summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86FloatingPoint.cpp
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2004-07-26 18:43:11 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2004-07-26 18:43:11 +0000
commitbca562404c9225eba5346f9011f4571860ede5e4 (patch)
tree5ff4e0b6ee678c278be665184b70fe90b1de08cc /llvm/lib/Target/X86/X86FloatingPoint.cpp
parent74e3a17958f1153fd4bcfd9e9fa2547e6dd490e5 (diff)
downloadbcm5719-llvm-bca562404c9225eba5346f9011f4571860ede5e4.tar.gz
bcm5719-llvm-bca562404c9225eba5346f9011f4571860ede5e4.zip
Renamed files to have the `X86' prefix for uniqueness purposes.
All CVS history was renamed, the *,v were copied over. No worries. llvm-svn: 15238
Diffstat (limited to 'llvm/lib/Target/X86/X86FloatingPoint.cpp')
-rw-r--r--llvm/lib/Target/X86/X86FloatingPoint.cpp721
1 files changed, 721 insertions, 0 deletions
diff --git a/llvm/lib/Target/X86/X86FloatingPoint.cpp b/llvm/lib/Target/X86/X86FloatingPoint.cpp
new file mode 100644
index 00000000000..fa2632f6fa8
--- /dev/null
+++ b/llvm/lib/Target/X86/X86FloatingPoint.cpp
@@ -0,0 +1,721 @@
+//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass which converts floating point instructions from
+// virtual registers into register stack instructions. This pass uses live
+// variable information to indicate where the FPn registers are used and their
+// lifetimes.
+//
+// This pass is hampered by the lack of decent CFG manipulation routines for
+// machine code. In particular, this wants to be able to split critical edges
+// as necessary, traverse the machine basic block CFG in depth-first order, and
+// allow there to be multiple machine basic blocks for each LLVM basicblock
+// (needed for critical edge splitting).
+//
+// In particular, this pass currently barfs on critical edges. Because of this,
+// it requires the instruction selector to insert FP_REG_KILL instructions on
+// the exits of any basic block that has critical edges going from it, or which
+// branch to a critical basic block.
+//
+// FIXME: this is not implemented yet. The stackifier pass only works on local
+// basic blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "fp"
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "Support/Debug.h"
+#include "Support/DepthFirstIterator.h"
+#include "Support/Statistic.h"
+#include "Support/STLExtras.h"
+#include <algorithm>
+#include <set>
+using namespace llvm;
+
+namespace {
+ Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
+ Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
+
+ struct FPS : public MachineFunctionPass {
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual const char *getPassName() const { return "X86 FP Stackifier"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<LiveVariables>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ private:
+ LiveVariables *LV; // Live variable info for current function...
+ MachineBasicBlock *MBB; // Current basic block
+ unsigned Stack[8]; // FP<n> Registers in each stack slot...
+ unsigned RegMap[8]; // Track which stack slot contains each register
+ unsigned StackTop; // The current top of the FP stack.
+
+ void dumpStack() const {
+ std::cerr << "Stack contents:";
+ for (unsigned i = 0; i != StackTop; ++i) {
+ std::cerr << " FP" << Stack[i];
+ assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
+ }
+ std::cerr << "\n";
+ }
+ private:
+ // getSlot - Return the stack slot number a particular register number is
+ // in...
