summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Scalar/GVN.cpp
diff options
context:
space:
mode:
authorDaniel Berlin <dberlin@dberlin.org>2017-03-10 04:54:10 +0000
committerDaniel Berlin <dberlin@dberlin.org>2017-03-10 04:54:10 +0000
commit5ac9179f6ceb30c4901825d839b4310b56809792 (patch)
treef727c75436a4a39a7e904119cc3037f342910c57 /llvm/lib/Transforms/Scalar/GVN.cpp
parent22645eea7ac2c3c7d014c2f500be36f368647b6e (diff)
downloadbcm5719-llvm-5ac9179f6ceb30c4901825d839b4310b56809792.tar.gz
bcm5719-llvm-5ac9179f6ceb30c4901825d839b4310b56809792.zip
Move memory coercion functions from GVN.cpp to VNCoercion.cpp so they can be shared between GVN and NewGVN.
Summary: These are the functions used to determine when values of loads can be extracted from stores, etc, and to perform the necessary insertions to do this. There are no changes to the functions themselves except reformatting, and one case where memdep was informed of a removed load (which was pushed into the caller). Reviewers: davide Subscribers: mgorny, llvm-commits, Prazek Differential Revision: https://reviews.llvm.org/D30478 llvm-svn: 297438
Diffstat (limited to 'llvm/lib/Transforms/Scalar/GVN.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/GVN.cpp466
1 files changed, 19 insertions, 447 deletions
diff --git a/llvm/lib/Transforms/Scalar/GVN.cpp b/llvm/lib/Transforms/Scalar/GVN.cpp
index dac740885d8..b5953106167 100644
--- a/llvm/lib/Transforms/Scalar/GVN.cpp
+++ b/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -36,7 +36,6 @@
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
@@ -51,9 +50,12 @@
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Transforms/Utils/VNCoercion.h"
+
#include <vector>
using namespace llvm;
using namespace llvm::gvn;
+using namespace llvm::VNCoercion;
using namespace PatternMatch;
#define DEBUG_TYPE "gvn"
@@ -692,442 +694,6 @@ SpeculationFailure:
}
-/// Return true if CoerceAvailableValueToLoadType will succeed.
-static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
- Type *LoadTy,
- const DataLayout &DL) {
- // If the loaded or stored value is an first class array or struct, don't try
- // to transform them. We need to be able to bitcast to integer.
- if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
- StoredVal->getType()->isStructTy() ||
- StoredVal->getType()->isArrayTy())
- return false;
-
- // The store has to be at least as big as the load.
- if (DL.getTypeSizeInBits(StoredVal->getType()) <
- DL.getTypeSizeInBits(LoadTy))
- return false;
-
- return true;
-}
-
-/// If we saw a store of a value to memory, and
-/// then a load from a must-aliased pointer of a different type, try to coerce
-/// the stored value. LoadedTy is the type of the load we want to replace.
-/// IRB is IRBuilder used to insert new instructions.
-///
-/// If we can't do it, return null.
-static Value *CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
- IRBuilder<> &IRB,
- const DataLayout &DL) {
- assert(CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
- "precondition violation - materialization can't fail");
-
- if (auto *C = dyn_cast<Constant>(StoredVal))
- if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
- StoredVal = FoldedStoredVal;
-
- // If this is already the right type, just return it.
- Type *StoredValTy = StoredVal->getType();
-
- uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
- uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
-
- // If the store and reload are the same size, we can always reuse it.
- if (StoredValSize == LoadedValSize) {
- // Pointer to Pointer -> use bitcast.
- if (StoredValTy->getScalarType()->isPointerTy() &&
- LoadedTy->getScalarType()->isPointerTy()) {
- StoredVal = IRB.CreateBitCast(StoredVal, LoadedTy);
- } else {
- // Convert source pointers to integers, which can be bitcast.
- if (StoredValTy->getScalarType()->isPointerTy()) {
- StoredValTy = DL.getIntPtrType(StoredValTy);
- StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
- }
-
- Type *TypeToCastTo = LoadedTy;
- if (TypeToCastTo->getScalarType()->isPointerTy())
- TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
-
- if (StoredValTy != TypeToCastTo)
- StoredVal = IRB.CreateBitCast(StoredVal, TypeToCastTo);
-
- // Cast to pointer if the load needs a pointer type.
- if (LoadedTy->getScalarType()->isPointerTy())
- StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy);
- }
-
- if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
- if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
- StoredVal = FoldedStoredVal;
-
- return StoredVal;
- }
-
- // If the loaded value is smaller than the available value, then we can
- // extract out a piece from it. If the available value is too small, then we
- // can't do anything.
