summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Sparc/SparcInstrInfo.cpp
diff options
context:
space:
mode:
authorBrian Gaeke <gaeke@uiuc.edu>2004-02-25 18:44:15 +0000
committerBrian Gaeke <gaeke@uiuc.edu>2004-02-25 18:44:15 +0000
commit94e95d2b3eaaf3404b9306c7f402a26beb18c9c4 (patch)
tree01a3a8922d75ff482e96b9905550c37715f16674 /llvm/lib/Target/Sparc/SparcInstrInfo.cpp
parent864c9014443c716da8851661d8e26c11b16bcca4 (diff)
downloadbcm5719-llvm-94e95d2b3eaaf3404b9306c7f402a26beb18c9c4.tar.gz
bcm5719-llvm-94e95d2b3eaaf3404b9306c7f402a26beb18c9c4.zip
Great renaming: Sparc --> SparcV9
llvm-svn: 11826
Diffstat (limited to 'llvm/lib/Target/Sparc/SparcInstrInfo.cpp')
-rw-r--r--llvm/lib/Target/Sparc/SparcInstrInfo.cpp799
1 files changed, 0 insertions, 799 deletions
diff --git a/llvm/lib/Target/Sparc/SparcInstrInfo.cpp b/llvm/lib/Target/Sparc/SparcInstrInfo.cpp
deleted file mode 100644
index af458ea0399..00000000000
--- a/llvm/lib/Target/Sparc/SparcInstrInfo.cpp
+++ /dev/null
@@ -1,799 +0,0 @@
-//===-- SparcInstrInfo.cpp ------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/iTerminators.h"
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/CodeGen/InstrSelectionSupport.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionInfo.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "SparcInternals.h"
-#include "SparcInstrSelectionSupport.h"
-#include "SparcInstrInfo.h"
-
-namespace llvm {
-
-static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*)
-static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
-
-//---------------------------------------------------------------------------
-// Function ConvertConstantToIntType
-//
-// Function to get the value of an integral constant in the form
-// that must be put into the machine register. The specified constant is
-// interpreted as (i.e., converted if necessary to) the specified destination
-// type. The result is always returned as an uint64_t, since the representation
-// of int64_t and uint64_t are identical. The argument can be any known const.
-//
-// isValidConstant is set to true if a valid constant was found.
-//---------------------------------------------------------------------------
-
-uint64_t
-SparcInstrInfo::ConvertConstantToIntType(const TargetMachine &target,
- const Value *V,
- const Type *destType,
- bool &isValidConstant) const
-{
- isValidConstant = false;
- uint64_t C = 0;
-
- if (! destType->isIntegral() && ! isa<PointerType>(destType))
- return C;
-
- if (! isa<Constant>(V))
- return C;
-
- // ConstantPointerRef: no conversions needed: get value and return it
- if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(V)) {
- // A ConstantPointerRef is just a reference to GlobalValue.
- isValidConstant = true; // may be overwritten by recursive call
- return (CPR->isNullValue()? 0
- : ConvertConstantToIntType(target, CPR->getValue(), destType,
- isValidConstant));
- }
-
- // ConstantBool: no conversions needed: get value and return it
- if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
- isValidConstant = true;
- return (uint64_t) CB->getValue();
- }
-
- // For other types of constants, some conversion may be needed.
- // First, extract the constant operand according to its own type
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- switch(CE->getOpcode()) {
- case Instruction::Cast: // recursively get the value as cast
- C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
- isValidConstant);
- break;
- default: // not simplifying other ConstantExprs
- break;
- }
- else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
- isValidConstant = true;
- C = CI->getRawValue();
- }
- else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- isValidConstant = true;
- double fC = CFP->getValue();
- C = (destType->isSigned()? (uint64_t) (int64_t) fC
- : (uint64_t) fC);
- }
-
- // Now if a valid value was found, convert it to destType.
