diff options
author | Chandler Carruth <chandlerc@gmail.com> | 2017-01-29 08:03:16 +0000 |
---|---|---|
committer | Chandler Carruth <chandlerc@gmail.com> | 2017-01-29 08:03:16 +0000 |
commit | cd836cd4eed72a4512b862d5b239a02c8b2c1ec6 (patch) | |
tree | 97432e73526e31170ec1507d0a5405b9dd835905 /llvm/lib/Transforms/IPO/ArgumentPromotion.cpp | |
parent | 62a188d6238d70664115a049a3cb5c2338816692 (diff) | |
download | bcm5719-llvm-cd836cd4eed72a4512b862d5b239a02c8b2c1ec6.tar.gz bcm5719-llvm-cd836cd4eed72a4512b862d5b239a02c8b2c1ec6.zip |
[ArgPromote] Re-arrange the code in a more typical, logical way.
This arranges the static helpers in an order where they are defined
prior to their use to avoid the need of forward declarations, and
collect the core pass components at the bottom below their helpers.
This also folds one trivial function into the pass itself. Factoring
this 'runImpl' was an attempt to help porting to the new pass manager,
however in my attempt to begin this port in earnest it turned out to not
be a substantial help. I think it will be easier to factor things
without it.
This is an NFC change and does a minimal amount of edits over all.
Subsequent NFC cleanups will normalize the formatting with clang-format
and improve the basic doxygen commenting.
Differential Revision: https://reviews.llvm.org/D29247
llvm-svn: 293424
Diffstat (limited to 'llvm/lib/Transforms/IPO/ArgumentPromotion.cpp')
-rw-r--r-- | llvm/lib/Transforms/IPO/ArgumentPromotion.cpp | 1108 |
1 files changed, 547 insertions, 561 deletions
diff --git a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp index 65b7bad3b1e..61057a6cb08 100644 --- a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp +++ b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp @@ -61,570 +61,9 @@ STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted"); STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated"); -namespace { - /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. - /// - struct ArgPromotion : public CallGraphSCCPass { - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - getAAResultsAnalysisUsage(AU); - CallGraphSCCPass::getAnalysisUsage(AU); - } - - bool runOnSCC(CallGraphSCC &SCC) override; - static char ID; // Pass identification, replacement for typeid - explicit ArgPromotion(unsigned maxElements = 3) - : CallGraphSCCPass(ID), maxElements(maxElements) { - initializeArgPromotionPass(*PassRegistry::getPassRegistry()); - } - - private: - - using llvm::Pass::doInitialization; - bool doInitialization(CallGraph &CG) override; - /// The maximum number of elements to expand, or 0 for unlimited. - unsigned maxElements; - }; -} - /// A vector used to hold the indices of a single GEP instruction typedef std::vector<uint64_t> IndicesVector; -static CallGraphNode * -PromoteArguments(CallGraphNode *CGN, CallGraph &CG, - function_ref<AAResults &(Function &F)> AARGetter, - unsigned MaxElements); -static bool isDenselyPacked(Type *type, const DataLayout &DL); -static bool canPaddingBeAccessed(Argument *Arg); -static bool isSafeToPromoteArgument(Argument *Arg, bool isByVal, AAResults &AAR, - unsigned MaxElements); -static CallGraphNode * -DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, - SmallPtrSetImpl<Argument *> &ByValArgsToTransform, CallGraph &CG); - -char ArgPromotion::ID = 0; -INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", - "Promote 'by reference' arguments to scalars", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(ArgPromotion, "argpromotion", - "Promote 'by reference' arguments to scalars", false, false) - -Pass *llvm::createArgumentPromotionPass(unsigned maxElements) { - return new ArgPromotion(maxElements); -} - -static bool runImpl(CallGraphSCC &SCC, CallGraph &CG, - function_ref<AAResults &(Function &F)> AARGetter, - unsigned MaxElements) { - bool Changed = false, LocalChange; - - do { // Iterate until we stop promoting from this SCC. - LocalChange = false; - // Attempt to promote arguments from all functions in this SCC. - for (CallGraphNode *OldNode : SCC) { - if (CallGraphNode *NewNode = - PromoteArguments(OldNode, CG, AARGetter, MaxElements)) { - LocalChange = true; - SCC.ReplaceNode(OldNode, NewNode); - } - } - Changed |= LocalChange; // Remember that we changed something. - } while (LocalChange); - - return Changed; -} - -bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { - if (skipSCC(SCC)) - return false; - - // Get the callgraph information that we need to update to reflect our - // changes. - CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); - - // We compute dedicated AA results for each function in the SCC as needed. We - // use a lambda referencing external objects so that they live long enough to - // be queried, but we re-use them each time. - Optional<BasicAAResult> BAR; - Optional<AAResults> AAR; - auto AARGetter = [&](Function &F) -> AAResults & { - BAR.emplace(createLegacyPMBasicAAResult(*this, F)); - AAR.emplace(createLegacyPMAAResults(*this, F, *BAR)); - return *AAR; - }; - - return runImpl(SCC, CG, AARGetter, maxElements); -} - -/// \brief Checks if a type could have padding bytes. -static bool isDenselyPacked(Type *type, const DataLayout &DL) { - - // There is no size information, so be conservative. - if (!type->isSized()) - return false; - - // If the alloc size is not equal to the storage size, then there are padding - // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. - if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) - return false; - - if (!isa<CompositeType>(type)) - return true; - - // For homogenous sequential types, check for padding within members. - if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) - return isDenselyPacked(seqTy->getElementType(), DL); - - // Check for padding within and between elements of a struct. - StructType *StructTy = cast<StructType>(type); - const StructLayout *Layout = DL.getStructLayout(StructTy); - uint64_t StartPos = 0; - for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { - Type *ElTy = StructTy->getElementType(i); - if (!isDenselyPacked(ElTy, DL)) - return false; - if (StartPos != Layout->getElementOffsetInBits(i)) - return false; - StartPos += DL.getTypeAllocSizeInBits(ElTy); - } - - return true; -} - -/// \brief Checks if the padding bytes of an argument could be accessed. -static bool canPaddingBeAccessed(Argument *arg) { - - assert(arg->hasByValAttr()); - - // Track all the pointers to the argument to make sure they are not captured. - SmallPtrSet<Value *, 16> PtrValues; - PtrValues.insert(arg); - - // Track all of the stores. - SmallVector<StoreInst *, 16> Stores; - - // Scan through the uses recursively to make sure the pointer is always used - // sanely. - SmallVector<Value *, 16> WorkList; - WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); - while (!WorkList.empty()) { - Value *V = WorkList.back(); - WorkList.pop_back(); - if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { - if (PtrValues.insert(V).second) - WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); - } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { - Stores.push_back(Store); - } else if (!isa<LoadInst>(V)) { - return true; - } - } - -// Check to make sure the pointers aren't captured - for (StoreInst *Store : Stores) - if (PtrValues.count(Store->getValueOperand())) - return true; - - return false; -} - -/// PromoteArguments - This method checks the specified function to see if there -/// are any promotable arguments and if it is safe to promote the function (for -/// example, all callers are direct). If safe to promote some arguments, it -/// calls the DoPromotion method. -/// -static CallGraphNode * -PromoteArguments(CallGraphNode *CGN, CallGraph &CG, - function_ref<AAResults &(Function &F)> AARGetter, - unsigned MaxElements) { - Function *F = CGN->getFunction(); - - // Make sure that it is local to this module. - if (!F || !F->hasLocalLinkage()) return nullptr; - - // Don't promote arguments for variadic functions. Adding, removing, or - // changing non-pack parameters can change the classification of pack - // parameters. Frontends encode that classification at the call site in the - // IR, while in the callee the classification is determined dynamically based - // on the number of registers consumed so far. - if (F->isVarArg()) return nullptr; - - // First check: see if there are any pointer arguments! If not, quick exit. - SmallVector<Argument*, 16> PointerArgs; - for (Argument &I : F->args()) - if (I.getType()->isPointerTy()) - PointerArgs.push_back(&I); - if (PointerArgs.empty()) return nullptr; - - // Second check: make sure that all callers are direct callers. We can't - // transform functions that have indirect callers. Also see if the function - // is self-recursive. - bool isSelfRecursive = false; - for (Use &U : F->uses()) { - CallSite CS(U.getUser()); - // Must be a direct call. - if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr; - - if (CS.getInstruction()->getParent()->getParent() == F) - isSelfRecursive = true; - } - - const DataLayout &DL = F->getParent()->getDataLayout(); - - AAResults &AAR = AARGetter(*F); - - // Check to see which arguments are promotable. If an argument is promotable, - // add it to ArgsToPromote. - SmallPtrSet<Argument*, 8> ArgsToPromote; - SmallPtrSet<Argument*, 8> ByValArgsToTransform; - for (Argument *PtrArg : PointerArgs) { - Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); - - // Replace sret attribute with noalias. This reduces register pressure by - // avoiding a register copy. - if (PtrArg->hasStructRetAttr()) { - unsigned ArgNo = PtrArg->getArgNo(); - F->setAttributes( - F->getAttributes() - .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet) - .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); - for (Use &U : F->uses()) { - CallSite CS(U.getUser()); - CS.setAttributes( - CS.getAttributes() - .removeAttribute(F->getContext(), ArgNo + 1, - Attribute::StructRet) - .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); - } - } - - // If this is a byval argument, and if the aggregate type is small, just - // pass the elements, which is always safe, if the passed value is densely - // packed or if we can prove the padding bytes are never accessed. This does - // not apply to inalloca. - bool isSafeToPromote = - PtrArg->hasByValAttr() && - (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); - if (isSafeToPromote) { - if (StructType *STy = dyn_cast<StructType>(AgTy)) { - if (MaxElements > 0 && STy->getNumElements() > MaxElements) { - DEBUG(dbgs() << "argpromotion disable promoting argument '" - << PtrArg->getName() << "' because it would require adding more" - << " than " << MaxElements << " arguments to the function.