+ unsigned getSlot(unsigned RegNo) const {
+ assert(RegNo < 8 && "Regno out of range!");
+ return RegMap[RegNo];
+ }
+
+ // getStackEntry - Return the X86::FP<n> register in register ST(i)
+ unsigned getStackEntry(unsigned STi) const {
+ assert(STi < StackTop && "Access past stack top!");
+ return Stack[StackTop-1-STi];
+ }
+
+ // getSTReg - Return the X86::ST(i) register which contains the specified
+ // FP<RegNo> register
+ unsigned getSTReg(unsigned RegNo) const {
+ return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
+ }
+
+ // pushReg - Push the specified FP<n> register onto the stack
+ void pushReg(unsigned Reg) {
+ assert(Reg < 8 && "Register number out of range!");
+ assert(StackTop < 8 && "Stack overflow!");
+ Stack[StackTop] = Reg;
+ RegMap[Reg] = StackTop++;
+ }
+
+ bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
+ void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
+ if (!isAtTop(RegNo)) {
+ unsigned Slot = getSlot(RegNo);
+ unsigned STReg = getSTReg(RegNo);
+ unsigned RegOnTop = getStackEntry(0);
+
+ // Swap the slots the regs are in
+ std::swap(RegMap[RegNo], RegMap[RegOnTop]);
+
+ // Swap stack slot contents
+ assert(RegMap[RegOnTop] < StackTop);
+ std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
+
+ // Emit an fxch to update the runtime processors version of the state
+ BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
+ NumFXCH++;
+ }
+ }
+
+ void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
+ unsigned STReg = getSTReg(RegNo);
+ pushReg(AsReg); // New register on top of stack
+
+ BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
+ }
+
+ // popStackAfter - Pop the current value off of the top of the FP stack
+ // after the specified instruction.
+ void popStackAfter(MachineBasicBlock::iterator &I);
+
+ // freeStackSlotAfter - Free the specified register from the register stack,
+ // so that it is no longer in a register. If the register is currently at
+ // the top of the stack, we just pop the current instruction, otherwise we
+ // store the current top-of-stack into the specified slot, then pop the top
+ // of stack.
+ void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
+
+ bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
+
+ void handleZeroArgFP(MachineBasicBlock::iterator &I);
+ void handleOneArgFP(MachineBasicBlock::iterator &I);
+ void handleOneArgFPRW(MachineBasicBlock::iterator &I);
+ void handleTwoArgFP(MachineBasicBlock::iterator &I);
+ void handleCompareFP(MachineBasicBlock::iterator &I);
+ void handleCondMovFP(MachineBasicBlock::iterator &I);
+ void handleSpecialFP(MachineBasicBlock::iterator &I);
+ };
+}
+
+FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
+
+/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
+/// register references into FP stack references.
+///
+bool FPS::runOnMachineFunction(MachineFunction &MF) {
+ LV = &getAnalysis<LiveVariables>();
+ StackTop = 0;
+
+ // Process the function in depth first order so that we process at least one
+ // of the predecessors for every reachable block in the function.
+ std::set<MachineBasicBlock*> Processed;
+ MachineBasicBlock *Entry = MF.begin();
+
+ bool Changed = false;
+ for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
+ I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
+ I != E; ++I)
+ Changed |= processBasicBlock(MF, **I);
+
+ return Changed;
+}
+
+/// processBasicBlock - Loop over all of the instructions in the basic block,
+/// transforming FP instructions into their stack form.
+///
+bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
+ const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
+ bool Changed = false;
+ MBB = &BB;
+
+ for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
+ MachineInstr *MI = I;
+ unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
+ if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
+ continue; // Efficiently ignore non-fp insts!
+
+ MachineInstr *PrevMI = 0;
+ if (I != BB.begin())
+ PrevMI = prior(I);
+
+ ++NumFP; // Keep track of # of pseudo instrs
+ DEBUG(std::cerr << "\nFPInst:\t";
+ MI->print(std::cerr, &(MF.getTarget())));
+
+ // Get dead variables list now because the MI pointer may be deleted as part
+ // of processing!
+ LiveVariables::killed_iterator IB = LV->dead_begin(MI);
+ LiveVariables::killed_iterator IE = LV->dead_end(MI);
+
+ DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
+ LiveVariables::killed_iterator I = LV->killed_begin(MI);
+ LiveVariables::killed_iterator E = LV->killed_end(MI);
+ if (I != E) {
+ std::cerr << "Killed Operands:";
+ for (; I != E; ++I)
+ std::cerr << " %" << MRI->getName(I->second);
+ std::cerr << "\n";
+ });
+
+ switch (Flags & X86II::FPTypeMask) {
+ case X86II::ZeroArgFP: handleZeroArgFP(I); break;
+ case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
+ case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
+ case X86II::TwoArgFP: handleTwoArgFP(I); break;
+ case X86II::CompareFP: handleCompareFP(I); break;
+ case X86II::CondMovFP: handleCondMovFP(I); break;
+ case X86II::SpecialFP: handleSpecialFP(I); break;
+ default: assert(0 && "Unknown FP Type!");
+ }
+
+ // Check to see if any of the values defined by this instruction are dead
+ // after definition. If so, pop them.
