diff options
| author | Matthijs Kooijman <matthijs@stdin.nl> | 2008-06-24 16:30:26 +0000 | 
|---|---|---|
| committer | Matthijs Kooijman <matthijs@stdin.nl> | 2008-06-24 16:30:26 +0000 | 
| commit | c702e1d32fc9f45d948aa527f5099e464b0f0a4b (patch) | |
| tree | 2dc95e668b1a66f9134892e7ed9138ec7081a856 /llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp | |
| parent | a3a37ae8c8b862e087f3795edd856377b60971fd (diff) | |
| download | bcm5719-llvm-c702e1d32fc9f45d948aa527f5099e464b0f0a4b.tar.gz bcm5719-llvm-c702e1d32fc9f45d948aa527f5099e464b0f0a4b.zip  | |
Commit the new DeadArgElim pass again, this time with the gcc bootstrap failures fixed.
Also add a testcase to reproduce the gcc bootstrap failure in very much reduced form.
llvm-svn: 52677
Diffstat (limited to 'llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp')
| -rw-r--r-- | llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp | 899 | 
1 files changed, 525 insertions, 374 deletions
diff --git a/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp b/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp index 604a1483c45..63ac3c5e927 100644 --- a/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp +++ b/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp @@ -10,10 +10,10 @@  // This pass deletes dead arguments from internal functions.  Dead argument  // elimination removes arguments which are directly dead, as well as arguments  // only passed into function calls as dead arguments of other functions.  This -// pass also deletes dead arguments in a similar way. +// pass also deletes dead return values in a similar way.  //  // This pass is often useful as a cleanup pass to run after aggressive -// interprocedural passes, which add possibly-dead arguments. +// interprocedural passes, which add possibly-dead arguments or return values.  //  //===----------------------------------------------------------------------===// @@ -42,40 +42,72 @@ namespace {    /// DAE - The dead argument elimination pass.    ///    class VISIBILITY_HIDDEN DAE : public ModulePass { +  public: + +    /// Struct that represent either a (part of a) return value or a function +    /// argument.  Used so that arguments and return values can be used +    /// interchangably. +    struct RetOrArg { +      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx), +               IsArg(IsArg) {} +      const Function *F; +      unsigned Idx; +      bool IsArg; + +      /// Make RetOrArg comparable, so we can put it into a map +      bool operator<(const RetOrArg &O) const { +        if (F != O.F) +          return F < O.F; +        else if (Idx != O.Idx) +          return Idx < O.Idx; +        else +          return IsArg < O.IsArg; +      } + +      /// Make RetOrArg comparable, so we can easily iterate the multimap +      bool operator==(const RetOrArg &O) const { +        return F == O.F && Idx == O.Idx && IsArg == O.IsArg; +      } +    }; +      /// Liveness enum - During our initial pass over the program, we determine -    /// that things are either definately alive, definately dead, or in need of -    /// interprocedural analysis (MaybeLive). -    /// -    enum Liveness { Live, MaybeLive, Dead }; - -    /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain -    /// all of the arguments in the program.  The Dead set contains arguments -    /// which are completely dead (never used in the function).  The MaybeLive -    /// set contains arguments which are only passed into other function calls, -    /// thus may be live and may be dead.  The Live set contains arguments which -    /// are known to be alive. -    /// -    std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments; - -    /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the -    /// functions in the program.  The Dead set contains functions whose return -    /// value is known to be dead.  The MaybeLive set contains functions whose -    /// return values are only used by return instructions, and the Live set -    /// contains functions whose return values are used, functions that are -    /// external, and functions that already return void. -    /// -    std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal; - -    /// InstructionsToInspect - As we mark arguments and return values -    /// MaybeLive, we keep track of which instructions could make the values -    /// live here.  Once the entire program has had the return value and -    /// arguments analyzed, this set is scanned to promote the MaybeLive objects -    /// to be Live if they really are used. -    std::vector<Instruction*> InstructionsToInspect; - -    /// CallSites - Keep track of the call sites of functions that have -    /// MaybeLive arguments or return values. -    std::multimap<Function*, CallSite> CallSites; +    /// that things are either alive or maybe alive. We don't mark anything +    /// explicitely dead (even if we know they are), since anything not alive +    /// with no registered uses (in Uses) will never be marked alive and will +    /// thus become dead in the end. +    enum Liveness { Live, MaybeLive }; + +    /// Convenience wrapper +    RetOrArg CreateRet(const Function *F, unsigned Idx) { +      return RetOrArg(F, Idx, false); +    } +    /// Convenience wrapper +    RetOrArg CreateArg(const Function *F, unsigned Idx) { +      return RetOrArg(F, Idx, true); +    } + +    typedef std::multimap<RetOrArg, RetOrArg> UseMap; +    /// This map maps a return value or argument to all return values or +    /// arguments it uses. +    /// For example (indices are left out for clarity): +    ///  - Uses[ret F] = ret G +    ///    This means that F calls G, and F returns the value returned by G. +    ///  - Uses[arg F] = ret G +    ///    This means that some function calls G and passes its result as an +    ///    argument to F. +    ///  - Uses[ret F] = arg F +    ///    This means that F returns one of its own arguments. +    ///  - Uses[arg F] = arg G +    ///    This means that G calls F and passes one of its own (G's) arguments +    ///    directly to F. +    UseMap Uses; + +    typedef std::set<RetOrArg> LiveSet; + +    /// This set contains all values that have been determined to be live +    LiveSet LiveValues; + +    typedef SmallVector<RetOrArg, 5> UseVector;    public:      static char ID; // Pass identification, replacement for typeid @@ -85,20 +117,21 @@ namespace {      virtual bool ShouldHackArguments() const { return false; }    private: -    Liveness getArgumentLiveness(const Argument &A); -    bool isMaybeLiveArgumentNowLive(Argument *Arg); - +    Liveness IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses); +    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses, +                       unsigned RetValNum = 0); +    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses); + +    void SurveyFunction(Function &F); +    void MarkValue(const RetOrArg &RA, Liveness L, +                   const UseVector &MaybeLiveUses); +    void MarkLive(RetOrArg RA); +    bool RemoveDeadStuffFromFunction(Function *F);      bool DeleteDeadVarargs(Function &Fn); -    void SurveyFunction(Function &Fn); - -    void MarkArgumentLive(Argument *Arg); -    void MarkRetValLive(Function *F); -    void MarkReturnInstArgumentLive(ReturnInst *RI); - -    void RemoveDeadArgumentsFromFunction(Function *F);    };  } +  char DAE::ID = 0;  static RegisterPass<DAE>  X("deadargelim", "Dead Argument Elimination"); @@ -155,7 +188,7 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {    // remove the "..." and adjust all the calls.    // Start by computing a new prototype for the function, which is the same as -  // the old function, but has fewer arguments. +  // the old function, but doesn't have isVarArg set.    const FunctionType *FTy = Fn.getFunctionType();    std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());    FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false); @@ -233,74 +266,154 @@ bool DAE::DeleteDeadVarargs(Function &Fn) {    return true;  } - -static inline bool CallPassesValueThoughVararg(Instruction *Call, -                                               const Value *Arg) { -  CallSite CS = CallSite::get(Call); -  const Type *CalledValueTy = CS.getCalledValue()->getType(); -  const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType(); -  unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams(); -  for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs; -       AI != CS.arg_end(); ++AI) -    if (AI->get() == Arg) -      return true; -  return false; +/// Convenience function that returns the number of return values. It returns 0 +/// for void functions and 1 for functions not returning a struct. It returns +/// the number of struct elements for functions returning a struct. +static unsigned NumRetVals(const Function *F) { +  if (F->getReturnType() == Type::VoidTy) +    return 0; +  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) +    return STy->getNumElements(); +  else +    return 1;  } -// getArgumentLiveness - Inspect an argument, determining if is known Live -// (used in a computation), MaybeLive (only passed as an argument to a call), or -// Dead (not used). -DAE::Liveness DAE::getArgumentLiveness(const Argument &A) { -  const Function *F = A.getParent(); -   -  // If this is the return value of a struct function, it's not really dead. -  if (F->hasStructRetAttr() && &*(F->arg_begin()) == &A) +/// IsMaybeAlive - This checks Use for liveness. If Use is live, returns Live, +/// else returns MaybeLive. Also, adds Use to MaybeLiveUses in the latter case. +DAE::Liveness DAE::IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses) { +  // We're live if our use is already marked as live +  if (LiveValues.count(Use))      return Live; -   -  if (A.use_empty())  // First check, directly dead? -    return Dead; - -  // Scan through all of the uses, looking for non-argument passing uses. -  for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) { -    // Return instructions do not immediately effect liveness. -    if (isa<ReturnInst>(*I)) -      continue; - -    CallSite CS = CallSite::get(const_cast<User*>(*I)); -    if (!CS.getInstruction()) { -      // If its used by something that is not a call or invoke, it's alive! -      return Live; -    } -    // If it's an indirect call, mark it alive... -    Function *Callee = CS.getCalledFunction(); -    if (!Callee) return Live; - -    // Check to see if it's passed through a va_arg area: if so, we cannot -    // remove it. -    if (CallPassesValueThoughVararg(CS.getInstruction(), &A)) -      return Live;   // If passed through va_arg area, we cannot remove it -  } -  return MaybeLive;  // It must be used, but only as argument to a function +  // We're maybe live otherwise, but remember that we must become live if +  // Use becomes live. +  MaybeLiveUses.push_back(Use); +  return MaybeLive; +} + + +/// SurveyUse - This looks at a single use of an argument or return value +/// and determines if it should be alive or not. Adds this use to MaybeLiveUses +/// if it causes the used value to become MaybeAlive. +/// +/// RetValNum is the return value number to use when this use is used in a +/// return instruction. This is used in the recursion, you should always leave +/// it at 0. +DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses, +                             unsigned RetValNum) { +    Value *V = *U; +    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) { +      // The value is returned from another function. It's only live when the +      // caller's return value is live +      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum); +      // We might be live, depending