diff options
author | Brian Gaeke <gaeke@uiuc.edu> | 2004-02-25 18:44:15 +0000 |
---|---|---|
committer | Brian Gaeke <gaeke@uiuc.edu> | 2004-02-25 18:44:15 +0000 |
commit | 94e95d2b3eaaf3404b9306c7f402a26beb18c9c4 (patch) | |
tree | 01a3a8922d75ff482e96b9905550c37715f16674 /llvm/lib/Target/Sparc/SparcInstrInfo.cpp | |
parent | 864c9014443c716da8851661d8e26c11b16bcca4 (diff) | |
download | bcm5719-llvm-94e95d2b3eaaf3404b9306c7f402a26beb18c9c4.tar.gz bcm5719-llvm-94e95d2b3eaaf3404b9306c7f402a26beb18c9c4.zip |
Great renaming: Sparc --> SparcV9
llvm-svn: 11826
Diffstat (limited to 'llvm/lib/Target/Sparc/SparcInstrInfo.cpp')
-rw-r--r-- | llvm/lib/Target/Sparc/SparcInstrInfo.cpp | 799 |
1 files changed, 0 insertions, 799 deletions
diff --git a/llvm/lib/Target/Sparc/SparcInstrInfo.cpp b/llvm/lib/Target/Sparc/SparcInstrInfo.cpp deleted file mode 100644 index af458ea0399..00000000000 --- a/llvm/lib/Target/Sparc/SparcInstrInfo.cpp +++ /dev/null @@ -1,799 +0,0 @@ -//===-- SparcInstrInfo.cpp ------------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -//===----------------------------------------------------------------------===// - -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/iTerminators.h" -#include "llvm/CodeGen/InstrSelection.h" -#include "llvm/CodeGen/InstrSelectionSupport.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionInfo.h" -#include "llvm/CodeGen/MachineCodeForInstruction.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "SparcInternals.h" -#include "SparcInstrSelectionSupport.h" -#include "SparcInstrInfo.h" - -namespace llvm { - -static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*) -static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR - -//--------------------------------------------------------------------------- -// Function ConvertConstantToIntType -// -// Function to get the value of an integral constant in the form -// that must be put into the machine register. The specified constant is -// interpreted as (i.e., converted if necessary to) the specified destination -// type. The result is always returned as an uint64_t, since the representation -// of int64_t and uint64_t are identical. The argument can be any known const. -// -// isValidConstant is set to true if a valid constant was found. -//--------------------------------------------------------------------------- - -uint64_t -SparcInstrInfo::ConvertConstantToIntType(const TargetMachine &target, - const Value *V, - const Type *destType, - bool &isValidConstant) const -{ - isValidConstant = false; - uint64_t C = 0; - - if (! destType->isIntegral() && ! isa<PointerType>(destType)) - return C; - - if (! isa<Constant>(V)) - return C; - - // ConstantPointerRef: no conversions needed: get value and return it - if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(V)) { - // A ConstantPointerRef is just a reference to GlobalValue. - isValidConstant = true; // may be overwritten by recursive call - return (CPR->isNullValue()? 0 - : ConvertConstantToIntType(target, CPR->getValue(), destType, - isValidConstant)); - } - - // ConstantBool: no conversions needed: get value and return it - if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) { - isValidConstant = true; - return (uint64_t) CB->getValue(); - } - - // For other types of constants, some conversion may be needed. - // First, extract the constant operand according to its own type - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) - switch(CE->getOpcode()) { - case Instruction::Cast: // recursively get the value as cast - C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(), - isValidConstant); - break; - default: // not simplifying other ConstantExprs - break; - } - else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { - isValidConstant = true; - C = CI->getRawValue(); - } - else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { - isValidConstant = true; - double fC = CFP->getValue(); - C = (destType->isSigned()? (uint64_t) (int64_t) fC - : (uint64_t) fC); - } - - // Now if a valid value was found, convert it to destType. - if (isValidConstant) { - unsigned opSize = target.getTargetData().getTypeSize(V->getType()); - unsigned destSize = target.getTargetData().getTypeSize(destType); - uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0; - assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected"); - - if (destType->isSigned()) { - if (opSize > destSize) // operand is larger than dest: - C = C & maskHi; // mask high bits - - if (opSize > destSize || - (opSize == destSize && ! V->getType()->isSigned())) - if (C & (1U << (8*destSize - 1))) - C = C | ~maskHi; // sign-extend from destSize to 64 bits - } - else { - if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) { - // operand