\n"); - continue; - } - - // If all the elements are single-value types, we can promote it. - bool AllSimple = true; - for (const auto *EltTy : STy->elements()) { - if (!EltTy->isSingleValueType()) { - AllSimple = false; - break; - } - } - - // Safe to transform, don't even bother trying to "promote" it. - // Passing the elements as a scalar will allow sroa to hack on - // the new alloca we introduce. - if (AllSimple) { - ByValArgsToTransform.insert(PtrArg); - continue; - } - } - } - - // If the argument is a recursive type and we're in a recursive - // function, we could end up infinitely peeling the function argument. - if (isSelfRecursive) { - if (StructType *STy = dyn_cast<StructType>(AgTy)) { - bool RecursiveType = false; - for (const auto *EltTy : STy->elements()) { - if (EltTy == PtrArg->getType()) { - RecursiveType = true; - break; - } - } - if (RecursiveType) - continue; - } - } - - // Otherwise, see if we can promote the pointer to its value. - if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, - MaxElements)) - ArgsToPromote.insert(PtrArg); - } - - // No promotable pointer arguments. - if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) - return nullptr; - - return DoPromotion(F, ArgsToPromote, ByValArgsToTransform, CG); -} - -/// AllCallersPassInValidPointerForArgument - Return true if we can prove that -/// all callees pass in a valid pointer for the specified function argument. -static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { - Function *Callee = Arg->getParent(); - const DataLayout &DL = Callee->getParent()->getDataLayout(); - - unsigned ArgNo = Arg->getArgNo(); - - // Look at all call sites of the function. At this point we know we only have - // direct callees. - for (User *U : Callee->users()) { - CallSite CS(U); - assert(CS && "Should only have direct calls!"); - - if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) - return false; - } - return true; -} - -/// Returns true if Prefix is a prefix of longer. That means, Longer has a size -/// that is greater than or equal to the size of prefix, and each of the -/// elements in Prefix is the same as the corresponding elements in Longer. -/// -/// This means it also returns true when Prefix and Longer are equal! -static bool IsPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { - if (Prefix.size() > Longer.size()) - return false; - return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); -} - - -/// Checks if Indices, or a prefix of Indices, is in Set. -static bool PrefixIn(const IndicesVector &Indices, - std::set<IndicesVector> &Set) { - std::set<IndicesVector>::iterator Low; - Low = Set.upper_bound(Indices); - if (Low != Set.begin()) - Low--; - // Low is now the last element smaller than or equal to Indices. This means - // it points to a prefix of Indices (possibly Indices itself), if such - // prefix exists. - // - // This load is safe if any prefix of its operands is safe to load. - return Low != Set.end() && IsPrefix(*Low, Indices); -} - -/// Mark the given indices (ToMark) as safe in the given set of indices -/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there -/// is already a prefix of Indices in Safe, Indices are implicitely marked safe -/// already. Furthermore, any indices that Indices is itself a prefix of, are -/// removed from Safe (since they are implicitely safe because of Indices now). -static void MarkIndicesSafe(const IndicesVector &ToMark, - std::set<IndicesVector> &Safe) { - std::set<IndicesVector>::iterator Low; - Low = Safe.upper_bound(ToMark); - // Guard against the case where Safe is empty - if (Low != Safe.begin()) - Low--; - // Low is now the last element smaller than or equal to Indices. This - // means it points to a prefix of Indices (possibly Indices itself), if - // such prefix exists. - if (Low != Safe.end()) { - if (IsPrefix(*Low, ToMark)) - // If there is already a prefix of these indices (or exactly these - // indices) marked a safe, don't bother adding these indices - return; - - // Increment Low, so we can use it as a "insert before" hint - ++Low; - } - // Insert - Low = Safe.insert(Low, ToMark); - ++Low; - // If there we're a prefix of longer index list(s), remove those - std::set<IndicesVector>::iterator End = Safe.end(); - while (Low != End && IsPrefix(ToMark, *Low)) { - std::set<IndicesVector>::iterator Remove = Low; - ++Low; - Safe.erase(Remove); - } -} - -/// isSafeToPromoteArgument - As you might guess from the name of this method, -/// it checks to see if it is both safe and useful to promote the argument. -/// This method limits promotion of aggregates to only promote up to three -/// elements of the aggregate in order to avoid exploding the number of -/// arguments passed in. -static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, - AAResults &AAR, unsigned MaxElements) { - typedef std::set<IndicesVector> GEPIndicesSet; - - // Quick exit for unused arguments - if (Arg->use_empty()) - return true; - - // We can only promote this argument if all of the uses are loads, or