- if (isValidConstant) {
- unsigned opSize = target.getTargetData().getTypeSize(V->getType());
- unsigned destSize = target.getTargetData().getTypeSize(destType);
- uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
- assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
-
- if (destType->isSigned()) {
- if (opSize > destSize) // operand is larger than dest:
- C = C & maskHi; // mask high bits
-
- if (opSize > destSize ||
- (opSize == destSize && ! V->getType()->isSigned()))
- if (C & (1U << (8*destSize - 1)))
- C = C | ~maskHi; // sign-extend from destSize to 64 bits
- }
- else {
- if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
- // operand is larger than dest,
- // OR both are equal but smaller than the full register size
- // AND operand is signed, so it may have extra sign bits:
- // mask high bits
- C = C & maskHi;
- }
- }
- }
-
- return C;
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETUWConst
-//
-// Set a 32-bit unsigned constant in the register `dest', using
-// SETHI, OR in the worst case. This function correctly emulates
-// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false).
-//
-// The isSigned=true case is used to implement SETSW without duplicating code.
-//
-// Optimize some common cases:
-// (1) Small value that fits in simm13 field of OR: don't need SETHI.
-// (2) isSigned = true and C is a small negative signed value, i.e.,
-// high bits are 1, and the remaining bits fit in simm13(OR).
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETUWConst(const TargetMachine& target, uint32_t C,
- Instruction* dest, std::vector<MachineInstr*>& mvec,
- bool isSigned = false)
-{
- MachineInstr *miSETHI = NULL, *miOR = NULL;
-
- // In order to get efficient code, we should not generate the SETHI if
- // all high bits are 1 (i.e., this is a small signed value that fits in
- // the simm13 field of OR). So we check for and handle that case specially.
- // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
- // In fact, sC == -sC, so we have to check for this explicitly.
- int32_t sC = (int32_t) C;
- bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
-
- // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
- if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
- miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
- miSETHI->setOperandHi32(0);
- mvec.push_back(miSETHI);
- }
-
- // Set the low 10 or 12 bits in dest. This is necessary if no SETHI
- // was generated, or if the low 10 bits are non-zero.
- if (miSETHI==NULL || C & MAXLO) {
- if (miSETHI) {
- // unsigned value with high-order bits set using SETHI
- miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
- miOR->setOperandLo32(1);
- } else {
- // unsigned or small signed value that fits in simm13 field of OR
- assert(smallNegValue || (C & ~MAXSIMM) == 0);
- miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()
- .getZeroRegNum())
- .addSImm(sC).addRegDef(dest);
- }
- mvec.push_back(miOR);
- }
-
- assert((miSETHI || miOR) && "Oops, no code was generated!");
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETSWConst
-//
-// Set a 32-bit signed constant in the register `dest', with sign-extension
-// to 64 bits. This uses SETHI, OR, SRA in the worst case.
-// This function correctly emulates the SETSW pseudo-op for SPARC v9.
-//
-// Optimize the same cases as SETUWConst, plus:
-// (1) SRA is not needed for positive or small negative values.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETSWConst(const TargetMachine& target, int32_t C,
- Instruction* dest, std::vector<MachineInstr*>& mvec)
-{
- // Set the low 32 bits of dest
- CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true);
-
- // Sign-extend to the high 32 bits if needed.
- // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
- if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
- mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETXConst
-//
-// Set a 64-bit signed or unsigned constant in the register `dest'.
-// Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between.
-// This function correctly emulates the SETX pseudo-op for SPARC v9.
