diff options
author | Oliver Stannard <oliver.stannard@linaro.org> | 2019-10-11 11:59:55 +0000 |
---|---|---|
committer | Oliver Stannard <oliver.stannard@linaro.org> | 2019-10-11 11:59:55 +0000 |
commit | 9f6a873268e1ad9855873d9d8007086c0d01cf4f (patch) | |
tree | b3c3f779e7b1136fb6f86f31f6cfb9be569c5e21 /llvm/lib/Transforms/IPO/GlobalDCE.cpp | |
parent | 5b5b2fd2b8b4fe66d1e57065ab0aef22b16e4a13 (diff) | |
download | bcm5719-llvm-9f6a873268e1ad9855873d9d8007086c0d01cf4f.tar.gz bcm5719-llvm-9f6a873268e1ad9855873d9d8007086c0d01cf4f.zip |
Dead Virtual Function Elimination
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
Diffstat (limited to 'llvm/lib/Transforms/IPO/GlobalDCE.cpp')
-rw-r--r-- | llvm/lib/Transforms/IPO/GlobalDCE.cpp | 156 |
1 files changed, 154 insertions, 2 deletions
diff --git a/llvm/lib/Transforms/IPO/GlobalDCE.cpp b/llvm/lib/Transforms/IPO/GlobalDCE.cpp index 86b7f3e49ee..0b14229ac62 100644 --- a/llvm/lib/Transforms/IPO/GlobalDCE.cpp +++ b/llvm/lib/Transforms/IPO/GlobalDCE.cpp @@ -17,9 +17,11 @@ #include "llvm/Transforms/IPO/GlobalDCE.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" #include "llvm/Pass.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Utils/CtorUtils.h" @@ -29,10 +31,15 @@ using namespace llvm; #define DEBUG_TYPE "globaldce" +static cl::opt<bool> + ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore, + cl::desc("Enable virtual function elimination")); + STATISTIC(NumAliases , "Number of global aliases removed"); STATISTIC(NumFunctions, "Number of functions removed"); STATISTIC(NumIFuncs, "Number of indirect functions removed"); STATISTIC(NumVariables, "Number of global variables removed"); +STATISTIC(NumVFuncs, "Number of virtual functions removed"); namespace { class GlobalDCELegacyPass : public ModulePass { @@ -118,6 +125,15 @@ void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) { ComputeDependencies(User, Deps); Deps.erase(&GV); // Remove self-reference. for (GlobalValue *GVU : Deps) { + // If this is a dep from a vtable to a virtual function, and we have + // complete information about all virtual call sites which could call + // though this vtable, then skip it, because the call site information will + // be more precise. + if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) { + LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> " + << GV.getName() << "\n"); + continue; + } GVDependencies[GVU].insert(&GV); } } @@ -132,12 +148,133 @@ void GlobalDCEPass::MarkLive(GlobalValue &GV, if (Updates) Updates->push_back(&GV); if (Comdat *C = GV.getComdat()) { - for (auto &&CM : make_range(ComdatMembers.equal_range(C))) + for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { MarkLive(*CM.second, Updates); // Recursion depth is only two because only // globals in the same comdat are visited. + } + } +} + +void GlobalDCEPass::ScanVTables(Module &M) { + SmallVector<MDNode *, 2> Types; + LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n"); + + auto *LTOPostLinkMD = + cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink")); + bool LTOPostLink = + LTOPostLinkMD && + (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0); + + for (GlobalVariable &GV : M.globals()) { + Types.clear(); + GV.getMetadata(LLVMContext::MD_type, Types); + if (GV.isDeclaration() || Types.empty()) + continue; + + // Use the typeid metadata on the vtable to build a mapping from typeids to + // the list of (GV, offset) pairs which are the possible vtables for that + // typeid. + for (MDNode *Type : Types) { + Metadata *TypeID = Type->getOperand(1).get(); + + uint64_t Offset = + cast<ConstantInt>( + cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) + ->getZExtValue(); + + TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset)); + } + + // If the type corresponding to the vtable is private to this translation + // unit, we know that we can see all virtual functions which might use it, + // so VFE is safe. + if (auto GO = dyn_cast<GlobalObject>(&GV)) { + GlobalObject::VCallVisibility TypeVis = GV.getVCallVisibility(); + if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit || + (LTOPostLink && + TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) { + LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n"); + VFESafeVTables.insert(&GV); + } + } + } +} + +void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId, + uint64_t CallOffset) { + for (auto &VTableInfo : TypeIdMap[TypeId]) { + GlobalVariable *VTable = VTableInfo.first; + uint64_t VTableOffset = VTableInfo.second; + + Constant *Ptr = + getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset, + *Caller->getParent()); + if (!Ptr) { + LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n"); + VFESafeVTables.erase(VTable); + return; + } + + auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts()); + if (!Callee) { + LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n"); + VFESafeVTables.erase(VTable); + return; + } + + LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> " + << Callee->getName() << "\n"); + GVDependencies[Caller].insert(Callee); } } +void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) { + LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n"); + Function *TypeCheckedLoadFunc = + M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); + + if (!TypeCheckedLoadFunc) + return; + + for (auto U : TypeCheckedLoadFunc->users()) { + auto CI = dyn_cast<CallInst>(U); + if (!CI) + continue; + + auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + Value *TypeIdValue = CI->getArgOperand(2); + auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); + + if (Offset) { + ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue()); + } else { + // type.checked.load with a non-constant offset, so assume every entry in + // every matching vtable is used. + for (auto &VTableInfo : TypeIdMap[TypeId]) { + VFESafeVTables.erase(VTableInfo.first); + } + } + } +} + +void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) { + if (!ClEnableVFE) + return; + + ScanVTables(M); + + if (VFESafeVTables.empty()) + return; + + ScanTypeCheckedLoadIntrinsics(M); + + LLVM_DEBUG( + dbgs() << "VFE safe vtables:\n"; + for (auto *VTable : VFESafeVTables) + dbgs() << " " << VTable->getName() << "\n"; + ); +} + PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { bool Changed = false; @@ -163,6 +300,10 @@ PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { if (Comdat *C = GA.getComdat()) ComdatMembers.insert(std::make_pair(C, &GA)); + // Add dependencies between virtual call sites and the virtual functions they + // might call, if we have that information. + AddVirtualFunctionDependencies(M); + // Loop over the module, adding globals which are obviously necessary. for (GlobalObject &GO : M.global_objects()) { Changed |= RemoveUnusedGlobalValue(GO); @@ -257,8 +398,17 @@ PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { }; NumFunctions += DeadFunctions.size(); - for (Function *F : DeadFunctions) + for (Function *F : DeadFunctions) { + if (!F->use_empty()) { + // Virtual functions might still be referenced by one or more vtables, + // but if we've proven them to be unused then it's safe to replace the + // virtual function pointers with null, allowing us to remove the + // function itself. + ++NumVFuncs; + F->replaceAllUsesWith(ConstantPointerNull::get(F->getType())); + } EraseUnusedGlobalValue(F); + } NumVariables += DeadGlobalVars.size(); for (GlobalVariable *GV : DeadGlobalVars) @@ -277,6 +427,8 @@ PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { ConstantDependenciesCache.clear(); GVDependencies.clear(); ComdatMembers.clear(); + TypeIdMap.clear(); + VFESafeVTables.clear(); if (Changed) return PreservedAnalyses::none(); |