is larger than dest, - // OR both are equal but smaller than the full register size - // AND operand is signed, so it may have extra sign bits: - // mask high bits - C = C & maskHi; - } - } - } - - return C; -} - - -//---------------------------------------------------------------------------- -// Function: CreateSETUWConst -// -// Set a 32-bit unsigned constant in the register `dest', using -// SETHI, OR in the worst case. This function correctly emulates -// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). -// -// The isSigned=true case is used to implement SETSW without duplicating code. -// -// Optimize some common cases: -// (1) Small value that fits in simm13 field of OR: don't need SETHI. -// (2) isSigned = true and C is a small negative signed value, i.e., -// high bits are 1, and the remaining bits fit in simm13(OR). -//---------------------------------------------------------------------------- - -static inline void -CreateSETUWConst(const TargetMachine& target, uint32_t C, - Instruction* dest, std::vector<MachineInstr*>& mvec, - bool isSigned = false) -{ - MachineInstr *miSETHI = NULL, *miOR = NULL; - - // In order to get efficient code, we should not generate the SETHI if - // all high bits are 1 (i.e., this is a small signed value that fits in - // the simm13 field of OR). So we check for and handle that case specially. - // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0. - // In fact, sC == -sC, so we have to check for this explicitly. - int32_t sC = (int32_t) C; - bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM; - - // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough - if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) { - miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest); - miSETHI->setOperandHi32(0); - mvec.push_back(miSETHI); - } - - // Set the low 10 or 12 bits in dest. This is necessary if no SETHI - // was generated, or if the low 10 bits are non-zero. - if (miSETHI==NULL || C & MAXLO) { - if (miSETHI) { - // unsigned value with high-order bits set using SETHI - miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest); - miOR->setOperandLo32(1); - } else { - // unsigned or small signed value that fits in simm13 field of OR - assert(smallNegValue || (C & ~MAXSIMM) == 0); - miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo() - .getZeroRegNum()) - .addSImm(sC).addRegDef(dest); - } - mvec.push_back(miOR); - } - - assert((miSETHI || miOR) && "Oops, no code was generated!"); -} - - -//---------------------------------------------------------------------------- -// Function: CreateSETSWConst -// -// Set a 32-bit signed constant in the register `dest', with sign-extension -// to 64 bits. This uses SETHI, OR, SRA in the worst case. -// This function correctly emulates the SETSW pseudo-op for SPARC v9. -// -// Optimize the same cases as SETUWConst, plus: -// (1) SRA is not needed for positive or small negative values. -//---------------------------------------------------------------------------- - -static inline void -CreateSETSWConst(const TargetMachine& target, int32_t C, - Instruction* dest, std::vector<MachineInstr*>& mvec) -{ - // Set the low 32 bits of dest - CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true); - - // Sign-extend to the high 32 bits if needed. - // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM - if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM)) - mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest)); -} - - -//---------------------------------------------------------------------------- -// Function: CreateSETXConst -// -// Set a 64-bit signed or unsigned constant in the register `dest'. -// Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between. -// This function correctly emulates the SETX pseudo-op for SPARC v9. -// -// Optimize the same cases as SETUWConst for each 32 bit word. -//---------------------------------------------------------------------------- - -static inline void -CreateSETXConst(const TargetMachine& target, uint64_t C, - Instruction* tmpReg, Instruction* dest, - std::vector<MachineInstr*>& mvec) -{ - assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!"); - - MachineInstr* MI; - - // Code to set the upper 32 bits of the value in register `tmpReg' - CreateSETUWConst(target, (C >> 32), tmpReg, mvec); - - // Shift tmpReg left by 32 bits - mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) - .addRegDef(tmpReg)); - - // Code to set the low 32 bits of the value in register `dest' - CreateSETUWConst(target, C, dest, mvec); - - // dest = OR(tmpReg, dest) - mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest)); -} - - -//---------------------------------------------------------------------------- -// Function: CreateSETUWLabel -// -// Set a 32-bit constant (given by a symbolic label) in the register `dest'. -//---------------------------------------------------------------------------- - -static inline void -CreateSETUWLabel(const TargetMachine& target, Value* val, - Instruction* dest, std::vector<MachineInstr*>& mvec) -{ - MachineInstr* MI; - - // Set the high 22 bits in dest - MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest); - MI->setOperandHi32(0); - mvec.push_back(MI); - - // Set the low 10 bits in dest - MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest); - MI->setOperandLo32(1); - mvec.push_back(MI); -} - - -//---------------------------------------------------------------------------- -// Function: CreateSETXLabel -// -// Set a 64-bit constant (given by a symbolic label) in the register `dest'. -//---------------------------------------------------------------------------- - -static inline void -CreateSETXLabel(const TargetMachine& target, - Value* val, Instruction* tmpReg, Instruction* dest, - std::vector<MachineInstr*>& mvec) -{ - assert(isa<Constant>(val) || isa<GlobalValue>(val) && - "I only know about constant values and global addresses"); - - MachineInstr* MI; - - MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg); - MI->setOperandHi64(0); - mvec.push_back(MI); - - MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg); - MI->setOperandLo64(1); - mvec.push_back(MI); - - mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) - .addRegDef(tmpReg)); - MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest); - MI->setOperandHi32(0); - mvec.push_back(MI); - - MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest); - mvec.push_back(MI); - - MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest); - MI->setOperandLo32(1); - mvec.push_back(MI); -} - - -//---------------------------------------------------------------------------- -// Function: CreateUIntSetInstruction -// -// Create code to Set an unsigned constant in the register `dest'. -// Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed. -// CreateSETSWConst is an optimization for the case that the unsigned value -// has all ones in the 33 high bits (so that sign-extension sets them all). -//---------------------------------------------------------------------------- - -static inline void -CreateUIntSetInstruction(const TargetMachine& target, - uint64_t C, Instruction* dest, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - static const uint64_t lo32 = (uint32_t) ~0; - if (C <= lo32) // High 32 bits are 0. Set low 32 bits. - CreateSETUWConst(target, (uint32_t) C, dest, mvec); - else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) { - // All high 33 (not 32) bits are 1s: sign-extension will take care - // of high 32 bits, so use the sequence for signed int - CreateSETSWConst(target, (int32_t) C, dest, mvec); - } else if (C > lo32) { - // C does not fit in 32 bits - TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy); - CreateSETXConst(target, C, tmpReg, dest, mvec); - } -} - - -//---------------------------------------------------------------------------- -// Function: CreateIntSetInstruction -// -// Create code to Set a signed constant in the register `dest'. -// Really the same as CreateUIntSetInstruction. -//---------------------------------------------------------------------------- - -static inline void -CreateIntSetInstruction(const TargetMachine& target, - int64_t C, Instruction* dest, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi); -} - - -//--------------------------------------------------------------------------- -// Create a table of LLVM opcode -> max. immediate constant likely to -// be usable for that operation. -//--------------------------------------------------------------------------- - -// Entry == 0 ==> no immediate constant field exists at all. -// Entry > 0 ==> abs(immediate constant) <= Entry -// -std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd); - -static int -MaxConstantForInstr(unsigned llvmOpCode) -{ - int modelOpCode = -1; - - if (llvmOpCode >= Instruction::BinaryOpsBegin && - llvmOpCode < Instruction::BinaryOpsEnd) - modelOpCode = V9::ADDi; - else - switch(llvmOpCode) { - case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break; - - case Instruction::Malloc: - case Instruction::Alloca: - case Instruction::GetElementPtr: - case Instruction::PHI: - case Instruction::Cast: - case Instruction::Call: modelOpCode = V9::ADDi; break; - - case Instruction::Shl: - case Instruction::Shr: modelOpCode = V9::SLLXi6; break; - - default: break; - }; - - return (modelOpCode < 0)? 