-//
-// Optimize the same cases as SETUWConst for each 32 bit word.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETXConst(const TargetMachine& target, uint64_t C,
- Instruction* tmpReg, Instruction* dest,
- std::vector<MachineInstr*>& mvec)
-{
- assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
-
- MachineInstr* MI;
-
- // Code to set the upper 32 bits of the value in register `tmpReg'
- CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
-
- // Shift tmpReg left by 32 bits
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
- .addRegDef(tmpReg));
-
- // Code to set the low 32 bits of the value in register `dest'
- CreateSETUWConst(target, C, dest, mvec);
-
- // dest = OR(tmpReg, dest)
- mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETUWLabel
-//
-// Set a 32-bit constant (given by a symbolic label) in the register `dest'.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETUWLabel(const TargetMachine& target, Value* val,
- Instruction* dest, std::vector<MachineInstr*>& mvec)
-{
- MachineInstr* MI;
-
- // Set the high 22 bits in dest
- MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
- MI->setOperandHi32(0);
- mvec.push_back(MI);
-
- // Set the low 10 bits in dest
- MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
- MI->setOperandLo32(1);
- mvec.push_back(MI);
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateSETXLabel
-//
-// Set a 64-bit constant (given by a symbolic label) in the register `dest'.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateSETXLabel(const TargetMachine& target,
- Value* val, Instruction* tmpReg, Instruction* dest,
- std::vector<MachineInstr*>& mvec)
-{
- assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
- "I only know about constant values and global addresses");
-
- MachineInstr* MI;
-
- MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
- MI->setOperandHi64(0);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
- MI->setOperandLo64(1);
- mvec.push_back(MI);
-
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
- .addRegDef(tmpReg));
- MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
- MI->setOperandHi32(0);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
- MI->setOperandLo32(1);
- mvec.push_back(MI);
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateUIntSetInstruction
-//
-// Create code to Set an unsigned constant in the register `dest'.
-// Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed.
-// CreateSETSWConst is an optimization for the case that the unsigned value
-// has all ones in the 33 high bits (so that sign-extension sets them all).
-//----------------------------------------------------------------------------
-
-static inline void
-CreateUIntSetInstruction(const TargetMachine& target,
- uint64_t C, Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- static const uint64_t lo32 = (uint32_t) ~0;
- if (C <= lo32) // High 32 bits are 0. Set low 32 bits.
- CreateSETUWConst(target, (uint32_t) C, dest, mvec);
- else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
- // All high 33 (not 32) bits are 1s: sign-extension will take care
- // of high 32 bits, so use the sequence for signed int
- CreateSETSWConst(target, (int32_t) C, dest, mvec);
- } else if (C > lo32) {
- // C does not fit in 32 bits
- TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
- CreateSETXConst(target, C, tmpReg, dest, mvec);
- }
-}
-
-
-//----------------------------------------------------------------------------
-// Function: CreateIntSetInstruction
-//
-// Create code to Set a signed constant in the register `dest'.
-// Really the same as CreateUIntSetInstruction.
-//----------------------------------------------------------------------------
-
-static inline void
-CreateIntSetInstruction(const TargetMachine& target,
- int64_t C, Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
-}
-
-
-//---------------------------------------------------------------------------
-// Create a table of LLVM opcode -> max. immediate constant likely to
-// be usable for that operation.
-//---------------------------------------------------------------------------
-
-// Entry == 0 ==> no immediate constant field exists at all.
-// Entry > 0 ==> abs(immediate constant) <= Entry
-//
-std::vector<int> MaxConstantsTable(Instruction::OtherOpsEnd);
-
-static int
-MaxConstantForInstr(unsigned llvmOpCode)
-{
- int modelOpCode = -1;
-
- if (llvmOpCode >= Instruction::BinaryOpsBegin &&
- llvmOpCode < Instruction::BinaryOpsEnd)
- modelOpCode = V9::ADDi;
- else
- switch(llvmOpCode) {
- case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break;
-
- case Instruction::Malloc:
- case Instruction::Alloca:
- case Instruction::GetElementPtr:
- case Instruction::PHI:
- case Instruction::Cast:
- case Instruction::Call: modelOpCode = V9::ADDi; break;
-
- case Instruction::Shl:
- case Instruction::Shr: modelOpCode = V9::SLLXi6; break;
-
- default: break;
- };
-
- return (modelOpCode < 0)? 0: SparcMachineInstrDesc[modelOpCode].maxImmedConst;
-}
-
-static void
-InitializeMaxConstantsTable()
-{
- unsigned op;
- assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd &&
- "assignments below will be illegal!");
- for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
- for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
- for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
- for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
- MaxConstantsTable[op] = MaxConstantForInstr(op);
-}
-
-
-//---------------------------------------------------------------------------
-// class SparcInstrInfo
-//
-// Purpose:
-// Information about individual instructions.