on the liveness of Use +      return IsMaybeLive(Use, MaybeLiveUses); +    } +    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { +      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex() +          && IV->hasIndices()) +        // The use we are examining is inserted into an aggregate. Our liveness +        // depends on all uses of that aggregate, but if it is used as a return +        // value, only index at which we were inserted counts. +        RetValNum = *IV->idx_begin(); + +      // Note that if we are used as the aggregate operand to the insertvalue, +      // we don't change RetValNum, but do survey all our uses. + +      Liveness Result = MaybeLive; +      for (Value::use_iterator I = IV->use_begin(), +           E = V->use_end(); I != E; ++I) { +        Result = SurveyUse(I, MaybeLiveUses, RetValNum); +        if (Result == Live) +          break; +      } +      return Result; +    } +    CallSite CS = CallSite::get(V); +    if (CS.getInstruction()) { +      Function *F = CS.getCalledFunction(); +      if (F) { +        // Used in a direct call + +        // Check for vararg. Do - 1 to skip the first operand to call (the +        // function itself). +        if (U.getOperandNo() - 1 >= F->getFunctionType()->getNumParams()) +          // The value is passed in through a vararg! Must be live. +          return Live; + +        // Value passed to a normal call. It's only live when the corresponding +        // argument (operand number - 1 to skip the function pointer operand) to +        // the called function turns out live +        RetOrArg Use = CreateArg(F, U.getOperandNo() - 1); +        return IsMaybeLive(Use, MaybeLiveUses); +      } else { +        // Used in any other way? Value must be live. +        return Live; +      } +    } +    // Used in any other way? Value must be live. +    return Live;  } +/// SurveyUses - This looks at all the uses of the given return value +/// (possibly a partial return value from a function returning a struct). +/// Returns the Liveness deduced from the uses of this value. +/// +/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. +DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) { +  // Assume it's dead (which will only hold if there are no uses at all..) +  Liveness Result = MaybeLive; +  // Check each use +  for (Value::use_iterator I = V->use_begin(), +       E = V->use_end(); I != E; ++I) { +    Result = SurveyUse(I, MaybeLiveUses); +    if (Result == Live) +      break; +  } +  return Result; +}  // SurveyFunction - This performs the initial survey of the specified function,  // checking out whether or not it uses any of its incoming arguments or whether  // any callers use the return value.  This fills in the -// (Dead|MaybeLive|Live)(Arguments|RetVal) sets. +// LiveValues set and Uses map.  //  // We consider arguments of non-internal functions to be intrinsically alive as  // well as arguments to functions which have their "address taken".  //  void DAE::SurveyFunction(Function &F) {    bool FunctionIntrinsicallyLive = false; -  Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead; +  unsigned RetCount = NumRetVals(&F); +  // Assume all return values are dead +  typedef SmallVector<Liveness, 5> RetVals; +  RetVals RetValLiveness(RetCount, MaybeLive); + +  // These vectors maps each return value to the uses that make it MaybeLive, so +  // we can add those to the MaybeLiveRetVals list if the return value +  // really turns out to be MaybeLive. Initializes to RetCount empty vectors +  typedef SmallVector<UseVector, 5> RetUses; +  // Intialized to a list of RetCount empty lists +  RetUses MaybeLiveRetUses(RetCount); + +  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) +      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() +          != F.getFunctionType()->getReturnType()) { +        // We don't support old style multiple return values +        FunctionIntrinsicallyLive = true; +        break; +      } -  if (!F.hasInternalLinkage() && -      (!ShouldHackArguments() || F.isIntrinsic())) +  if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic()))      FunctionIntrinsicallyLive = true; -  else + +  if (!FunctionIntrinsicallyLive) { +    DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n"; +    // Keep track of the number of live retvals, so we can skip checks once all +    // of them turn out to be live. +    unsigned NumLiveRetVals = 0; +    const Type *STy = dyn_cast<StructType>(F.getReturnType()); +    // Loop all uses of the function      for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {        // If the function is PASSED IN as an argument, its address has been taken        if (I.getOperandNo() != 0) { @@ -316,190 +429,142 @@ void DAE::SurveyFunction(Function &F) {          break;        } -      // Check to see if the return value is used... -      if (RetValLiveness != Live) -        for (Value::use_iterator I = TheCall->use_begin(), -               E = TheCall->use_end(); I != E; ++I) -          if (isa<ReturnInst>(cast<Instruction>(*I))) { -            RetValLiveness = MaybeLive; -          } else if (isa<CallInst>(cast<Instruction>(*I)) || -                     isa<InvokeInst>(cast<Instruction>(*I))) { -            if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) || -                !