are GEP - // instructions (with constant indices) that are subsequently loaded. - // - // Promoting the argument causes it to be loaded in the caller - // unconditionally. This is only safe if we can prove that either the load - // would have happened in the callee anyway (ie, there is a load in the entry - // block) or the pointer passed in at every call site is guaranteed to be - // valid. - // In the former case, invalid loads can happen, but would have happened - // anyway, in the latter case, invalid loads won't happen. This prevents us - // from introducing an invalid load that wouldn't have happened in the - // original code. - // - // This set will contain all sets of indices that are loaded in the entry - // block, and thus are safe to unconditionally load in the caller. - // - // This optimization is also safe for InAlloca parameters, because it verifies - // that the address isn't captured. - GEPIndicesSet SafeToUnconditionallyLoad; - - // This set contains all the sets of indices that we are planning to promote. - // This makes it possible to limit the number of arguments added. - GEPIndicesSet ToPromote; - - // If the pointer is always valid, any load with first index 0 is valid. - if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg)) - SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); - - // First, iterate the entry block and mark loads of (geps of) arguments as - // safe. - BasicBlock &EntryBlock = Arg->getParent()->front(); - // Declare this here so we can reuse it - IndicesVector Indices; - for (Instruction &I : EntryBlock) - if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { - Value *V = LI->getPointerOperand(); - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { - V = GEP->getPointerOperand(); - if (V == Arg) { - // This load actually loads (part of) Arg? Check the indices then. - Indices.reserve(GEP->getNumIndices()); - for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); - II != IE; ++II) - if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) - Indices.push_back(CI->getSExtValue()); - else - // We found a non-constant GEP index for this argument? Bail out - // right away, can't promote this argument at all. - return false; - - // Indices checked out, mark them as safe - MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); - Indices.clear(); - } - } else if (V == Arg) { - // Direct loads are equivalent to a GEP with a single 0 index. - MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); - } - } - - // Now, iterate all uses of the argument to see if there are any uses that are - // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. - SmallVector<LoadInst*, 16> Loads; - IndicesVector Operands; - for (Use &U : Arg->uses()) { - User *UR = U.getUser(); - Operands.clear(); - if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { - // Don't hack volatile/atomic loads - if (!LI->isSimple()) return false; - Loads.push_back(LI); - // Direct loads are equivalent to a GEP with a zero index and then a load. - Operands.push_back(0); - } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { - if (GEP->use_empty()) { - // Dead GEP's cause trouble later. Just remove them if we run into - // them. - GEP->eraseFromParent(); - // TODO: This runs the above loop over and over again for dead GEPs - // Couldn't we just do increment the UI iterator earlier and erase the - // use? - return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, - MaxElements); - } - - // Ensure that all of the indices are constants. - for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); - i != e; ++i) - if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) - Operands.push_back(C->getSExtValue()); - else - return false; // Not a constant operand GEP! - - // Ensure that the only users of the GEP are load instructions. - for (User *GEPU : GEP->users()) - if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { - // Don't hack volatile/atomic loads - if (!LI->isSimple()) return false; - Loads.push_back(LI); - } else { - // Other uses than load? - return false; - } - } else { - return false; // Not a load or a GEP. - } - - // Now, see if it is safe to promote this load / loads of this GEP. Loading - // is safe if Operands, or a prefix of Operands, is marked as safe. - if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) - return false; - - // See if we are already promoting a load with these indices. If not, check - // to make sure that we aren't promoting too many elements. If so, nothing - // to do. - if (ToPromote.find(Operands) == ToPromote.end()) { - if (MaxElements > 0 && ToPromote.size() == MaxElements) { - DEBUG(dbgs() << "argpromotion not promoting argument '" - << Arg->getName() << "' because it would require adding more " - << "than " << MaxElements << " arguments to the function.