end(NewBB) &&
- ++succ_begin(NewBB) == succ_end(NewBB) &&
- "NewBB should have a single successor!");
- BasicBlock *NewBBSucc = *succ_begin(NewBB);
- DominatorSet &DS = getAnalysis<DominatorSet>();
-
- // Update dominator information... The blocks that dominate NewBB are the
- // intersection of the dominators of predecessors, plus the block itself.
- //
- DominatorSet::DomSetType NewBBDomSet = DS.getDominators(PredBlocks[0]);
- for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
- set_intersect(NewBBDomSet, DS.getDominators(PredBlocks[i]));
- NewBBDomSet.insert(NewBB); // All blocks dominate themselves...
- DS.addBasicBlock(NewBB, NewBBDomSet);
-
- // The newly inserted basic block will dominate existing basic blocks iff the
- // PredBlocks dominate all of the non-pred blocks. If all predblocks dominate
- // the non-pred blocks, then they all must be the same block!
- //
- bool NewBBDominatesNewBBSucc = true;
- {
- BasicBlock *OnePred = PredBlocks[0];
- for (unsigned i = 1, e = PredBlocks.size(); i != e; ++i)
- if (PredBlocks[i] != OnePred) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
-
- if (NewBBDominatesNewBBSucc)
- for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
- PI != E; ++PI)
- if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
- }
-
- // The other scenario where the new block can dominate its successors are when
- // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
- // already.
- if (!NewBBDominatesNewBBSucc) {
- NewBBDominatesNewBBSucc = true;
- for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
- PI != E; ++PI)
- if (*PI != NewBB && !DS.dominates(NewBBSucc, *PI)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
- }
-
- // If NewBB dominates some blocks, then it will dominate all blocks that
- // NewBBSucc does.
- if (NewBBDominatesNewBBSucc) {
- BasicBlock *PredBlock = PredBlocks[0];
- Function *F = NewBB->getParent();
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
- if (DS.dominates(NewBBSucc, I))
- DS.addDominator(I, NewBB);
- }
-
- // Update immediate dominator information if we have it...
- BasicBlock *NewBBIDom = 0;
- if (ImmediateDominators *ID = getAnalysisToUpdate<ImmediateDominators>()) {
- // To find the immediate dominator of the new exit node, we trace up the
- // immediate dominators of a predecessor until we find a basic block that
- // dominates the exit block.
- //
- BasicBlock *Dom = PredBlocks[0]; // Some random predecessor...
- while (!NewBBDomSet.count(Dom)) { // Loop until we find a dominator...
- assert(Dom != 0 && "No shared dominator found???");
- Dom = ID->get(Dom);
- }
-
- // Set the immediate dominator now...
- ID->addNewBlock(NewBB, Dom);
- NewBBIDom = Dom; // Reuse this if calculating DominatorTree info...
-
- // If NewBB strictly dominates other blocks, we need to update their idom's
- // now. The only block that need adjustment is the NewBBSucc block, whose
- // idom should currently be set to PredBlocks[0].
- if (NewBBDominatesNewBBSucc)
- ID->setImmediateDominator(NewBBSucc, NewBB);
- }
-
- // Update DominatorTree information if it is active.
- if (DominatorTree *DT = getAnalysisToUpdate<DominatorTree>()) {
- // If we don't have ImmediateDominator info around, calculate the idom as
- // above.
- DominatorTree::Node *NewBBIDomNode;
- if (NewBBIDom) {
- NewBBIDomNode = DT->getNode(NewBBIDom);
- } else {
- NewBBIDomNode = DT->getNode(PredBlocks[0]); // Random pred
- while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) {
- NewBBIDomNode = NewBBIDomNode->getIDom();
- assert(NewBBIDomNode && "No shared dominator found??");
- }
- }
-
- // Create the new dominator tree node... and set the idom of NewBB.
- DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, NewBBIDomNode);
-
- // If NewBB strictly dominates other blocks, then it is now the immediate
- // dominator of NewBBSucc. Update the dominator tree as appropriate.
- if (NewBBDominatesNewBBSucc) {
- DominatorTree::Node *NewBBSuccNode = DT->getNode(NewBBSucc);
- DT->changeImmediateDominator(NewBBSuccNode, NewBBNode);
- }
- }
-
- // Update dominance frontier information...
- if (DominanceFrontier *DF = getAnalysisToUpdate<DominanceFrontier>()) {
- // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
- // DF(PredBlocks[0]) without the stuff that the new block does not dominate
- // a predecessor of.
- if (NewBBDominatesNewBBSucc) {
- DominanceFrontier::iterator DFI = DF->find(PredBlocks[0]);
- if (DFI != DF->end()) {
- DominanceFrontier::DomSetType Set = DFI->second;
- // Filter out stuff in Set that we do not dominate a predecessor of.
- for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
- E = Set.end(); SetI != E;) {
- bool DominatesPred = false;
- for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
- PI != E; ++PI)
- if (DS.dominates(NewBB, *PI))
- DominatesPred = true;
- if (!DominatesPred)
- Set.erase(SetI++);
- else
- ++SetI;
- }
-
- DF->addBasicBlock(NewBB, Set);
- }
-
- } else {
- // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
- // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
- // NewBBSucc)). NewBBSucc is the single successor of NewBB.
- DominanceFrontier::DomSetType NewDFSet;
- NewDFSet.insert(NewBBSucc);
- DF->addBasicBlock(NewBB, NewDFSet);
- }
-
- // Now we must loop over all of the dominance frontiers in the function,
- // replacing occurrences of NewBBSucc with NewBB in some cases. All
- // blocks that dominate a block in PredBlocks and contained NewBBSucc in
- // their dominance frontier must be updated to contain NewBB instead.
- //
- for (unsigned i = 0, e = PredBlocks.size(); i != e; ++i) {
- BasicBlock *Pred = PredBlocks[i];
- // Get all of the dominators of the predecessor...
- const DominatorSet::DomSetType &PredDoms = DS.getDominators(Pred);
- for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(),
- PDE = PredDoms.end(); PDI != PDE; ++PDI) {
- BasicBlock *PredDom = *PDI;
-
- // If the NewBBSucc node is in DF(PredDom), then PredDom didn't
- // dominate NewBBSucc but did dominate a predecessor of it. Now we
- // change this entry to include NewBB in the DF instead of NewBBSucc.
- DominanceFrontier::iterator DFI = DF->find(PredDom);
- assert(DFI != DF->end() && "No dominance frontier for node?");
- if (DFI->second.count(NewBBSucc)) {
- // If NewBBSucc should not stay in our dominator frontier, remove it.
- // We remove it unless there is a predecessor of NewBBSucc that we
- // dominate, but we don't strictly dominate NewBBSucc.
- bool ShouldRemove = true;
- if (PredDom == NewBBSucc || !DS.dominates(PredDom, NewBBSucc)) {
- // Okay, we know that PredDom does not strictly dominate NewBBSucc.
- // Check to see if it dominates any predecessors of NewBBSucc.
- for (pred_iterator PI = pred_begin(NewBBSucc),
- E = pred_end(NewBBSucc); PI != E; ++PI)
- if (DS.dominates(PredDom, *PI)) {
- ShouldRemove = false;
- break;
- }
- }
-
- if (ShouldRemove)
- DF->removeFromFrontier(DFI, NewBBSucc);
- DF->addToFrontier(DFI, NewBB);
- }
- }
- }
- }
-}
-
OpenPOWER on IntegriCloud