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) { -              RetValLiveness = Live; -              break; +      // If we end up here, we are looking at a direct call to our function. + +      // Now, check how our return value(s) is/are used in this caller. Don't +      // bother checking return values if all of them are live already +      if (NumLiveRetVals != RetCount) { +        if (STy) { +          // Check all uses of the return value +          for (Value::use_iterator I = TheCall->use_begin(), +               E = TheCall->use_end(); I != E; ++I) { +            ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I); +            if (Ext && Ext->hasIndices()) { +              // This use uses a part of our return value, survey the uses of +              // that part and store the results for this index only. +              unsigned Idx = *Ext->idx_begin(); +              if (RetValLiveness[Idx] != Live) { +                RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); +                if (RetValLiveness[Idx] == Live) +                  NumLiveRetVals++; +              }              } else { -              RetValLiveness = MaybeLive; +              // Used by something else than extractvalue. Mark all +              // return values as live. +              for (unsigned i = 0; i != RetCount; ++i ) +                RetValLiveness[i] = Live; +              NumLiveRetVals = RetCount; +              break;              } -          } else { -            RetValLiveness = Live; -            break;            } +        } else { +          // Single return value +          RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]); +          if (RetValLiveness[0] == Live) +            NumLiveRetVals = RetCount; +        } +      }      } - +  }    if (FunctionIntrinsicallyLive) { -    DOUT << "  Intrinsically live fn: " << F.getName() << "\n"; +    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n"; +    // Mark all arguments as live +    unsigned i = 0;      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); -         AI != E; ++AI) -      LiveArguments.insert(AI); -    LiveRetVal.insert(&F); +         AI != E; ++AI, ++i) +      MarkLive(CreateArg(&F, i)); +    // Mark all return values as live +    i = 0; +    for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i) +      MarkLive(CreateRet(&F, i));      return;    } -  switch (RetValLiveness) { -  case Live:      LiveRetVal.insert(&F); break; -  case MaybeLive: MaybeLiveRetVal.insert(&F); break; -  case Dead:      DeadRetVal.insert(&F); break; +  // Now we've inspected all callers, record the liveness of our return values. +  for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i) { +    RetOrArg Ret = CreateRet(&F, i); +    // Mark the result down +    MarkValue(Ret, RetValLiveness[i], MaybeLiveRetUses[i]);    } - -  DOUT << "  Inspecting args for fn: " << F.getName() << "\n"; - -  // If it is not intrinsically alive, we know that all users of the -  // function are call sites.  Mark all of the arguments live which are -  // directly used, and keep track of all of the call sites of this function -  // if there are any arguments we assume that are dead. -  // -  bool AnyMaybeLiveArgs = false; -  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); -       AI != E; ++AI) -    switch (getArgumentLiveness(*AI)) { -    case Live: -      DOUT << "    Arg live by use: " << AI->getName() << "\n"; -      LiveArguments.insert(AI); -      break; -    case Dead: -      DOUT << "    Arg definitely dead: " << AI->getName() <<"\n"; -      DeadArguments.insert(AI); -      break; -    case MaybeLive: -      DOUT << "    Arg only passed to calls: " << AI->getName() << "\n"; -      AnyMaybeLiveArgs = true; -      MaybeLiveArguments.insert(AI); -      break; -    } - -  // If there are any "MaybeLive" arguments, we need to check callees of -  // this function when/if they become alive.  Record which functions are -  // callees... -  if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive) -    for (Value::use_iterator I = F.use_begin(), E = F.use_end(); -         I != E; ++I) { -      if (AnyMaybeLiveArgs) -        CallSites.insert(std::make_pair(&F, CallSite::get(*I))); - -      if (RetValLiveness == MaybeLive) -        for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); -             UI != E; ++UI) -          InstructionsToInspect.push_back(cast<Instruction>(*UI)); -    } -} - -// isMaybeLiveArgumentNowLive - Check to see if Arg is alive.  At this point, we -// know that the only uses of Arg are to be passed in as an argument to a -// function call or return.  Check to see if the formal argument passed in is in -// the LiveArguments set.  If so, return true. -// -bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) { -  for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){ -    if (isa<ReturnInst>(*I)) { -      if (LiveRetVal.count(Arg->getParent())) return true; -      continue; -    } - -    CallSite CS = CallSite::get(*I); - -    // We know that this can only be used for direct calls... -    Function *Callee = CS.getCalledFunction(); - -    // Loop over all of the arguments (because Arg may be passed into the call -    // multiple times) and check to see if any are now alive... -    CallSite::arg_iterator CSAI = CS.arg_begin(); -    for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end(); -         AI != E; ++AI, ++CSAI) -      // If this is the argument we are looking for, check to see if it's alive -      if (*CSAI == Arg && LiveArguments.count(AI)) -        return true; +  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n"; + +  // Now, check all of our arguments +  unsigned i = 0; +  UseVector MaybeLiveArgUses; +  for (Function::arg_iterator AI = F.arg_begin(), +       E = F.arg_end(); AI != E; ++AI, ++i) { +    // See what the effect of this use is (recording any uses that cause +    // MaybeLive in MaybeLiveArgUses) +    Liveness Result = SurveyUses(AI, MaybeLiveArgUses); +    RetOrArg Arg = CreateArg(&F, i); +    // Mark the result down +    MarkValue(Arg, Result, MaybeLiveArgUses); +    // Clear the vector again for the next iteration +    MaybeLiveArgUses.clear();    } -  return false;  } -/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive. -/// Mark it live in the specified sets and recursively mark arguments in callers -/// live