\n"); - // We limit aggregate promotion to only promoting up to a fixed number - // of elements of the aggregate. - return false; - } - ToPromote.insert(std::move(Operands)); - } - } - - if (Loads.empty()) return true; // No users, this is a dead argument. - - // Okay, now we know that the argument is only used by load instructions and - // it is safe to unconditionally perform all of them. Use alias analysis to - // check to see if the pointer is guaranteed to not be modified from entry of - // the function to each of the load instructions. - - // Because there could be several/many load instructions, remember which - // blocks we know to be transparent to the load. - df_iterator_default_set<BasicBlock*, 16> TranspBlocks; - - for (LoadInst *Load : Loads) { - // Check to see if the load is invalidated from the start of the block to - // the load itself. - BasicBlock *BB = Load->getParent(); - - MemoryLocation Loc = MemoryLocation::get(Load); - if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod)) - return false; // Pointer is invalidated! - - // Now check every path from the entry block to the load for transparency. - // To do this, we perform a depth first search on the inverse CFG from the - // loading block. - for (BasicBlock *P : predecessors(BB)) { - for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) - if (AAR.canBasicBlockModify(*TranspBB, Loc)) - return false; - } - } - - // If the path from the entry of the function to each load is free of - // instructions that potentially invalidate the load, we can make the - // transformation! - return true; -} - /// DoPromotion - This method actually performs the promotion of the specified /// arguments, and returns the new function. At this point, we know that it's /// safe to do so. @@ -1037,6 +476,553 @@ DoPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, return NF_CGN; } + +/// AllCallersPassInValidPointerForArgument - Return true if we can prove that +/// all callees pass in a valid pointer for the specified function argument. +static bool AllCallersPassInValidPointerForArgument(Argument *Arg) { + Function *Callee = Arg->getParent(); + const DataLayout &DL = Callee->getParent()->getDataLayout(); + + unsigned ArgNo = Arg->getArgNo(); + + // Look at all call sites of the function. At this point we know we only have + // direct callees. + for (User *U : Callee->users()) { + CallSite CS(U); + assert(CS && "Should only have direct calls!"); + + if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) + return false; + } + return true; +} + +/// Returns true if Prefix is a prefix of longer. That means, Longer has a size +/// that is greater than or equal to the size of prefix, and each of the +/// elements in Prefix is the same as the corresponding elements in Longer. +/// +/// This means it also returns true when Prefix and Longer are equal! +static bool IsPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { + if (Prefix.size() > Longer.size()) + return false; + return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); +} + + +/// Checks if Indices, or a prefix of Indices, is in Set. +static bool PrefixIn(const IndicesVector &Indices, + std::set<IndicesVector> &Set) { + std::set<IndicesVector>::iterator Low; + Low = Set.upper_bound(Indices); + if (Low != Set.begin()) + Low--; + // Low is now the last element smaller than or equal to Indices. This means + // it points to a prefix of Indices (possibly Indices itself), if such + // prefix exists. + // + // This load is safe if any prefix of its operands is safe to load. + return Low != Set.end() && IsPrefix(*Low, Indices); +} + +/// Mark the given indices (ToMark) as safe in the given set of indices +/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there +/// is already a prefix of Indices in Safe, Indices are implicitely marked safe +/// already. Furthermore, any indices that Indices is itself a prefix of, are +/// removed from Safe (since they are implicitely safe because of Indices now). +static void MarkIndicesSafe(const IndicesVector &ToMark, + std::set<IndicesVector> &Safe) { + std::set<IndicesVector>::iterator Low; + Low = Safe.upper_bound(ToMark); + // Guard against the case where Safe is empty + if (Low != Safe.begin()) + Low--; + // Low is now the last element smaller than or equal to Indices. This + // means it points to a prefix of Indices (possibly Indices itself), if + // such prefix exists. + if (Low != Safe.end()) { + if (IsPrefix(*Low, ToMark)) + // If there is already a prefix of these indices (or exactly these + // indices) marked a safe, don't bother adding these indices + return; + + // Increment Low, so we can use it as a "insert before" hint + ++Low; + } + // Insert + Low = Safe.insert(Low, ToMark); + ++Low; + // If there we're a prefix of longer index list(s), remove those + std::set<IndicesVector>::iterator End = Safe.end(); + while (Low != End && IsPrefix(ToMark, *Low)) { + std::set<IndicesVector>::iterator Remove = Low; + ++Low; + Safe.erase(Remove); + } +} + +/// isSafeToPromoteArgument - As you might guess from the name of this method, +/// it checks to see if it is both safe and useful to promote the argument. +/// This method limits promotion of aggregates to only promote up to three +/// elements of the aggregate in order to avoid exploding the number of +/// arguments passed in. +static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, + AAResults &AAR, unsigned MaxElements) { + typedef std::set<IndicesVector> GEPIndicesSet; + + // Quick exit for unused arguments + if (Arg->use_empty()) + return true; + + // We can only promote this argument if all of the uses are loads, or are GEP + // instructions (with constant indices) that are subsequently loaded. + // + // Promoting the argument causes it to be loaded in the caller + // unconditionally. This is only safe if we can prove that either the load + // would have happened in the callee anyway (ie, there is a load in the entry + // block) or the pointer passed in at every call site is guaranteed to be + // valid. + // In the former case, invalid loads can happen, but would have happened + // anyway, in the latter case, invalid loads won't happen. This prevents us + // from introducing an invalid load that wouldn't have happened in the + // original code. + // + // This set will contain all sets of indices that are loaded in the entry + // block, and thus are safe to unconditionally load in the caller. + // + // This optimization is also safe for InAlloca parameters, because it verifies + // that the address isn't captured. + GEPIndicesSet SafeToUnconditionallyLoad; + + // This set contains all the sets of indices that we are planning to promote. + // This makes it possible to limit the number of arguments added. + GEPIndicesSet ToPromote; + + // If the pointer is always valid, any load with first index 0 is valid. + if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg)) + SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); + + // First, iterate the entry block and mark loads of (geps of) arguments as + // safe. + BasicBlock &EntryBlock = Arg->getParent()->front(); + // Declare this here so we can reuse it + IndicesVector Indices; + for (Instruction &I : EntryBlock) + if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { + Value *V = LI->getPointerOperand(); + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { + V = GEP->getPointerOperand(); + if (V == Arg) { + // This load actually loads (part of) Arg? Check the indices then. + Indices.reserve(GEP->getNumIndices()); + for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); + II != IE; ++II) + if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) + Indices.push_back(CI->getSExtValue()); + else + // We found a non-constant GEP index for this argument? Bail out + // right away, can't promote this argument at all. + return false; + + // Indices checked out, mark them as safe + MarkIndicesSafe(Indices, SafeToUnconditionallyLoad); + Indices.clear(); + } + } else if (V == Arg) { + // Direct loads are equivalent to a GEP with a single 0 index. + MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); + } + } + + // Now, iterate all uses of the argument to see if there are any uses that are + // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. + SmallVector<LoadInst*, 16> Loads; + IndicesVector Operands; + for (Use &U : Arg->uses()) { + User *UR = U.getUser(); + Operands.clear(); + if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { + // Don't hack volatile/atomic loads + if (!LI->isSimple()) return false; + Loads.push_back(LI); + // Direct loads are equivalent to a GEP with a zero index and then a load. + Operands.push_back(0); + } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { + if (GEP->use_empty()) { + // Dead GEP's cause trouble later. Just remove them if we run into + // them. + GEP->eraseFromParent(); + // TODO: This runs the above loop over and over again for dead GEPs + // Couldn't we just do increment the UI iterator earlier and erase the + // use? + return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, + MaxElements); + } + + // Ensure that all of the indices are constants. + for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); + i != e; ++i) + if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) + Operands.push_back(C->getSExtValue()); + else + return false; // Not a constant operand GEP! + + // Ensure that the only users of the GEP are load instructions. + for (User *GEPU : GEP->users()) + if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { + // Don't hack volatile/atomic loads + if (!LI->isSimple()) return false; + Loads.push_back(LI); + } else { + // Other uses than load? + return false; + } + } else { + return false; // Not a load or a GEP. + } + + // Now, see if it is safe to promote this load / loads of this GEP. Loading + // is safe if Operands, or a prefix of Operands, is marked as safe. + if (!PrefixIn(Operands, SafeToUnconditionallyLoad)) + return false; + + // See if we are already promoting a load with these indices. If not, check + // to make sure that we aren't promoting too many elements. If so, nothing + // to do. + if (ToPromote.find(Operands) == ToPromote.end()) { + if (MaxElements > 0 && ToPromote.size() == MaxElements) { + DEBUG(dbgs() << "argpromotion not promoting argument '" + << Arg->getName() << "' because it would require adding more " + << "than " << MaxElements << " arguments to the function.