-// Most information is stored in the SparcMachineInstrDesc array above.
-// Other information is computed on demand, and most such functions
-// default to member functions in base class TargetInstrInfo.
-//---------------------------------------------------------------------------
-
-/*ctor*/
-SparcInstrInfo::SparcInstrInfo()
- : TargetInstrInfo(SparcMachineInstrDesc,
- /*descSize = */ V9::NUM_TOTAL_OPCODES,
- /*numRealOpCodes = */ V9::NUM_REAL_OPCODES)
-{
- InitializeMaxConstantsTable();
-}
-
-bool
-SparcInstrInfo::ConstantMayNotFitInImmedField(const Constant* CV,
- const Instruction* I) const
-{
- if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
- return true;
-
- if (isa<ConstantPointerNull>(CV)) // can always use %g0
- return false;
-
- if (isa<SwitchInst>(I)) // Switch instructions will be lowered!
- return false;
-
- if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
- return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];
-
- if (isa<ConstantBool>(CV))
- return 1 > MaxConstantsTable[I->getOpcode()];
-
- return true;
-}
-
-//
-// Create an instruction sequence to put the constant `val' into
-// the virtual register `dest'. `val' may be a Constant or a
-// GlobalValue, viz., the constant address of a global variable or function.
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-SparcInstrInfo::CreateCodeToLoadConst(const TargetMachine& target,
- Function* F,
- Value* val,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi) const
-{
- assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
- "I only know about constant values and global addresses");
-
- // Use a "set" instruction for known constants or symbolic constants (labels)
- // that can go in an integer reg.
- // We have to use a "load" instruction for all other constants,
- // in particular, floating point constants.
- //
- const Type* valType = val->getType();
-
- // A ConstantPointerRef is just a reference to GlobalValue.
- while (isa<ConstantPointerRef>(val))
- val = cast<ConstantPointerRef>(val)->getValue();
-
- if (isa<GlobalValue>(val)) {
- TmpInstruction* tmpReg =
- new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
- CreateSETXLabel(target, val, tmpReg, dest, mvec);
- return;
- }
-
- bool isValid;
- uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
- if (isValid) {
- if (dest->getType()->isSigned())
- CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
- else
- CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);
-
- } else {
- // Make an instruction sequence to load the constant, viz:
- // SETX <addr-of-constant>, tmpReg, addrReg
- // LOAD /*addr*/ addrReg, /*offset*/ 0, dest
-
- // First, create a tmp register to be used by the SETX sequence.
- TmpInstruction* tmpReg =
- new TmpInstruction(mcfi, PointerType::get(val->getType()));
-
- // Create another TmpInstruction for the address register
- TmpInstruction* addrReg =
- new TmpInstruction(mcfi, PointerType::get(val->getType()));
-
- // Get the constant pool index for this constant
- MachineConstantPool *CP = MachineFunction::get(F).getConstantPool();
- Constant *C = cast<Constant>(val);
- unsigned CPI = CP->getConstantPoolIndex(C);
-
- // Put the address of the constant into a register
- MachineInstr* MI;
-
- MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg);
- MI->setOperandHi64(0);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI)
- .addRegDef(tmpReg);
- MI->setOperandLo64(1);
- mvec.push_back(MI);
-
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
- .addRegDef(tmpReg));
- MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg);
- MI->setOperandHi32(0);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg);
- mvec.push_back(MI);
-
- MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI)
- .addRegDef(addrReg);
- MI->setOperandLo32(1);
- mvec.push_back(MI);
-
- // Now load the constant from out ConstantPool label
- unsigned Opcode = ChooseLoadInstruction(val->getType());
- Opcode = convertOpcodeFromRegToImm(Opcode);
- mvec.push_back(BuildMI(Opcode, 3)
- .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest));
- }
-}
-
-
-// Create an instruction sequence to copy an integer register `val'
-// to a floating point register `dest' by copying to memory and back.