- assert(StoredValSize >= LoadedValSize &&
- "CanCoerceMustAliasedValueToLoad fail");
-
- // Convert source pointers to integers, which can be manipulated.
- if (StoredValTy->getScalarType()->isPointerTy()) {
- StoredValTy = DL.getIntPtrType(StoredValTy);
- StoredVal = IRB.CreatePtrToInt(StoredVal, StoredValTy);
- }
-
- // Convert vectors and fp to integer, which can be manipulated.
- if (!StoredValTy->isIntegerTy()) {
- StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
- StoredVal = IRB.CreateBitCast(StoredVal, StoredValTy);
- }
-
- // If this is a big-endian system, we need to shift the value down to the low
- // bits so that a truncate will work.
- if (DL.isBigEndian()) {
- uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
- DL.getTypeStoreSizeInBits(LoadedTy);
- StoredVal = IRB.CreateLShr(StoredVal, ShiftAmt, "tmp");
- }
-
- // Truncate the integer to the right size now.
- Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
- StoredVal = IRB.CreateTrunc(StoredVal, NewIntTy, "trunc");
-
- if (LoadedTy != NewIntTy) {
- // If the result is a pointer, inttoptr.
- if (LoadedTy->getScalarType()->isPointerTy())
- StoredVal = IRB.CreateIntToPtr(StoredVal, LoadedTy, "inttoptr");
- else
- // Otherwise, bitcast.
- StoredVal = IRB.CreateBitCast(StoredVal, LoadedTy, "bitcast");
- }
-
- if (auto *C = dyn_cast<Constant>(StoredVal))
- if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
- StoredVal = FoldedStoredVal;
-
- return StoredVal;
-}
-
-/// This function is called when we have a
-/// memdep query of a load that ends up being a clobbering memory write (store,
-/// memset, memcpy, memmove). This means that the write *may* provide bits used
-/// by the load but we can't be sure because the pointers don't mustalias.
-///
-/// Check this case to see if there is anything more we can do before we give
-/// up. This returns -1 if we have to give up, or a byte number in the stored
-/// value of the piece that feeds the load.
-static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
- Value *WritePtr,
- uint64_t WriteSizeInBits,
- const DataLayout &DL) {
- // If the loaded or stored value is a first class array or struct, don't try
- // to transform them. We need to be able to bitcast to integer.
- if (LoadTy->isStructTy() || LoadTy->isArrayTy())
- return -1;
-
- int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase =
- GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
- if (StoreBase != LoadBase)
- return -1;
-
- // If the load and store are to the exact same address, they should have been
- // a must alias. AA must have gotten confused.
- // FIXME: Study to see if/when this happens. One case is forwarding a memset
- // to a load from the base of the memset.
-
- // If the load and store don't overlap at all, the store doesn't provide
- // anything to the load. In this case, they really don't alias at all, AA
- // must have gotten confused.
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
-
- if ((WriteSizeInBits & 7) | (LoadSize & 7))
- return -1;
- uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
- LoadSize /= 8;
-
-
- bool isAAFailure = false;
- if (StoreOffset < LoadOffset)
- isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
- else
- isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
-
- if (isAAFailure)
- return -1;
-
- // If the Load isn't completely contained within the stored bits, we don't
- // have all the bits to feed it. We could do something crazy in the future
- // (issue a smaller load then merge the bits in) but this seems unlikely to be
- // valuable.
- if (StoreOffset > LoadOffset ||
- StoreOffset+StoreSize < LoadOffset+LoadSize)
- return -1;
-
- // Okay, we can do this transformation. Return the number of bytes into the
- // store that the load is.
- return LoadOffset-StoreOffset;
-}
-
-/// This function is called when we have a
-/// memdep query of a load that ends up being a clobbering store.
-static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
- StoreInst *DepSI) {
- // Cannot handle reading from store of first-class aggregate yet.
- if (DepSI->getValueOperand()->getType()->isStructTy() ||
- DepSI->getValueOperand()->getType()->isArrayTy())
- return -1;
-
- const DataLayout &DL = DepSI->getModule()->getDataLayout();
- Value *StorePtr = DepSI->getPointerOperand();
- uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
- StorePtr, StoreSize, DL);
-}
-
-/// This function is called when we have a
-/// memdep query of a load that ends up being clobbered by another load. See if
-/// the other load can feed into the second load.
-static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
- LoadInst *DepLI, const DataLayout &DL){
- // Cannot handle reading from store of first-class aggregate yet.
- if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
- return -1;
-
- Value *DepPtr = DepLI->getPointerOperand();
- uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
- int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
- if (R != -1) return R;
-
- // If we have a load/load clobber an DepLI can be widened to cover this load,
- // then we should widen it!