\n"); + // We limit aggregate promotion to only promoting up to a fixed number + // of elements of the aggregate. + return false; + } + ToPromote.insert(std::move(Operands)); + } + } + + if (Loads.empty()) return true; // No users, this is a dead argument. + + // Okay, now we know that the argument is only used by load instructions and + // it is safe to unconditionally perform all of them. Use alias analysis to + // check to see if the pointer is guaranteed to not be modified from entry of + // the function to each of the load instructions. + + // Because there could be several/many load instructions, remember which + // blocks we know to be transparent to the load. + df_iterator_default_set<BasicBlock*, 16> TranspBlocks; + + for (LoadInst *Load : Loads) { + // Check to see if the load is invalidated from the start of the block to + // the load itself. + BasicBlock *BB = Load->getParent(); + + MemoryLocation Loc = MemoryLocation::get(Load); + if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod)) + return false; // Pointer is invalidated! + + // Now check every path from the entry block to the load for transparency. + // To do this, we perform a depth first search on the inverse CFG from the + // loading block. + for (BasicBlock *P : predecessors(BB)) { + for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) + if (AAR.canBasicBlockModify(*TranspBB, Loc)) + return false; + } + } + + // If the path from the entry of the function to each load is free of + // instructions that potentially invalidate the load, we can make the + // transformation! + return true; +} + + +/// \brief Checks if a type could have padding bytes. +static bool isDenselyPacked(Type *type, const DataLayout &DL) { + + // There is no size information, so be conservative. + if (!type->isSized()) + return false; + + // If the alloc size is not equal to the storage size, then there are padding + // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. + if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) + return false; + + if (!isa<CompositeType>(type)) + return true; + + // For homogenous sequential types, check for padding within members. + if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) + return isDenselyPacked(seqTy->getElementType(), DL); + + // Check for padding within and between elements of a struct. + StructType *StructTy = cast<StructType>(type); + const StructLayout *Layout = DL.getStructLayout(StructTy); + uint64_t StartPos = 0; + for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { + Type *ElTy = StructTy->getElementType(i); + if (!isDenselyPacked(ElTy, DL)) + return false; + if (StartPos != Layout->getElementOffsetInBits(i)) + return false; + StartPos += DL.getTypeAllocSizeInBits(ElTy); + } + + return true; +} + +/// \brief Checks if the padding bytes of an argument could be accessed. +static bool canPaddingBeAccessed(Argument *arg) { + + assert(arg->hasByValAttr()); + + // Track all the pointers to the argument to make sure they are not captured. + SmallPtrSet<Value *, 16> PtrValues; + PtrValues.insert(arg); + + // Track all of the stores. + SmallVector<StoreInst *, 16> Stores; + + // Scan through the uses recursively to make sure the pointer is always used + // sanely. + SmallVector<Value *, 16> WorkList; + WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); + while (!WorkList.empty()) { + Value *V = WorkList.back(); + WorkList.pop_back(); + if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { + if (PtrValues.insert(V).second) + WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); + } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { + Stores.push_back(Store); + } else if (!isa<LoadInst>(V)) { + return true; + } + } + +// Check to make sure the pointers aren't captured + for (StoreInst *Store : Stores) + if (PtrValues.count(Store->getValueOperand())) + return true; + + return false; +} + +/// PromoteArguments - This method checks the specified function to see if there +/// are any promotable arguments and if it is safe to promote the function (for +/// example, all callers are direct). If safe to promote some arguments, it +/// calls the DoPromotion method. +/// +static CallGraphNode * +PromoteArguments(CallGraphNode *CGN, CallGraph &CG, + function_ref<AAResults &(Function &F)> AARGetter, + unsigned MaxElements) { + Function *F = CGN->getFunction(); + + // Make sure that it is local to this module. + if (!F || !F->hasLocalLinkage()) return nullptr; + + // Don't promote arguments for variadic functions. Adding, removing, or + // changing non-pack parameters can change the classification of pack + // parameters. Frontends encode that classification at the call site in the + // IR, while in the callee the classification is determined dynamically based + // on the number of registers consumed so far. + if (F->isVarArg()) return nullptr; + + // First check: see if there are any pointer arguments! If not, quick exit. + SmallVector<Argument*, 16> PointerArgs; + for (Argument &I : F->args()) + if (I.getType()->isPointerTy()) + PointerArgs.push_back(&I); + if (PointerArgs.empty()) return nullptr; + + // Second check: make sure that all callers are direct callers. We can't + // transform functions that have indirect callers. Also see if the function + // is self-recursive. + bool isSelfRecursive = false; + for (Use &U : F->uses()) { + CallSite CS(U.getUser()); + // Must be a direct call. + if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr; + + if (CS.getInstruction()->getParent()->getParent() == F) + isSelfRecursive = true; + } + + const DataLayout &DL = F->getParent()->getDataLayout(); + + AAResults &AAR = AARGetter(*F); + + // Check to see which arguments are promotable. If an argument is promotable, + // add it to ArgsToPromote. + SmallPtrSet<Argument*, 8> ArgsToPromote; + SmallPtrSet<Argument*, 8> ByValArgsToTransform; + for (Argument *PtrArg : PointerArgs) { + Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); + + // Replace sret attribute with noalias. This reduces register pressure by + // avoiding a register copy. + if (PtrArg->hasStructRetAttr()) { + unsigned ArgNo = PtrArg->getArgNo(); + F->setAttributes( + F->getAttributes() + .removeAttribute(F->getContext(), ArgNo + 1, Attribute::StructRet) + .