-// val must be an integral type. dest must be a Float or Double.
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-SparcInstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target,
- Function* F,
- Value* val,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi) const
-{
- assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
- && "Source type must be integral (integer or bool) or pointer");
- assert(dest->getType()->isFloatingPoint()
- && "Dest type must be float/double");
-
- // Get a stack slot to use for the copy
- int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
-
- // Get the size of the source value being copied.
- size_t srcSize = target.getTargetData().getTypeSize(val->getType());
-
- // Store instruction stores `val' to [%fp+offset].
- // The store and load opCodes are based on the size of the source value.
- // If the value is smaller than 32 bits, we must sign- or zero-extend it
- // to 32 bits since the load-float will load 32 bits.
- // Note that the store instruction is the same for signed and unsigned ints.
- const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
- Value* storeVal = val;
- if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
- // sign- or zero-extend respectively
- storeVal = new TmpInstruction(mcfi, storeType, val);
- if (val->getType()->isSigned())
- CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
- mvec, mcfi);
- else
- CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
- mvec, mcfi);
- }
-
- unsigned FPReg = target.getRegInfo().getFramePointer();
- unsigned StoreOpcode = ChooseStoreInstruction(storeType);
- StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
- mvec.push_back(BuildMI(StoreOpcode, 3)
- .addReg(storeVal).addMReg(FPReg).addSImm(offset));
-
- // Load instruction loads [%fp+offset] to `dest'.
- // The type of the load opCode is the floating point type that matches the
- // stored type in size:
- // On SparcV9: float for int or smaller, double for long.
- //
- const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
- unsigned LoadOpcode = ChooseLoadInstruction(loadType);
- LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
- mvec.push_back(BuildMI(LoadOpcode, 3)
- .addMReg(FPReg).addSImm(offset).addRegDef(dest));
-}
-
-// Similarly, create an instruction sequence to copy an FP register
-// `val' to an integer register `dest' by copying to memory and back.
-// The generated instructions are returned in `mvec'.
-// Any temp. virtual registers (TmpInstruction) created are recorded in mcfi.
-// Temporary stack space required is allocated via MachineFunction.
-//
-void
-SparcInstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target,
- Function* F,
- Value* val,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi) const
-{
- const Type* opTy = val->getType();
- const Type* destTy = dest->getType();
-
- assert(opTy->isFloatingPoint() && "Source type must be float/double");
- assert((destTy->isIntegral() || isa<PointerType>(destTy))
- && "Dest type must be integer, bool or pointer");
-
- // FIXME: For now, we allocate permanent space because the stack frame
- // manager does not allow locals to be allocated (e.g., for alloca) after
- // a temp is allocated!
- //
- int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
-
- unsigned FPReg = target.getRegInfo().getFramePointer();
-
- // Store instruction stores `val' to [%fp+offset].
- // The store opCode is based only the source value being copied.
- //
- unsigned StoreOpcode = ChooseStoreInstruction(opTy);
- StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
- mvec.push_back(BuildMI(StoreOpcode, 3)
- .addReg(val).addMReg(FPReg).addSImm(offset));
-
- // Load instruction loads [%fp+offset] to `dest'.
- // The type of the load opCode is the integer type that matches the
- // source type in size:
- // On SparcV9: int for float, long for double.