that are needed to pass in a value. -/// -void DAE::MarkArgumentLive(Argument *Arg) { -  std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg); -  if (It == MaybeLiveArguments.end() || *It != Arg) return; - -  DOUT << "  MaybeLive argument now live: " << Arg->getName() <<"\n"; -  MaybeLiveArguments.erase(It); -  LiveArguments.insert(Arg); - -  // Loop over all of the call sites of the function, making any arguments -  // passed in to provide a value for this argument live as necessary. -  // -  Function *Fn = Arg->getParent(); -  unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg)); - -  std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn); -  for (; I != CallSites.end() && I->first == Fn; ++I) { -    CallSite CS = I->second; -    Value *ArgVal = *(CS.arg_begin()+ArgNo); -    if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) { -      MarkArgumentLive(ActualArg); -    } else { -      // If the value passed in at this call site is a return value computed by -      // some other call site, make sure to mark the return value at the other -      // call site as being needed. -      CallSite ArgCS = CallSite::get(ArgVal); -      if (ArgCS.getInstruction()) -        if (Function *Fn = ArgCS.getCalledFunction()) -          MarkRetValLive(Fn); +/// MarkValue - This function marks the liveness of RA depending on L. If L is +/// MaybeLive, it also records any uses in MaybeLiveUses such that RA will be +/// marked live if any use in MaybeLiveUses gets marked live later on. +void DAE::MarkValue(const RetOrArg &RA, Liveness L, +                    const UseVector &MaybeLiveUses) { +  switch (L) { +    case Live: MarkLive(RA); break; +    case MaybeLive: +    { +      // Note any uses of this value, so this return value can be +      // marked live whenever one of the uses becomes live. +      UseMap::iterator Where = Uses.begin(); +      for (UseVector::const_iterator UI = MaybeLiveUses.begin(), +           UE = MaybeLiveUses.end(); UI != UE; ++UI) +        Where = Uses.insert(Where, UseMap::value_type(*UI, RA)); +      break;      }    }  } -/// MarkArgumentLive - The MaybeLive return value for the specified function is -/// now known to be alive.  Propagate this fact to the return instructions which -/// produce it. -void DAE::MarkRetValLive(Function *F) { -  assert(F && "Shame shame, we can't have null pointers here!"); - -  // Check to see if we already knew it was live -  std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F); -  if (I == MaybeLiveRetVal.end() || *I != F) return;  // It's already alive! - -  DOUT << "  MaybeLive retval now live: " << F->getName() << "\n"; - -  MaybeLiveRetVal.erase(I); -  LiveRetVal.insert(F);        // It is now known to be live! +/// MarkLive - Mark the given return value or argument as live. Additionally, +/// mark any values that are used by this value (according to Uses) live as +/// well. +void DAE::MarkLive(RetOrArg RA) { +  if (!LiveValues.insert(RA).second) +    return; // We were already marked Live -  // Loop over all of the functions, noticing that the return value is now live. -  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) -    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) -      MarkReturnInstArgumentLive(RI); -} - -void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) { -  Value *Op = RI->getOperand(0); -  if (Argument *A = dyn_cast<Argument>(Op)) { -    MarkArgumentLive(A); -  } else if (CallInst *CI = dyn_cast<CallInst>(Op)) { -    if (Function *F = CI->getCalledFunction()) -      MarkRetValLive(F); -  } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { -    if (Function *F = II->getCalledFunction()) -      MarkRetValLive(F); -  } +  if (RA.IsArg) +    DOUT << "DAE - Marking argument " << RA.Idx << " to function " +         << RA.F->getNameStart() << " live\n"; +  else +    DOUT << "DAE - Marking return value " << RA.Idx << " of function " +         << RA.F->getNameStart() << " live\n"; + +  // We don't use upper_bound (or equal_range) here, because our recursive call +  // to ourselves is likely to mark the upper_bound (which is the first value +  // not belonging to RA) to become erased and the iterator invalidated. +  UseMap::iterator Begin = Uses.lower_bound(RA); +  UseMap::iterator E = Uses.end(); +  UseMap::iterator I; +  for (I = Begin; I != E && I->first == RA; ++I) +    MarkLive(I->second); + +  // Erase RA from the Uses map (from the lower bound to wherever we ended up +  // after the loop). +  Uses.erase(Begin, I);  } -// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as +// RemoveDeadStuffFromFunction - Remove any arguments and return values from F +// that are not in LiveValues. This function is a noop for any Function created +// by this function before, or any function that was not inspected for liveness.  // specified by the DeadArguments list.  Transform the function and all of the  // callees of the function to not have these arguments.  // -void DAE::RemoveDeadArgumentsFromFunction(Function *F) { +bool DAE::RemoveDeadStuffFromFunction(Function *F) { +  // Quick exit path for external functions +  if (!F->hasInternalLinkage() && (!ShouldHackArguments() || F->isIntrinsic())) +    return false; +    // Start by computing a new prototype for the function, which is the same as -  // the old function, but has fewer arguments. +  // the old function, but has fewer arguments and a different return type.    const FunctionType *FTy = F->getFunctionType();    std::vector<const Type*> Params; @@ -510,28 +575,92 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {    // The existing function return attributes.    