+ for (; IB != IE; ++IB) {
+ unsigned Reg = IB->second;
+ if (Reg >= X86::FP0 && Reg <= X86::FP6) {
+ DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
+ freeStackSlotAfter(I, Reg-X86::FP0);
+ }
+ }
+
+ // Print out all of the instructions expanded to if -debug
+ DEBUG(
+ MachineBasicBlock::iterator PrevI(PrevMI);
+ if (I == PrevI) {
+ std::cerr << "Just deleted pseudo instruction\n";
+ } else {
+ MachineBasicBlock::iterator Start = I;
+ // Rewind to first instruction newly inserted.
+ while (Start != BB.begin() && prior(Start) != PrevI) --Start;
+ std::cerr << "Inserted instructions:\n\t";
+ Start->print(std::cerr, &MF.getTarget());
+ while (++Start != next(I));
+ }
+ dumpStack();
+ );
+
+ Changed = true;
+ }
+
+ assert(StackTop == 0 && "Stack not empty at end of basic block?");
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Efficient Lookup Table Support
+//===----------------------------------------------------------------------===//
+
+namespace {
+ struct TableEntry {
+ unsigned from;
+ unsigned to;
+ bool operator<(const TableEntry &TE) const { return from < TE.from; }
+ bool operator<(unsigned V) const { return from < V; }
+ };
+}
+
+static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
+ for (unsigned i = 0; i != NumEntries-1; ++i)
+ if (!(Table[i] < Table[i+1])) return false;
+ return true;
+}
+
+static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
+ const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
+ if (I != Table+N && I->from == Opcode)
+ return I->to;
+ return -1;
+}
+
+#define ARRAY_SIZE(TABLE) \
+ (sizeof(TABLE)/sizeof(TABLE[0]))
+
+#ifdef NDEBUG
+#define ASSERT_SORTED(TABLE)
+#else
+#define ASSERT_SORTED(TABLE) \
+ { static bool TABLE##Checked = false; \
+ if (!TABLE##Checked) \
+ assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
+ "All lookup tables must be sorted for efficient access!"); \
+ }
+#endif
+
+
+//===----------------------------------------------------------------------===//
+// Helper Methods
+//===----------------------------------------------------------------------===//
+
+// PopTable - Sorted map of instructions to their popping version. The first
+// element is an instruction, the second is the version which pops.
+//
+static const TableEntry PopTable[] = {
+ { X86::FADDrST0 , X86::FADDPrST0 },
+
+ { X86::FDIVRrST0, X86::FDIVRPrST0 },
+ { X86::FDIVrST0 , X86::FDIVPrST0 },
+
+ { X86::FIST16m , X86::FISTP16m },
+ { X86::FIST32m , X86::FISTP32m },
+
+ { X86::FMULrST0 , X86::FMULPrST0 },
+
+ { X86::FST32m , X86::FSTP32m },
+ { X86::FST64m , X86::FSTP64m },
+ { X86::FSTrr , X86::FSTPrr },
+
+ { X86::FSUBRrST0, X86::FSUBRPrST0 },
+ { X86::FSUBrST0 , X86::FSUBPrST0 },
+
+ { X86::FUCOMIr , X86::FUCOMIPr },
+
+ { X86::FUCOMPr , X86::FUCOMPPr },
+ { X86::FUCOMr , X86::FUCOMPr },
+};
+
+/// popStackAfter - Pop the current value off of the top of the FP stack after
+/// the specified instruction. This attempts to be sneaky and combine the pop
+/// into the instruction itself if possible. The iterator is left pointing to
+/// the last instruction, be it a new pop instruction inserted, or the old
+/// instruction if it was modified in place.
+///
+void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(PopTable);
+ assert(StackTop > 0 && "Cannot pop empty stack!");
+ RegMap[Stack[--StackTop]] = ~0; // Update state
+
+ // Check to see if there is a popping version of this instruction...
