summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/IPO/GlobalDCE.cpp
diff options
context:
space:
mode:
authorOliver Stannard <oliver.stannard@linaro.org>2019-10-11 11:59:55 +0000
committerOliver Stannard <oliver.stannard@linaro.org>2019-10-11 11:59:55 +0000
commit9f6a873268e1ad9855873d9d8007086c0d01cf4f (patch)
treeb3c3f779e7b1136fb6f86f31f6cfb9be569c5e21 /llvm/lib/Transforms/IPO/GlobalDCE.cpp
parent5b5b2fd2b8b4fe66d1e57065ab0aef22b16e4a13 (diff)
downloadbcm5719-llvm-9f6a873268e1ad9855873d9d8007086c0d01cf4f.tar.gz
bcm5719-llvm-9f6a873268e1ad9855873d9d8007086c0d01cf4f.zip
Dead Virtual Function Elimination
Currently, it is hard for the compiler to remove unused C++ virtual functions, because they are all referenced from vtables, which are referenced by constructors. This means that if the constructor is called from any live code, then we keep every virtual function in the final link, even if there are no call sites which can use it. This patch allows unused virtual functions to be removed during LTO (and regular compilation in limited circumstances) by using type metadata to match virtual function call sites to the vtable slots they might load from. This information can then be used in the global dead code elimination pass instead of the references from vtables to virtual functions, to more accurately determine which functions are reachable. To make this transformation safe, I have changed clang's code-generation to always load virtual function pointers using the llvm.type.checked.load intrinsic, instead of regular load instructions. I originally tried writing this using clang's existing code-generation, which uses the llvm.type.test and llvm.assume intrinsics after doing a normal load. However, it is possible for optimisations to obscure the relationship between the GEP, load and llvm.type.test, causing GlobalDCE to fail to find virtual function call sites. The existing linkage and visibility types don't accurately describe the scope in which a virtual call could be made which uses a given vtable. This is wider than the visibility of the type itself, because a virtual function call could be made using a more-visible base class. I've added a new !vcall_visibility metadata type to represent this, described in TypeMetadata.rst. The internalization pass and libLTO have been updated to change this metadata when linking is performed. This doesn't currently work with ThinLTO, because it needs to see every call to llvm.type.checked.load in the linkage unit. It might be possible to extend this optimisation to be able to use the ThinLTO summary, as was done for devirtualization, but until then that combination is rejected in the clang driver. To test this, I've written a fuzzer which generates random C++ programs with complex class inheritance graphs, and virtual functions called through object and function pointers of different types. The programs are spread across multiple translation units and DSOs to test the different visibility restrictions. I've also tried doing bootstrap builds of LLVM to test this. This isn't ideal, because only classes in anonymous namespaces can be optimised with -fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not work correctly with -fvisibility=hidden. However, there are only 12 test failures when building with -fvisibility=hidden (and an unmodified compiler), and this change does not cause any new failures for either value of -fvisibility. On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size reduction of ~6%, over a baseline compiled with "-O2 -flto -fvisibility=hidden -fwhole-program-vtables". The best cases are reductions of ~14% in 450.soplex and 483.xalancbmk, and there are no code size increases. I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which show a geomean size reduction of ~3%, again with no size increases. I had hoped that this would have no effect on performance, which would allow it to awlays be enabled (when using -fwhole-program-vtables). However, the changes in clang to use the llvm.type.checked.load intrinsic are causing ~1% performance regression in the C++ parts of SPEC2006. It should be possible to recover some of this perf loss by teaching optimisations about the llvm.type.checked.load intrinsic, which would make it worth turning this on by default (though it's still dependent on -fwhole-program-vtables). Differential revision: https://reviews.llvm.org/D63932 llvm-svn: 374539
Diffstat (limited to 'llvm/lib/Transforms/IPO/GlobalDCE.cpp')
-rw-r--r--llvm/lib/Transforms/IPO/GlobalDCE.cpp156
1 files changed, 154 insertions, 2 deletions
diff --git a/llvm/lib/Transforms/IPO/GlobalDCE.cpp b/llvm/lib/Transforms/IPO/GlobalDCE.cpp
index 86b7f3e49ee..0b14229ac62 100644
--- a/llvm/lib/Transforms/IPO/GlobalDCE.cpp
+++ b/llvm/lib/Transforms/IPO/GlobalDCE.cpp
@@ -17,9 +17,11 @@
#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CtorUtils.h"
@@ -29,10 +31,15 @@ using namespace llvm;
#define DEBUG_TYPE "globaldce"
+static cl::opt<bool>
+ ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore,
+ cl::desc("Enable virtual function elimination"));
+
STATISTIC(NumAliases , "Number of global aliases removed");
STATISTIC(NumFunctions, "Number of functions removed");
STATISTIC(NumIFuncs, "Number of indirect functions removed");
STATISTIC(NumVariables, "Number of global variables removed");
+STATISTIC(NumVFuncs, "Number of virtual functions removed");
namespace {
class GlobalDCELegacyPass : public ModulePass {
@@ -118,6 +125,15 @@ void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) {
ComputeDependencies(User, Deps);
Deps.erase(&GV); // Remove self-reference.
for (GlobalValue *GVU : Deps) {
+ // If this is a dep from a vtable to a virtual function, and we have
+ // complete information about all virtual call sites which could call
+ // though this vtable, then skip it, because the call site information will
+ // be more precise.
