summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
authorMehdi Amini <mehdi.amini@apple.com>2015-03-10 02:37:25 +0000
committerMehdi Amini <mehdi.amini@apple.com>2015-03-10 02:37:25 +0000
commita28d91d81b5daa4d8b92452ea8203a57023b576f (patch)
treecbefa13abba5df48124e2f93e7d7d5b13562ad72 /llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
parentb3d5209927dc4f61c5eaaa48ceac48b8adf6d524 (diff)
downloadbcm5719-llvm-a28d91d81b5daa4d8b92452ea8203a57023b576f.tar.gz
bcm5719-llvm-a28d91d81b5daa4d8b92452ea8203a57023b576f.zip
DataLayout is mandatory, update the API to reflect it with references.
Summary: Now that the DataLayout is a mandatory part of the module, let's start cleaning the codebase. This patch is a first attempt at doing that. This patch is not exactly NFC as for instance some places were passing a nullptr instead of the DataLayout, possibly just because there was a default value on the DataLayout argument to many functions in the API. Even though it is not purely NFC, there is no change in the validation. I turned as many pointer to DataLayout to references, this helped figuring out all the places where a nullptr could come up. I had initially a local version of this patch broken into over 30 independant, commits but some later commit were cleaning the API and touching part of the code modified in the previous commits, so it seemed cleaner without the intermediate state. Test Plan: Reviewers: echristo Subscribers: llvm-commits From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 231740
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp26
1 files changed, 13 insertions, 13 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index 40aa7c5f454..35513f1ed31 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -26,7 +26,7 @@ using namespace PatternMatch;
/// where it is known to be non-zero. If this allows us to simplify the
/// computation, do so and return the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
@@ -47,8 +47,8 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
// inexact. Similarly for <<.
if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
if (I->isLogicalShift() &&
- isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0,
- IC.getAssumptionCache(), CxtI,
+ isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
+ IC.getAssumptionCache(), &CxtI,
IC.getDominatorTree())) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
@@ -126,7 +126,7 @@ static Constant *getLogBase2Vector(ConstantDataVector *CV) {
/// \brief Return true if we can prove that:
/// (mul LHS, RHS) === (mul nsw LHS, RHS)
bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
- Instruction *CxtI) {
+ Instruction &CxtI) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
@@ -137,8 +137,8 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
// Note that underestimating the number of sign bits gives a more
// conservative answer.
- unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) +
- ComputeNumSignBits(RHS, 0, CxtI);
+ unsigned SignBits =
+ ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
// First handle the easy case: if we have enough sign bits there's
// definitely no overflow.
@@ -157,8 +157,8 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
// For simplicity we just check if at least one side is not negative.
bool LHSNonNegative, LHSNegative;
bool RHSNonNegative, RHSNegative;
- ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, CxtI);
- ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, CxtI);
+ ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
+ ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
if (LHSNonNegative || RHSNonNegative)
return true;
}
@@ -375,7 +375,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
}
- if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, &I)) {
+ if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
@@ -780,7 +780,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
I.setOperand(1, V);
return &I;
}
@@ -1155,7 +1155,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
return BO;
}
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
+ if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
@@ -1338,7 +1338,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) {
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
I.setOperand(1, V);
return &I;
}
@@ -1385,7 +1385,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
I.getType());
// X urem Y -> X and Y-1, where Y is a power of 2,
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) {
+ if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
Constant *N1 = Constant::getAllOnesValue(I.getType());
Value *Add = Builder->CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
OpenPOWER on IntegriCloud