+ int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
+ if (Opcode != -1) {
+ I->setOpcode(Opcode);
+ if (Opcode == X86::FUCOMPPr)
+ I->RemoveOperand(0);
+
+ } else { // Insert an explicit pop
+ I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
+ }
+}
+
+/// freeStackSlotAfter - Free the specified register from the register stack, so
+/// that it is no longer in a register. If the register is currently at the top
+/// of the stack, we just pop the current instruction, otherwise we store the
+/// current top-of-stack into the specified slot, then pop the top of stack.
+void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
+ if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
+ popStackAfter(I);
+ return;
+ }
+
+ // Otherwise, store the top of stack into the dead slot, killing the operand
+ // without having to add in an explicit xchg then pop.
+ //
+ unsigned STReg = getSTReg(FPRegNo);
+ unsigned OldSlot = getSlot(FPRegNo);
+ unsigned TopReg = Stack[StackTop-1];
+ Stack[OldSlot] = TopReg;
+ RegMap[TopReg] = OldSlot;
+ RegMap[FPRegNo] = ~0;
+ Stack[--StackTop] = ~0;
+ I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
+}
+
+
+static unsigned getFPReg(const MachineOperand &MO) {
+ assert(MO.isRegister() && "Expected an FP register!");
+ unsigned Reg = MO.getReg();
+ assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
+ return Reg - X86::FP0;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Instruction transformation implementation
+//===----------------------------------------------------------------------===//
+
+/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
+///
+void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ unsigned DestReg = getFPReg(MI->getOperand(0));
+ MI->RemoveOperand(0); // Remove the explicit ST(0) operand
+
+ // Result gets pushed on the stack...
+ pushReg(DestReg);
+}
+
+/// handleOneArgFP - fst <mem>, ST(0)
+///
+void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
+ "Can only handle fst* & ftst instructions!");
+
+ // Is this the last use of the source register?
+ unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
+ bool KillsSrc = false;
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI)
+ KillsSrc |= KI->second == X86::FP0+Reg;
+
+ // FSTP80r and FISTP64r are strange because there are no non-popping versions.
+ // If we have one _and_ we don't want to pop the operand, duplicate the value
+ // on the stack instead of moving it. This ensure that popping the value is
+ // always ok.
+ //
+ if ((MI->getOpcode() == X86::FSTP80m ||
+ MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
+ duplicateToTop(Reg, 7 /*temp register*/, I);
+ } else {
+ moveToTop(Reg, I); // Move to the top of the stack...
+ }
+ MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand
+
+ if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
+ assert(StackTop > 0 && "Stack empty??");
+ --StackTop;
+ } else if (KillsSrc) { // Last use of operand?
+ popStackAfter(I);
+ }
+}
+
+
+/// handleOneArgFPRW: Handle instructions that read from the top of stack and
+/// replace the value with a newly computed value. These instructions may have
+/// non-fp operands after their FP operands.
+///
+/// Examples:
+/// R1 = fchs R2
+/// R1 = fadd R2, [mem]
+///
+void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
+
+ // Is this the last use of the source register?
+ unsigned Reg = getFPReg(MI->getOperand(1));
+ bool KillsSrc = false;
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI)
+ KillsSrc |= KI->second == X86::FP0+Reg;
+
+ if (KillsSrc) {
+ // If this is the last use of the source register, just make sure it's on
+ // the top of the stack.
+ moveToTop(Reg, I);
+ assert(StackTop > 0 && "Stack cannot be empty!");
+ --StackTop;
+ pushReg(getFPReg(MI->getOperand(0)));
+ } else {
+ // If this is not the last use of the source register, _copy_ it to the top
+ // of the stack.
+ duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
+ }
+
+ MI->RemoveOperand(1); // Drop the source operand.
+ MI->RemoveOperand(0); // Drop the destination operand.