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); + for (Use &U : F->uses()) { + CallSite CS(U.getUser()); + CS.setAttributes( + CS.getAttributes() + .removeAttribute(F->getContext(), ArgNo + 1, + Attribute::StructRet) + .addAttribute(F->getContext(), ArgNo + 1, Attribute::NoAlias)); + } + } + + // If this is a byval argument, and if the aggregate type is small, just + // pass the elements, which is always safe, if the passed value is densely + // packed or if we can prove the padding bytes are never accessed. This does + // not apply to inalloca. + bool isSafeToPromote = + PtrArg->hasByValAttr() && + (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); + if (isSafeToPromote) { + if (StructType *STy = dyn_cast<StructType>(AgTy)) { + if (MaxElements > 0 && STy->getNumElements() > MaxElements) { + DEBUG(dbgs() << "argpromotion disable promoting argument '" + << PtrArg->getName() << "' because it would require adding more" + << " than " << MaxElements << " arguments to the function.\n"); + continue; + } + + // If all the elements are single-value types, we can promote it. + bool AllSimple = true; + for (const auto *EltTy : STy->elements()) { + if (!EltTy->isSingleValueType()) { + AllSimple = false; + break; + } + } + + // Safe to transform, don't even bother trying to "promote" it. + // Passing the elements as a scalar will allow sroa to hack on + // the new alloca we introduce. + if (AllSimple) { + ByValArgsToTransform.insert(PtrArg); + continue; + } + } + } + + // If the argument is a recursive type and we're in a recursive + // function, we could end up infinitely peeling the function argument. + if (isSelfRecursive) { + if (StructType *STy = dyn_cast<StructType>(AgTy)) { + bool RecursiveType = false; + for (const auto *EltTy : STy->elements()) { + if (EltTy == PtrArg->getType()) { + RecursiveType = true; + break; + } + } + if (RecursiveType) + continue; + } + } + + // Otherwise, see if we can promote the pointer to its value. + if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, + MaxElements)) + ArgsToPromote.insert(PtrArg); + } + + // No promotable pointer arguments. + if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) + return nullptr; + + return DoPromotion(F, ArgsToPromote, ByValArgsToTransform, CG); +} + +namespace { + /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. + /// + struct ArgPromotion : public CallGraphSCCPass { + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + getAAResultsAnalysisUsage(AU); + CallGraphSCCPass::getAnalysisUsage(AU); + } + + bool runOnSCC(CallGraphSCC &SCC) override; + static char ID; // Pass identification, replacement for typeid + explicit ArgPromotion(unsigned MaxElements = 3) + : CallGraphSCCPass(ID), MaxElements(MaxElements) { + initializeArgPromotionPass(*PassRegistry::getPassRegistry()); + } + + private: + + using llvm::Pass::doInitialization; + bool doInitialization(CallGraph &CG) override; + /// The maximum number of elements to expand, or 0 for unlimited. + unsigned MaxElements; + }; +} + +char ArgPromotion::ID = 0; +INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", + "Promote 'by reference' arguments to scalars", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(ArgPromotion, "argpromotion", + "Promote 'by reference' arguments to scalars", false, false) + +Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { + return new ArgPromotion(MaxElements); +} + +bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { + if (skipSCC(SCC)) + return false; + + // Get the callgraph information that we need to update to reflect our + // changes. + CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); + + // We compute dedicated AA results for each function in the SCC as needed. We + // use a lambda referencing external objects so that they live long enough to + // be queried, but we re-use them each time. + Optional<BasicAAResult> BAR; + Optional<AAResults> AAR; + auto AARGetter = [&](Function &F) -> AAResults & { + BAR.emplace(createLegacyPMBasicAAResult(*this, F)); + AAR.emplace(createLegacyPMAAResults(*this, F, *BAR)); + return *AAR; + }; + + bool Changed = false, LocalChange; + + // Iterate until we stop promoting from this SCC. + do { + LocalChange = false; + // Attempt to promote arguments from all functions in this SCC. + for (CallGraphNode *OldNode : SCC) { + if (CallGraphNode *NewNode = + PromoteArguments(OldNode, CG, AARGetter, MaxElements)) { + LocalChange = true; + SCC.ReplaceNode(OldNode, NewNode); + } + } + // Remember that we changed something. + Changed |= LocalChange; + } while (LocalChange); + + return Changed; +} + bool ArgPromotion::doInitialization(CallGraph &CG) { return CallGraphSCCPass::doInitialization(CG); } |