- int64_t LoadOffs = 0;
- const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
-
- unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
- LoadBase, LoadOffs, LoadSize, DepLI);
- if (Size == 0) return -1;
-
- // Check non-obvious conditions enforced by MDA which we rely on for being
- // able to materialize this potentially available value
- assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
- assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
-
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
-}
-
-
-
-static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
- MemIntrinsic *MI,
- const DataLayout &DL) {
- // If the mem operation is a non-constant size, we can't handle it.
- ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
- if (!SizeCst) return -1;
- uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
-
- // If this is memset, we just need to see if the offset is valid in the size
- // of the memset..
- if (MI->getIntrinsicID() == Intrinsic::memset)
- return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
- MemSizeInBits, DL);
-
- // If we have a memcpy/memmove, the only case we can handle is if this is a
- // copy from constant memory. In that case, we can read directly from the
- // constant memory.
- MemTransferInst *MTI = cast<MemTransferInst>(MI);
-
- Constant *Src = dyn_cast<Constant>(MTI->getSource());
- if (!Src) return -1;
-
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
- if (!GV || !GV->isConstant()) return -1;
-
- // See if the access is within the bounds of the transfer.
- int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
- MI->getDest(), MemSizeInBits, DL);
- if (Offset == -1)
- return Offset;
-
- unsigned AS = Src->getType()->getPointerAddressSpace();
- // Otherwise, see if we can constant fold a load from the constant with the
- // offset applied as appropriate.
- Src = ConstantExpr::getBitCast(Src,
- Type::getInt8PtrTy(Src->getContext(), AS));
- Constant *OffsetCst =
- ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
- Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
- OffsetCst);
- Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
- return Offset;
- return -1;
-}
-
-
-/// This function is called when we have a
-/// memdep query of a load that ends up being a clobbering store. This means
-/// that the store provides bits used by the load but we the pointers don't
-/// mustalias. Check this case to see if there is anything more we can do
-/// before we give up.
-static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
- Type *LoadTy,
- Instruction *InsertPt, const DataLayout &DL){
- LLVMContext &Ctx = SrcVal->getType()->getContext();
-
- uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
- uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
-
- IRBuilder<> Builder(InsertPt);
-
- // Compute which bits of the stored value are being used by the load. Convert
- // to an integer type to start with.
- if (SrcVal->getType()->getScalarType()->isPointerTy())
- SrcVal = Builder.CreatePtrToInt(SrcVal,
- DL.getIntPtrType(SrcVal->getType()));
- if (!SrcVal->getType()->isIntegerTy())
- SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
-
- // Shift the bits to the least significant depending on endianness.
- unsigned ShiftAmt;
- if (DL.isLittleEndian())
- ShiftAmt = Offset*8;
- else
- ShiftAmt = (StoreSize-LoadSize-Offset)*8;
-
- if (ShiftAmt)
- SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
-
- if (LoadSize != StoreSize)
- SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
-
- return CoerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
-}
-
-/// This function is called when we have a
-/// memdep query of a load that ends up being a clobbering load. This means
-/// that the load *may* provide bits used by the load but we can't be sure
-/// because the pointers don't mustalias. Check this case to see if there is
-/// anything more we can do before we give up.
-static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
- Type *LoadTy, Instruction *InsertPt,
- GVN &gvn) {
- const DataLayout &DL = SrcVal->getModule()->getDataLayout();
- // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
- // widen SrcVal out to a larger load.
- unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
- if (Offset+LoadSize > SrcValStoreSize) {
- assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
- assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
- // If we have a load/load clobber an DepLI can be widened to cover this
- // load, then we should widen it to the next power of 2 size big enough!
- unsigned NewLoadSize = Offset+LoadSize;
- if (!isPowerOf2_32(NewLoadSize))
- NewLoadSize = NextPowerOf2(NewLoadSize);
-
- Value *PtrVal = SrcVal->getPointerOperand();
-
- // Insert the new load after the old load. This ensures that subsequent
- // memdep queries will find the new load. We can't easily remove the old
- // load completely because it is already in the value numbering table.
- IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
- Type *DestPTy =
- IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
- DestPTy = PointerType::get(DestPTy,
- PtrVal->getType()->getPointerAddressSpace());
- Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
- PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
- LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
- NewLoad->takeName(SrcVal);
- NewLoad->setAlignment(SrcVal->getAlignment());
-
- DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
- DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
-
- // Replace uses of the original load with the wider load. On a big endian
- // system, we need to shift down to get the relevant bits.