+}
+
+
+//===----------------------------------------------------------------------===//
+// Define tables of various ways to map pseudo instructions
+//
+
+// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
+static const TableEntry ForwardST0Table[] = {
+ { X86::FpADD , X86::FADDST0r },
+ { X86::FpDIV , X86::FDIVST0r },
+ { X86::FpMUL , X86::FMULST0r },
+ { X86::FpSUB , X86::FSUBST0r },
+};
+
+// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
+static const TableEntry ReverseST0Table[] = {
+ { X86::FpADD , X86::FADDST0r }, // commutative
+ { X86::FpDIV , X86::FDIVRST0r },
+ { X86::FpMUL , X86::FMULST0r }, // commutative
+ { X86::FpSUB , X86::FSUBRST0r },
+};
+
+// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
+static const TableEntry ForwardSTiTable[] = {
+ { X86::FpADD , X86::FADDrST0 }, // commutative
+ { X86::FpDIV , X86::FDIVRrST0 },
+ { X86::FpMUL , X86::FMULrST0 }, // commutative
+ { X86::FpSUB , X86::FSUBRrST0 },
+};
+
+// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
+static const TableEntry ReverseSTiTable[] = {
+ { X86::FpADD , X86::FADDrST0 },
+ { X86::FpDIV , X86::FDIVrST0 },
+ { X86::FpMUL , X86::FMULrST0 },
+ { X86::FpSUB , X86::FSUBrST0 },
+};
+
+
+/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
+/// instructions which need to be simplified and possibly transformed.
+///
+/// Result: ST(0) = fsub ST(0), ST(i)
+/// ST(i) = fsub ST(0), ST(i)
+/// ST(0) = fsubr ST(0), ST(i)
+/// ST(i) = fsubr ST(0), ST(i)
+///
+void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
+ ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
+ MachineInstr *MI = I;
+
+ unsigned NumOperands = MI->getNumOperands();
+ assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
+ unsigned Dest = getFPReg(MI->getOperand(0));
+ unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
+ unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
+ bool KillsOp0 = false, KillsOp1 = false;
+
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI) {
+ KillsOp0 |= (KI->second == X86::FP0+Op0);
+ KillsOp1 |= (KI->second == X86::FP0+Op1);
+ }
+
+ unsigned TOS = getStackEntry(0);
+
+ // One of our operands must be on the top of the stack. If neither is yet, we
+ // need to move one.
+ if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
+ // We can choose to move either operand to the top of the stack. If one of
+ // the operands is killed by this instruction, we want that one so that we
+ // can update right on top of the old version.
+ if (KillsOp0) {
+ moveToTop(Op0, I); // Move dead operand to TOS.
+ TOS = Op0;
+ } else if (KillsOp1) {
+ moveToTop(Op1, I);
+ TOS = Op1;
+ } else {
+ // All of the operands are live after this instruction executes, so we
+ // cannot update on top of any operand. Because of this, we must
+ // duplicate one of the stack elements to the top. It doesn't matter
+ // which one we pick.
+ //
+ duplicateToTop(Op0, Dest, I);
+ Op0 = TOS = Dest;
+ KillsOp0 = true;
+ }
+ } else if (!KillsOp0 && !KillsOp1) {
+ // If we DO have one of our operands at the top of the stack, but we don't
+ // have a dead operand, we must duplicate one of the operands to a new slot
+ // on the stack.
+ duplicateToTop(Op0, Dest, I);
+ Op0 = TOS = Dest;
+ KillsOp0 = true;
+ }
+
+ // Now we know that one of our operands is on the top of the stack, and at
+ // least one of our operands is killed by this instruction.
+ assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
+ "Stack conditions not set up right!");
+
+ // We decide which form to use based on what is on the top of the stack, and
+ // which operand is killed by this instruction.
+ const TableEntry *InstTable;
+ bool isForward = TOS == Op0;
+ bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
+ if (updateST0) {
+ if (isForward)
+ InstTable = ForwardST0Table;
+ else
+ InstTable = ReverseST0Table;
+ } else {
+ if (isForward)
+ InstTable = ForwardSTiTable;
+ else
+ InstTable = ReverseSTiTable;
+ }
+
+ int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
+ assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
+
+ // NotTOS - The register which is not on the top of stack...
+ unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
+
+ // Replace the old instruction with a new instruction
+ MBB->remove(I++);
+ I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
+
+ // If both operands are killed, pop one off of the stack in addition to
+ // overwriting the other one.