0: SparcMachineInstrDesc[modelOpCode].maxImmedConst; -} - -static void -InitializeMaxConstantsTable() -{ - unsigned op; - assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd && - "assignments below will be illegal!"); - for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op) - MaxConstantsTable[op] = MaxConstantForInstr(op); - for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op) - MaxConstantsTable[op] = MaxConstantForInstr(op); - for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op) - MaxConstantsTable[op] = MaxConstantForInstr(op); - for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op) - MaxConstantsTable[op] = MaxConstantForInstr(op); -} - - -//--------------------------------------------------------------------------- -// class SparcInstrInfo -// -// Purpose: -// Information about individual instructions. -// Most information is stored in the SparcMachineInstrDesc array above. -// Other information is computed on demand, and most such functions -// default to member functions in base class TargetInstrInfo. -//--------------------------------------------------------------------------- - -/*ctor*/ -SparcInstrInfo::SparcInstrInfo() - : TargetInstrInfo(SparcMachineInstrDesc, - /*descSize = */ V9::NUM_TOTAL_OPCODES, - /*numRealOpCodes = */ V9::NUM_REAL_OPCODES) -{ - InitializeMaxConstantsTable(); -} - -bool -SparcInstrInfo::ConstantMayNotFitInImmedField(const Constant* CV, - const Instruction* I) const -{ - if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!) - return true; - - if (isa<ConstantPointerNull>(CV)) // can always use %g0 - return false; - - if (isa<SwitchInst>(I)) // Switch instructions will be lowered! - return false; - - if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV)) - return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()]; - - if (isa<ConstantBool>(CV)) - return 1 > MaxConstantsTable[I->getOpcode()]; - - return true; -} - -// -// Create an instruction sequence to put the constant `val' into -// the virtual register `dest'. `val' may be a Constant or a -// GlobalValue, viz., the constant address of a global variable or function. -// The generated instructions are returned in `mvec'. -// Any temp. registers (TmpInstruction) created are recorded in mcfi. -// Any stack space required is allocated via MachineFunction. -// -void -SparcInstrInfo::CreateCodeToLoadConst(const TargetMachine& target, - Function* F, - Value* val, - Instruction* dest, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) const -{ - assert(isa<Constant>(val) || isa<GlobalValue>(val) && - "I only know about constant values and global addresses"); - - // Use a "set" instruction for known constants or symbolic constants (labels) - // that can go in an integer reg. - // We have to use a "load" instruction for all other constants, - // in particular, floating point constants. - // - const Type* valType = val->getType(); - - // A ConstantPointerRef is just a reference to GlobalValue. - while (isa<ConstantPointerRef>(val)) - val = cast<ConstantPointerRef>(val)->getValue(); - - if (isa<GlobalValue>(val)) { - TmpInstruction* tmpReg = - new TmpInstruction(mcfi, PointerType::get(val->getType()), val); - CreateSETXLabel(target, val, tmpReg, dest, mvec); - return; - } - - bool isValid; - uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid); - if (isValid) { - if (dest->getType()->isSigned()) - CreateUIntSetInstruction(target, C, dest, mvec, mcfi); - else - CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi); - - } else { - // Make an instruction sequence to load the constant, viz: - // SETX <addr-of-constant>, tmpReg, addrReg - // LOAD /*addr*/ addrReg, /*offset*/ 0, dest - - // First, create a tmp register to be used by the SETX sequence. - TmpInstruction* tmpReg = - new TmpInstruction(mcfi, PointerType::get(val->getType())); - - // Create another TmpInstruction for the address register - TmpInstruction* addrReg = - new TmpInstruction(mcfi, PointerType::get(val->getType())); - - // Get the constant pool index for this constant - MachineConstantPool *CP = MachineFunction::get(F).getConstantPool(); - Constant *C = cast<Constant>(val); - unsigned CPI = CP->getConstantPoolIndex(C); - - // Put the address of the constant into a register - MachineInstr* MI; - - MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg); - MI->setOperandHi64(0); - mvec.push_back(MI); - - MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI) - .addRegDef(tmpReg); - MI->setOperandLo64(1); - mvec.push_back(MI); - - mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) - .addRegDef(tmpReg)); - MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg); - MI->setOperandHi32(0); - mvec.push_back(MI); - - MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg); - mvec.push_back(MI); - - MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI) - .addRegDef(addrReg); - MI->setOperandLo32(1); - mvec.push_back(MI); - - // Now load the constant from out ConstantPool label - unsigned Opcode = ChooseLoadInstruction(val->getType()); - Opcode = convertOpcodeFromRegToImm(Opcode); - mvec.push_back(BuildMI(Opcode, 3) - .