- Value *RV = NewLoad;
- if (DL.isBigEndian())
- RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
- RV = Builder.CreateTrunc(RV, SrcVal->getType());
- SrcVal->replaceAllUsesWith(RV);
-
- // We would like to use gvn.markInstructionForDeletion here, but we can't
- // because the load is already memoized into the leader map table that GVN
- // tracks. It is potentially possible to remove the load from the table,
- // but then there all of the operations based on it would need to be
- // rehashed. Just leave the dead load around.
- gvn.getMemDep().removeInstruction(SrcVal);
- SrcVal = NewLoad;
- }
-
- return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
-}
-
-
-/// This function is called when we have a
-/// memdep query of a load that ends up being a clobbering mem intrinsic.
-static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
- Type *LoadTy, Instruction *InsertPt,
- const DataLayout &DL){
- LLVMContext &Ctx = LoadTy->getContext();
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
-
- IRBuilder<> Builder(InsertPt);
-
- // We know that this method is only called when the mem transfer fully
- // provides the bits for the load.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
- // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
- // independently of what the offset is.
- Value *Val = MSI->getValue();
- if (LoadSize != 1)
- Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
-
- Value *OneElt = Val;
-
- // Splat the value out to the right number of bits.
- for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
- // If we can double the number of bytes set, do it.
- if (NumBytesSet*2 <= LoadSize) {
- Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
- Val = Builder.CreateOr(Val, ShVal);
- NumBytesSet <<= 1;
- continue;
- }
-
- // Otherwise insert one byte at a time.
- Value *ShVal = Builder.CreateShl(Val, 1*8);
- Val = Builder.CreateOr(OneElt, ShVal);
- ++NumBytesSet;
- }
-
- return CoerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
- }
-
- // Otherwise, this is a memcpy/memmove from a constant global.
- MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
- Constant *Src = cast<Constant>(MTI->getSource());
- unsigned AS = Src->getType()->getPointerAddressSpace();
-
- // Otherwise, see if we can constant fold a load from the constant with the
- // offset applied as appropriate.
- Src = ConstantExpr::getBitCast(Src,
- Type::getInt8PtrTy(Src->getContext(), AS));
- Constant *OffsetCst =
- ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
- Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
- OffsetCst);
- Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
- return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
-}
/// Given a set of loads specified by ValuesPerBlock,
@@ -1173,7 +739,7 @@ Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
- Res = GetStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
+ Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
<< *getSimpleValue() << '\n'
@@ -1184,14 +750,20 @@ Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
if (Load->getType() == LoadTy && Offset == 0) {
Res = Load;
} else {
- Res = GetLoadValueForLoad(Load, Offset, LoadTy, InsertPt, gvn);
-
+ Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt);
+ // We would like to use gvn.markInstructionForDeletion here, but we can't
+ // because the load is already memoized into the leader map table that GVN
+ // tracks. It is potentially possible to remove the load from the table,
+ // but then there all of the operations based on it would need to be
+ // rehashed. Just leave the dead load around.
+ gvn.getMemDep().removeInstruction(Load);
DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
<< *getCoercedLoadValue() << '\n'
- << *Res << '\n' << "\n\n\n");
+ << *Res << '\n'
+ << "\n\n\n");
}
} else if (isMemIntrinValue()) {
- Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
+ Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
InsertPt, DL);
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
@@ -1260,7 +832,7 @@ bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
// Can't forward from non-atomic to atomic without violating memory model.
if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
int Offset =
- AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
+ analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
if (Offset != -1) {
Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
return true;
@@ -1278,7 +850,7 @@ bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
// Can't forward from non-atomic to atomic without violating memory model.
if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
int Offset =
- AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
+ analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
if (Offset != -1) {
Res = AvailableValue::getLoad(DepLI, Offset);
@@ -1291,7 +863,7 @@ bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
// forward a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
if (Address && !LI->isAtomic()) {
- int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
+ int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
DepMI, DL);
if (Offset != -1) {
Res = AvailableValue::getMI(DepMI, Offset);
@@ -1336,7 +908,7 @@ bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
// different types if we have to. If the stored value is larger or equal to
// the loaded value, we can reuse it.
if (S->getValueOperand()->getType() != LI->getType() &&
- !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
+ !canCoerceMustAliasedValueToLoad(S->getValueOperand(),
LI->getType(), DL))
return false;
@@ -1353,7 +925,7 @@ bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
// If the stored value is larger or equal to the loaded value, we can reuse
// it.
if (LD->getType() != LI->getType() &&
- !CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
+ !canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
return false;
// Can't forward from non-atomic to atomic without violating memory model.
OpenPOWER on IntegriCloud