diff options
author | Mehdi Amini <mehdi.amini@apple.com> | 2015-03-10 02:37:25 +0000 |
---|---|---|
committer | Mehdi Amini <mehdi.amini@apple.com> | 2015-03-10 02:37:25 +0000 |
commit | a28d91d81b5daa4d8b92452ea8203a57023b576f (patch) | |
tree | cbefa13abba5df48124e2f93e7d7d5b13562ad72 /llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | |
parent | b3d5209927dc4f61c5eaaa48ceac48b8adf6d524 (diff) | |
download | bcm5719-llvm-a28d91d81b5daa4d8b92452ea8203a57023b576f.tar.gz bcm5719-llvm-a28d91d81b5daa4d8b92452ea8203a57023b576f.zip |
DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index 40aa7c5f454..35513f1ed31 100644 --- a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -26,7 +26,7 @@ using namespace PatternMatch; /// where it is known to be non-zero. If this allows us to simplify the /// computation, do so and return the new operand, otherwise return null. static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC, - Instruction *CxtI) { + Instruction &CxtI) { // If V has multiple uses, then we would have to do more analysis to determine // if this is safe. For example, the use could be in dynamically unreached // code. @@ -47,8 +47,8 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC, // inexact. Similarly for <<. if (BinaryOperator *I = dyn_cast<BinaryOperator>(V)) if (I->isLogicalShift() && - isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, - IC.getAssumptionCache(), CxtI, + isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0, + IC.getAssumptionCache(), &CxtI, IC.getDominatorTree())) { // We know that this is an exact/nuw shift and that the input is a // non-zero context as well. @@ -126,7 +126,7 @@ static Constant *getLogBase2Vector(ConstantDataVector *CV) { /// \brief Return true if we can prove that: /// (mul LHS, RHS) === (mul nsw LHS, RHS) bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS, - Instruction *CxtI) { + Instruction &CxtI) { // Multiplying n * m significant bits yields a result of n + m significant // bits. If the total number of significant bits does not exceed the // result bit width (minus 1), there is no overflow. @@ -137,8 +137,8 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS, // Note that underestimating the number of sign bits gives a more // conservative answer. - unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) + - ComputeNumSignBits(RHS, 0, CxtI); + unsigned SignBits = + ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI); // First handle the easy case: if we have enough sign bits there's // definitely no overflow. @@ -157,8 +157,8 @@ bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS, // For simplicity we just check if at least one side is not negative. bool LHSNonNegative, LHSNegative; bool RHSNonNegative, RHSNegative; - ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, CxtI); - ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, CxtI); + ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI); + ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI); if (LHSNonNegative || RHSNonNegative) return true; } @@ -375,7 +375,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } } - if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, &I)) { + if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) { Changed = true; I.setHasNoSignedWrap(true); } @@ -780,7 +780,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // The RHS is known non-zero. - if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) { + if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { I.setOperand(1, V); return &I; } @@ -1155,7 +1155,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { return BO; } - if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) { + if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) { // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) // Safe because the only negative value (1 << Y) can take on is // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have @@ -1338,7 +1338,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // The RHS is known non-zero. - if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, &I)) { + if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) { I.setOperand(1, V); return &I; } @@ -1385,7 +1385,7 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) { I.getType()); // X urem Y -> X and Y-1, where Y is a power of 2, - if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, AC, &I, DT)) { + if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) { Constant *N1 = Constant::getAllOnesValue(I.getType()); Value *Add = Builder->CreateAdd(Op1, N1); return BinaryOperator::CreateAnd(Op0, Add); |