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest)); - } -} - - -// Create an instruction sequence to copy an integer register `val' -// to a floating point register `dest' by copying to memory and back. -// val must be an integral type. dest must be a Float or Double. -// The generated instructions are returned in `mvec'. -// Any temp. registers (TmpInstruction) created are recorded in mcfi. -// Any stack space required is allocated via MachineFunction. -// -void -SparcInstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target, - Function* F, - Value* val, - Instruction* dest, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) const -{ - assert((val->getType()->isIntegral() || isa<PointerType>(val->getType())) - && "Source type must be integral (integer or bool) or pointer"); - assert(dest->getType()->isFloatingPoint() - && "Dest type must be float/double"); - - // Get a stack slot to use for the copy - int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); - - // Get the size of the source value being copied. - size_t srcSize = target.getTargetData().getTypeSize(val->getType()); - - // Store instruction stores `val' to [%fp+offset]. - // The store and load opCodes are based on the size of the source value. - // If the value is smaller than 32 bits, we must sign- or zero-extend it - // to 32 bits since the load-float will load 32 bits. - // Note that the store instruction is the same for signed and unsigned ints. - const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy; - Value* storeVal = val; - if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) { - // sign- or zero-extend respectively - storeVal = new TmpInstruction(mcfi, storeType, val); - if (val->getType()->isSigned()) - CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize, - mvec, mcfi); - else - CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize, - mvec, mcfi); - } - - unsigned FPReg = target.getRegInfo().getFramePointer(); - unsigned StoreOpcode = ChooseStoreInstruction(storeType); - StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); - mvec.push_back(BuildMI(StoreOpcode, 3) - .addReg(storeVal).addMReg(FPReg).addSImm(offset)); - - // Load instruction loads [%fp+offset] to `dest'. - // The type of the load opCode is the floating point type that matches the - // stored type in size: - // On SparcV9: float for int or smaller, double for long. - // - const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; - unsigned LoadOpcode = ChooseLoadInstruction(loadType); - LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); - mvec.push_back(BuildMI(LoadOpcode, 3) - .addMReg(FPReg).addSImm(offset).addRegDef(dest)); -} - -// Similarly, create an instruction sequence to copy an FP register -// `val' to an integer register `dest' by copying to memory and back. -// The generated instructions are returned in `mvec'. -// Any temp. virtual registers (TmpInstruction) created are recorded in mcfi. -// Temporary stack space required is allocated via MachineFunction. -// -void -SparcInstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target, - Function* F, - Value* val, - Instruction* dest, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) const -{ - const Type* opTy = val->getType(); - const Type* destTy = dest->getType(); - - assert(opTy->isFloatingPoint() && "Source type must be float/double"); - assert((destTy->isIntegral() || isa<PointerType>(destTy)) - && "Dest type must be integer, bool or pointer"); - - // FIXME: For now, we allocate permanent space because the stack frame - // manager does not allow locals to be allocated (e.g., for alloca) after - // a temp is allocated! - // - int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); - - unsigned FPReg = target.getRegInfo().getFramePointer(); - - // Store instruction stores `val' to [%fp+offset]. - // The store opCode is based only the source value being copied. - // - unsigned StoreOpcode = ChooseStoreInstruction(opTy); - StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); - mvec.push_back(BuildMI(StoreOpcode, 3) - .addReg(val).addMReg(FPReg).addSImm(offset)); - - // Load instruction loads [%fp+offset] to `dest'. - // The type of the load opCode is the integer type that matches the - // source type in size: - // On SparcV9: int for float, long for double. - // Note that we *must* use signed loads even for unsigned dest types, to - // ensure correct sign-extension for UByte, UShort