ParameterAttributes RAttrs = PAL.getParamAttrs(0); -  // Make the function return void if the return value is dead. + +  // Find out the new return value +    const Type *RetTy = FTy->getReturnType(); -  if (DeadRetVal.count(F)) { -    RetTy = Type::VoidTy; -    RAttrs &= ~ParamAttr::typeIncompatible(RetTy); -    DeadRetVal.erase(F); +  const Type *NRetTy; +  unsigned RetCount = NumRetVals(F); +  // Explicitely track if anything changed, for debugging +  bool Changed = false; +  // -1 means unused, other numbers are the new index +  SmallVector<int, 5> NewRetIdxs(RetCount, -1); +  std::vector<const Type*> RetTypes; +  if (RetTy != Type::VoidTy) { +    const StructType *STy = dyn_cast<StructType>(RetTy); +    if (STy) +      // Look at each of the original return values individually +      for (unsigned i = 0; i != RetCount; ++i) { +        RetOrArg Ret = CreateRet(F, i); +        if (LiveValues.erase(Ret)) { +          RetTypes.push_back(STy->getElementType(i)); +          NewRetIdxs[i] = RetTypes.size() - 1; +        } else { +          ++NumRetValsEliminated; +          DOUT << "DAE - Removing return value " << i << " from " +               << F->getNameStart() << "\n"; +          Changed = true; +        } +      } +    else +      // We used to return a single value +      if (LiveValues.erase(CreateRet(F, 0))) { +        RetTypes.push_back(RetTy); +        NewRetIdxs[0] = 0; +      } else { +        DOUT << "DAE - Removing return value from " << F->getNameStart() +             << "\n"; +        ++NumRetValsEliminated; +        Changed = true; +      } +    if (RetTypes.size() > 1 || STy && STy->getNumElements() == RetTypes.size()) +      // More than one return type? Return a struct with them. Also, if we used +      // to return a struct and didn't change the number of return values, +      // return a struct again. This prevents chaning {something} into something +      // and {} into void. +      // Make the new struct packed if we used to return a packed struct +      // already. +      NRetTy = StructType::get(RetTypes, STy->isPacked()); +    else if (RetTypes.size() == 1) +      // One return type? Just a simple value then, but only if we didn't use to +      // return a struct with that simple value before. +      NRetTy = RetTypes.front(); +    else if (RetTypes.size() == 0) +      // No return types? Make it void, but only if we didn't use to return {} +      NRetTy = Type::VoidTy; +  } else { +    NRetTy = Type::VoidTy;    } +  // Remove any incompatible attributes +  RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);    if (RAttrs)      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs)); +  // Remember which arguments are still alive +  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);    // Construct the new parameter list from non-dead arguments. Also construct -  // a new set of parameter attributes to correspond. -  unsigned index = 1; -  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; -       ++I, ++index) -    if (!DeadArguments.count(I)) { +  // a new set of parameter attributes to correspond. Skip the first parameter +  // attribute, since that belongs to the return value. +  unsigned i = 0; +  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); +       I != E; ++I, ++i) { +    RetOrArg Arg = CreateArg(F, i); +    if (LiveValues.erase(Arg)) {        Params.push_back(I->getType()); -       -      if (ParameterAttributes Attrs = PAL.getParamAttrs(index)) +      ArgAlive[i] = true; + +      // Get the original parameter attributes (skipping the first one, that is +      // for the return value +      if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs)); +    } else { +      ++NumArgumentsEliminated; +      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart() +           << ") from " << F->getNameStart() << "\n"; +      Changed = true;      } +  }    // Reconstruct the ParamAttrsList based on the vector we constructed.    PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end()); @@ -539,19 +668,33 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {    // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which    // have zero fixed arguments.    // +  // Not that we apply this hack for a vararg fuction that does not have any +  // arguments anymore, but did have them before (so don't bother fixing +  // functions that were already broken wrt CWriter).    bool ExtraArgHack = false; -  if (Params.empty() && FTy->isVarArg()) { +  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {      ExtraArgHack = true;      Params.push_back(Type::Int32Ty);    }    // Create the new function type based on the recomputed parameters. -  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); +  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); + +  // No change? +  if (NFTy == FTy) +    return false; + +  // The function type is only allowed to be different if we actually left out +  // an argument or return value +  assert(Changed && "Function type changed while no arguments or retrurn values" +                    "were removed!");    // Create the new function body and insert it into the module...    Function *NF = Function::Create(NFTy, F->getLinkage());    NF->copyAttributesFrom(F);    NF->setParamAttrs(NewPAL); +  // Insert the new function before the old function, so we won't be processing +  // it again    F->getParent()->getFunctionList().insert(F, NF);    NF->takeName(F); @@ -562,6 +705,7 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {    while (!F->use_empty()) {      CallSite CS = CallSite::get(F->use_back());      Instruction *Call = CS.getInstruction(); +      ParamAttrsVec.clear();      const PAListPtr &CallPAL = CS.getParamAttrs(); @@ -572,14 +716,17 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {      if (RAttrs)        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs)); -    // Loop over the operands, deleting dead ones... -    CallSite::arg_iterator AI = CS.arg_begin(); -    index = 1; -    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); -         