+ if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) {
+ LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> "
+ << GV.getName() << "\n");
+ continue;
+ }
GVDependencies[GVU].insert(&GV);
}
}
@@ -132,12 +148,133 @@ void GlobalDCEPass::MarkLive(GlobalValue &GV,
if (Updates)
Updates->push_back(&GV);
if (Comdat *C = GV.getComdat()) {
- for (auto &&CM : make_range(ComdatMembers.equal_range(C)))
+ for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
MarkLive(*CM.second, Updates); // Recursion depth is only two because only
// globals in the same comdat are visited.
+ }
+ }
+}
+
+void GlobalDCEPass::ScanVTables(Module &M) {
+ SmallVector<MDNode *, 2> Types;
+ LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n");
+
+ auto *LTOPostLinkMD =
+ cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink"));
+ bool LTOPostLink =
+ LTOPostLinkMD &&
+ (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0);
+
+ for (GlobalVariable &GV : M.globals()) {
+ Types.clear();
+ GV.getMetadata(LLVMContext::MD_type, Types);
+ if (GV.isDeclaration() || Types.empty())
+ continue;
+
+ // Use the typeid metadata on the vtable to build a mapping from typeids to
+ // the list of (GV, offset) pairs which are the possible vtables for that
+ // typeid.
+ for (MDNode *Type : Types) {
+ Metadata *TypeID = Type->getOperand(1).get();
+
+ uint64_t Offset =
+ cast<ConstantInt>(
+ cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
+ ->getZExtValue();
+
+ TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset));
+ }
+
+ // If the type corresponding to the vtable is private to this translation
+ // unit, we know that we can see all virtual functions which might use it,
+ // so VFE is safe.
+ if (auto GO = dyn_cast<GlobalObject>(&GV)) {
+ GlobalObject::VCallVisibility TypeVis = GV.getVCallVisibility();
+ if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit ||
+ (LTOPostLink &&
+ TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) {
+ LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n");
+ VFESafeVTables.insert(&GV);
+ }
+ }
+ }
+}
+
+void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId,
+ uint64_t CallOffset) {
+ for (auto &VTableInfo : TypeIdMap[TypeId]) {
+ GlobalVariable *VTable = VTableInfo.first;
+ uint64_t VTableOffset = VTableInfo.second;
+
+ Constant *Ptr =
+ getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset,
+ *Caller->getParent());
+ if (!Ptr) {
+ LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n");
+ VFESafeVTables.erase(VTable);
+ return;
+ }
+
+ auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts());
+ if (!Callee) {
+ LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n");
+ VFESafeVTables.erase(VTable);
+ return;
+ }
+
+ LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> "
+ << Callee->getName() << "\n");
+ GVDependencies[Caller].insert(Callee);
}
}
+void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) {
+ LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n");
+ Function *TypeCheckedLoadFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
+
+ if (!TypeCheckedLoadFunc)
+ return;
+
+ for (auto U : TypeCheckedLoadFunc->users()) {
+ auto CI = dyn_cast<CallInst>(U);
+ if (!CI)
+ continue;
+
+ auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ Value *TypeIdValue = CI->getArgOperand(2);
+ auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
+
+ if (Offset) {
+ ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue());
+ } else {
+ // type.checked.load with a non-constant offset, so assume every entry in
+ // every matching vtable is used.
+ for (auto &VTableInfo : TypeIdMap[TypeId]) {
+ VFESafeVTables.erase(VTableInfo.first);
+ }
+ }
+ }
+}
+
+void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) {
+ if (!ClEnableVFE)
+ return;
+
+ ScanVTables(M);
+
+ if (VFESafeVTables.empty())
+ return;
+
+ ScanTypeCheckedLoadIntrinsics(M);
+
+ LLVM_DEBUG(
+ dbgs() << "VFE safe vtables:\n";
+ for (auto *VTable : VFESafeVTables)
+ dbgs() << " " << VTable->getName() << "\n";
+ );
+}
+
PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
bool Changed = false;
@@ -163,6 +300,10 @@ PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
if (Comdat *C = GA.getComdat())
ComdatMembers.insert(std::make_pair(C, &GA));
+ // Add dependencies between virtual call sites and the virtual functions they
+ // might call, if we have that information.
+ AddVirtualFunctionDependencies(M);
+
// Loop over the module, adding globals which are obviously necessary.
for (GlobalObject &GO : M.global_objects()) {
Changed |= RemoveUnusedGlobalValue(GO);
@@ -257,8 +398,17 @@ PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
};
NumFunctions += DeadFunctions.size();
- for (Function *F : DeadFunctions)
+ for (Function *F : DeadFunctions) {
+ if (!F->use_empty()) {
+ // Virtual functions might still be referenced by one or more vtables,
+ // but if we've proven them to be unused then it's safe to replace the
+ // virtual function pointers with null, allowing us to remove the
+ // function itself.
+ ++NumVFuncs;
+ F->replaceAllUsesWith(ConstantPointerNull::get(F->getType()));
+ }
EraseUnusedGlobalValue(F);
+ }
NumVariables += DeadGlobalVars.size();
for (GlobalVariable *GV : DeadGlobalVars)
@@ -277,6 +427,8 @@ PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) {
ConstantDependenciesCache.clear();
GVDependencies.clear();
ComdatMembers.clear();
+ TypeIdMap.clear();
+ VFESafeVTables.clear();
if (Changed)
return PreservedAnalyses::none();
OpenPOWER on IntegriCloud