+ if (KillsOp0 && KillsOp1 && Op0 != Op1) {
+ assert(!updateST0 && "Should have updated other operand!");
+ popStackAfter(I); // Pop the top of stack
+ }
+
+ // Update stack information so that we know the destination register is now on
+ // the stack.
+ unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
+ assert(UpdatedSlot < StackTop && Dest < 7);
+ Stack[UpdatedSlot] = Dest;
+ RegMap[Dest] = UpdatedSlot;
+ delete MI; // Remove the old instruction
+}
+
+/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
+/// register arguments and no explicit destinations.
+///
+void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
+ ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
+ ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
+ MachineInstr *MI = I;
+
+ unsigned NumOperands = MI->getNumOperands();
+ assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
+ unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
+ unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
+ bool KillsOp0 = false, KillsOp1 = false;
+
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI) {
+ KillsOp0 |= (KI->second == X86::FP0+Op0);
+ KillsOp1 |= (KI->second == X86::FP0+Op1);
+ }
+
+ // Make sure the first operand is on the top of stack, the other one can be
+ // anywhere.
+ moveToTop(Op0, I);
+
+ MI->getOperand(0).setReg(getSTReg(Op1));
+ MI->RemoveOperand(1);
+
+ // If any of the operands are killed by this instruction, free them.
+ if (KillsOp0) freeStackSlotAfter(I, Op0);
+ if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
+}
+
+/// handleCondMovFP - Handle two address conditional move instructions. These
+/// instructions move a st(i) register to st(0) iff a condition is true. These
+/// instructions require that the first operand is at the top of the stack, but
+/// otherwise don't modify the stack at all.
+void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+
+ unsigned Op0 = getFPReg(MI->getOperand(0));
+ unsigned Op1 = getFPReg(MI->getOperand(1));
+
+ // The first operand *must* be on the top of the stack.
+ moveToTop(Op0, I);
+
+ // Change the second operand to the stack register that the operand is in.
+ MI->RemoveOperand(0);
+ MI->getOperand(0).setReg(getSTReg(Op1));
+
+ // If we kill the second operand, make sure to pop it from the stack.
+ if (Op0 != Op1)
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI)
+ if (KI->second == X86::FP0+Op1) {
+ // Get this value off of the register stack.
+ freeStackSlotAfter(I, Op1);
+ break;
+ }
+}
+
+
+/// handleSpecialFP - Handle special instructions which behave unlike other
+/// floating point instructions. This is primarily intended for use by pseudo
+/// instructions.
+///
+void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
+ MachineInstr *MI = I;
+ switch (MI->getOpcode()) {
+ default: assert(0 && "Unknown SpecialFP instruction!");
+ case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
+ assert(StackTop == 0 && "Stack should be empty after a call!");
+ pushReg(getFPReg(MI->getOperand(0)));
+ break;
+ case X86::FpSETRESULT:
+ assert(StackTop == 1 && "Stack should have one element on it to return!");
+ --StackTop; // "Forget" we have something on the top of stack!
+ break;
+ case X86::FpMOV: {
+ unsigned SrcReg = getFPReg(MI->getOperand(1));
+ unsigned DestReg = getFPReg(MI->getOperand(0));
+ bool KillsSrc = false;
+ for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
+ E = LV->killed_end(MI); KI != E; ++KI)
+ KillsSrc |= KI->second == X86::FP0+SrcReg;
+
+ if (KillsSrc) {
+ // If the input operand is killed, we can just change the owner of the
+ // incoming stack slot into the result.
+ unsigned Slot = getSlot(SrcReg);
+ assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
+ Stack[Slot] = DestReg;
+ RegMap[DestReg] = Slot;
+
+ } else {
+ // For FMOV we just duplicate the specified value to a new stack slot.
+ // This could be made better, but would require substantial changes.
+ duplicateToTop(SrcReg, DestReg, I);
+ }
+ break;
+ }
+ }
+
+ I = MBB->erase(I); // Remove the pseudo instruction
+ --I;
+}
OpenPOWER on IntegriCloud