I != E; ++I, ++AI, ++index) -      if (!DeadArguments.count(I)) {    // Remove operands for dead arguments -        Args.push_back(*AI); -        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index)) +    // Declare these outside of the loops, so we can reuse them for the second +    // loop, which loops the varargs +    CallSite::arg_iterator I = CS.arg_begin(); +    unsigned i = 0; +    // Loop over those operands, corresponding to the normal arguments to the +    // original function, and add those that are still alive. +    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) +      if (ArgAlive[i]) { +        Args.push_back(*I); +        // Get original parameter attributes, but skip return attributes +        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))            ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));        } @@ -587,9 +734,9 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {        Args.push_back(UndefValue::get(Type::Int32Ty));      // Push any varargs arguments on the list. Don't forget their attributes. -    for (; AI != CS.arg_end(); ++AI) { -      Args.push_back(*AI); -      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index++)) +    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { +      Args.push_back(*I); +      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));      } @@ -613,11 +760,55 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {      Args.clear();      if (!Call->use_empty()) { -      if (New->getType() == Type::VoidTy) -        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); -      else { +      if (New->getType() == Call->getType()) { +        // Return type not changed? Just replace users then          Call->replaceAllUsesWith(New);          New->takeName(Call); +      } else if (New->getType() == Type::VoidTy) { +        // Our return value has uses, but they will get removed later on. +        // Replace by null for now. +        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType())); +      } else { +        assert(isa<StructType>(RetTy) && "Return type changed, but not into a" +                                         "void. The old return type must have" +                                         "been a struct!"); +        // The original return value was a struct, update all uses (which are +        // all extractvalue instructions). +        for (Value::use_iterator I = Call->use_begin(), E = Call->use_end(); +             I != E;) { +          assert(isa<ExtractValueInst>(*I) && "Return value not only used by" +                                              "extractvalue?"); +          ExtractValueInst *EV = cast<ExtractValueInst>(*I); +          // Increment now, since we're about to throw away this use. +          ++I; +          assert(EV->hasIndices() && "Return value used by extractvalue without" +                                     "indices?"); +          unsigned Idx = *EV->idx_begin(); +          if (NewRetIdxs[Idx] != -1) { +            if (RetTypes.size() > 1) { +              // We're still returning a struct, create a new extractvalue +              // instruction with the first index updated +              std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end()); +              NewIdxs[0] = NewRetIdxs[Idx]; +              Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(), +                                                    NewIdxs.end(), "retval", +                                                    EV); +              EV->replaceAllUsesWith(NEV); +              EV->eraseFromParent(); +            } else { +              // We are now only returning a simple value, remove the +              // extractvalue +              EV->replaceAllUsesWith(New); +              EV->eraseFromParent(); +            } +          } else { +            // Value unused, replace uses by null for now, they will get removed +            // later on +            EV->replaceAllUsesWith(Constant::getNullValue(EV->getType())); +            EV->eraseFromParent(); +          } +        } +        New->takeName(Call);        }      } @@ -632,13 +823,11 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {    NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());    // Loop over the argument list, transfering uses of the old arguments over to -  // the new arguments, also transfering over the names as well.  While we're at -  // it, remove the dead arguments from the DeadArguments list. -  // +  // the new arguments, also transfering over the names as well. +  i = 0;    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), -         I2 = NF->arg_begin(); -       I != E; ++I) -    if (!DeadArguments.count(I)) { +       I2 = NF->arg_begin(); I != E; ++I, ++i) +    if (ArgAlive[i]) {        // If this is a live argument, move the name and users over to the new        // version.        I->replaceAllUsesWith(I2); @@ -646,10 +835,8 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {        ++I2;      } else {        // If this argument is dead, replace any uses of it with null constants -      // (these are guaranteed to only be operands to call instructions which -      // will later be simplified). +      // (these are guaranteed to become unused later on)        I->replaceAllUsesWith(Constant::getNullValue(I->getType())); -      DeadArguments.erase(I);      }    // If we change the return value of the function we must rewrite any return @@ -657,12 +844,47 @@ void DAE::RemoveDeadArgumentsFromFunction(Function *F) {    if (F->getReturnType() != NF->getReturnType())      for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { -        ReturnInst::Create(0, RI); +        Value *RetVal; + +        if (NFTy->getReturnType() == Type::VoidTy) { +          RetVal = 0; +        } else { +          assert (isa<StructType>(RetTy)); +          // The original return value was a struct, insert +          // extractvalue/insertvalue chains to extract only the values we need +          // to return and insert them into our new result. +          // This does generate messy code, but we'll let it to instcombine to +          // clean that up +          Value *OldRet = RI->getOperand(0); +          // Start out building up our return value from undef +          RetVal = llvm::UndefValue::get(NRetTy); +          for (unsigned i = 0; i != RetCount; ++i) +            if (NewRetIdxs[i] != -1) { +              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, +                                                              "newret", RI); +              if (RetTypes.size() > 1) { +                // We're still returning a struct, so reinsert the value into +                // our new return value at the new index + +                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], +                                                 "oldret"); +              } else { +                // We are now only returning a simple value, so just return the +                // extracted value +                RetVal = EV; +              } +            } +        } +        // Replace the return instruction with one returning the new return +        // value (possibly 0 if we became void). +        ReturnInst::Create(RetVal, RI);          BB->getInstList().erase(RI);        }    // Now that the old function is dead, delete it.    F->eraseFromParent(); + +  return true;  }  bool DAE::runOnModule(Module &M) { @@ -677,7 +899,7 @@ bool DAE::runOnModule(Module &M) {      if (F.getFunctionType()->isVarArg())        Changed |= DeleteDeadVarargs(F);    } -   +    // Second phase:loop through the module, determining which arguments are live.    // We assume all arguments are dead unless proven otherwise (allowing us to    // determine that dead arguments passed into recursive functions are dead). @@ -686,85 +908,14 @@ bool DAE::runOnModule(Module &M) {    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)      SurveyFunction(*I); -  // Loop over the instructions to inspect, propagating liveness among arguments -  // and return values which are MaybeLive. -  while (!InstructionsToInspect.empty()) { -    Instruction *I = InstructionsToInspect.back(); -    InstructionsToInspect.pop_back(); - -    if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) { -      // For return instructions, we just have to check to see if the return -      // value for the current function is known now to be alive.  If so, any -      // arguments used by it are now alive, and any call instruction return -      // value is alive as well. -      if (LiveRetVal.count(RI->getParent()->getParent())) -        MarkReturnInstArgumentLive(RI); - -    } else { -      CallSite CS = CallSite::get(I); -      assert(CS.getInstruction() && "Unknown instruction for the I2I list!"); - -      Function *Callee = CS.getCalledFunction(); - -      // If we found a call or invoke instruction on this list, that means that -      // an argument of the function is a call instruction.  If the argument is -      // live, then the return value of the called instruction is now live. -      // -      CallSite::arg_iterator AI = CS.arg_begin();  // ActualIterator -      for (Function::arg_iterator FI = Callee->arg_begin(), -             E = Callee->arg_end(); FI != E; ++AI, ++FI) { -        // If this argument is another call... -        CallSite ArgCS = CallSite::get(*AI); -        if (ArgCS.getInstruction() && LiveArguments.count(FI)) -          if (Function *Callee = ArgCS.getCalledFunction()) -            MarkRetValLive(Callee); -      } -    } -  } - -  // Now we loop over all of the MaybeLive arguments, promoting them to be live -  // arguments if one of the calls that uses the arguments to the calls they are -  // passed into requires them to be live.  Of course this could make other -  // arguments live, so process callers recursively. -  // -  // Because elements can be removed from the MaybeLiveArguments set, copy it to -  // a temporary vector. -  // -  std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(), -                                    MaybeLiveArguments.end()); -  for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) { -    Argument *MLA = TmpArgList[i]; -    if (MaybeLiveArguments.count(MLA) && -        isMaybeLiveArgumentNowLive(MLA)) -      MarkArgumentLive(MLA); +  // Now, remove all dead arguments and return values from each function in +  // turn +  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { +    // Increment now, because the function will probably get removed (ie +    // replaced by a new one) +    Function *F = I++; +    Changed |= RemoveDeadStuffFromFunction(F);    } -  // Recover memory early... -  CallSites.clear(); - -  // At this point, we know that all arguments in DeadArguments and -  // MaybeLiveArguments are dead.  If the two sets are empty, there is nothing -  // to do. -  if (MaybeLiveArguments.empty() && DeadArguments.empty() && -      MaybeLiveRetVal.empty() && DeadRetVal.empty()) -    return Changed; - -  // Otherwise, compact into one set, and start eliminating the arguments from -  // the functions. -  DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end()); -  MaybeLiveArguments.clear(); -  DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end()); -  MaybeLiveRetVal.clear(); - -  LiveArguments.clear(); -  LiveRetVal.clear(); - -  NumArgumentsEliminated += DeadArguments.size(); -  NumRetValsEliminated   += DeadRetVal.size(); -  while (!DeadArguments.empty()) -    RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent()); - -  while (!DeadRetVal.empty()) -    RemoveDeadArgumentsFromFunction(*DeadRetVal.begin()); -  return true; +  return Changed;  }  | 