or UInt: - // - const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy; - unsigned LoadOpcode = ChooseLoadInstruction(loadTy); - LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); - mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg) - .addSImm(offset).addRegDef(dest)); -} - - -// Create instruction(s) to copy src to dest, for arbitrary types -// The generated instructions are returned in `mvec'. -// Any temp. registers (TmpInstruction) created are recorded in mcfi. -// Any stack space required is allocated via MachineFunction. -// -void -SparcInstrInfo::CreateCopyInstructionsByType(const TargetMachine& target, - Function *F, - Value* src, - Instruction* dest, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) const -{ - bool loadConstantToReg = false; - - const Type* resultType = dest->getType(); - - MachineOpCode opCode = ChooseAddInstructionByType(resultType); - if (opCode == V9::INVALID_OPCODE) { - assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); - return; - } - - // if `src' is a constant that doesn't fit in the immed field or if it is - // a global variable (i.e., a constant address), generate a load - // instruction instead of an add - // - if (isa<Constant>(src)) { - unsigned int machineRegNum; - int64_t immedValue; - MachineOperand::MachineOperandType opType = - ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, - machineRegNum, immedValue); - - if (opType == MachineOperand::MO_VirtualRegister) - loadConstantToReg = true; - } - else if (isa<GlobalValue>(src)) - loadConstantToReg = true; - - if (loadConstantToReg) { - // `src' is constant and cannot fit in immed field for the ADD - // Insert instructions to "load" the constant into a register - target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest, - mvec, mcfi); - } else { - // Create a reg-to-reg copy instruction for the given type: - // -- For FP values, create a FMOVS or FMOVD instruction - // -- For non-FP values, create an add-with-0 instruction (opCode as above) - // Make `src' the second operand, in case it is a small constant! - // - MachineInstr* MI; - if (resultType->isFloatingPoint()) - MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) - .addReg(src).addRegDef(dest)); - else { - const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType; - MI = (BuildMI(opCode, 3) - .addSImm((int64_t) 0).addReg(src).addRegDef(dest)); - } - mvec.push_back(MI); - } -} - - -// Helper function for sign-extension and zero-extension. -// For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL. -inline void -CreateBitExtensionInstructions(bool signExtend, - const TargetMachine& target, - Function* F, - Value* srcVal, - Value* destVal, - unsigned int numLowBits, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) -{ - MachineInstr* M; - - assert(numLowBits <= 32 && "Otherwise, nothing should be done here!"); - - if (numLowBits < 32) { - // SLL is needed since operand size is < 32 bits. - TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(), - srcVal, destVal, "make32"); - mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal) - .addZImm(32-numLowBits).addRegDef(tmpI)); - srcVal = tmpI; - } - - mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3) - .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal)); -} - - -// Create instruction sequence to produce a sign-extended register value -// from an arbitrary-sized integer value (sized in bits, not bytes). -// The generated instructions are returned in `mvec'. -// Any temp. registers (TmpInstruction) created are recorded in mcfi. -// Any stack space required is allocated via MachineFunction. -// -void -SparcInstrInfo::CreateSignExtensionInstructions( - const TargetMachine& target, - Function* F, - Value* srcVal, - Value* destVal, - unsigned int numLowBits, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) const -{ - CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal, - destVal, numLowBits, mvec, mcfi); -} - - -// Create instruction sequence to produce a zero-extended register value -// from an arbitrary-sized integer value (sized in bits, not bytes). -// For SPARC v9, we sign-extend the given operand using SLL; SRL. -// The generated instructions are returned in `mvec'. -// Any temp. registers (TmpInstruction) created are recorded in mcfi. -// Any stack space required is allocated via MachineFunction. -// -void -SparcInstrInfo::CreateZeroExtensionInstructions( - const TargetMachine& target, - Function* F, - Value* srcVal, - Value* destVal, - unsigned int numLowBits, - std::vector<MachineInstr*>& mvec, - MachineCodeForInstruction& mcfi) const -{ - CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal, - destVal, numLowBits, mvec, mcfi); -} - -} // End llvm namespace |