- // Note that we *must* use signed loads even for unsigned dest types, to
- // ensure correct sign-extension for UByte, UShort or UInt:
- //
- const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
- unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
- LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
- mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
- .addSImm(offset).addRegDef(dest));
-}
-
-
-// Create instruction(s) to copy src to dest, for arbitrary types
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-SparcInstrInfo::CreateCopyInstructionsByType(const TargetMachine& target,
- Function *F,
- Value* src,
- Instruction* dest,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi) const
-{
- bool loadConstantToReg = false;
-
- const Type* resultType = dest->getType();
-
- MachineOpCode opCode = ChooseAddInstructionByType(resultType);
- if (opCode == V9::INVALID_OPCODE) {
- assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
- return;
- }
-
- // if `src' is a constant that doesn't fit in the immed field or if it is
- // a global variable (i.e., a constant address), generate a load
- // instruction instead of an add
- //
- if (isa<Constant>(src)) {
- unsigned int machineRegNum;
- int64_t immedValue;
- MachineOperand::MachineOperandType opType =
- ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
- machineRegNum, immedValue);
-
- if (opType == MachineOperand::MO_VirtualRegister)
- loadConstantToReg = true;
- }
- else if (isa<GlobalValue>(src))
- loadConstantToReg = true;
-
- if (loadConstantToReg) {
- // `src' is constant and cannot fit in immed field for the ADD
- // Insert instructions to "load" the constant into a register
- target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest,
- mvec, mcfi);
- } else {
- // Create a reg-to-reg copy instruction for the given type:
- // -- For FP values, create a FMOVS or FMOVD instruction
- // -- For non-FP values, create an add-with-0 instruction (opCode as above)
- // Make `src' the second operand, in case it is a small constant!
- //
- MachineInstr* MI;
- if (resultType->isFloatingPoint())
- MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
- .addReg(src).addRegDef(dest));
- else {
- const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
- MI = (BuildMI(opCode, 3)
- .addSImm((int64_t) 0).addReg(src).addRegDef(dest));
- }
- mvec.push_back(MI);
- }
-}
-
-
-// Helper function for sign-extension and zero-extension.
-// For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL.
-inline void
-CreateBitExtensionInstructions(bool signExtend,
- const TargetMachine& target,
- Function* F,
- Value* srcVal,
- Value* destVal,
- unsigned int numLowBits,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi)
-{
- MachineInstr* M;
-
- assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
-
- if (numLowBits < 32) {
- // SLL is needed since operand size is < 32 bits.
- TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
- srcVal, destVal, "make32");
- mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
- .addZImm(32-numLowBits).addRegDef(tmpI));
- srcVal = tmpI;
- }
-
- mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
- .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
-}
-
-
-// Create instruction sequence to produce a sign-extended register value
-// from an arbitrary-sized integer value (sized in bits, not bytes).
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-SparcInstrInfo::CreateSignExtensionInstructions(
- const TargetMachine& target,
- Function* F,
- Value* srcVal,
- Value* destVal,
- unsigned int numLowBits,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi) const
-{
- CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
- destVal, numLowBits, mvec, mcfi);
-}
-
-
-// Create instruction sequence to produce a zero-extended register value
-// from an arbitrary-sized integer value (sized in bits, not bytes).
-// For SPARC v9, we sign-extend the given operand using SLL; SRL.
-// The generated instructions are returned in `mvec'.
-// Any temp. registers (TmpInstruction) created are recorded in mcfi.
-// Any stack space required is allocated via MachineFunction.
-//
-void
-SparcInstrInfo::CreateZeroExtensionInstructions(
- const TargetMachine& target,
- Function* F,
- Value* srcVal,
- Value* destVal,
- unsigned int numLowBits,
- std::vector<MachineInstr*>& mvec,
- MachineCodeForInstruction& mcfi) const
-{
- CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
- destVal, numLowBits, mvec, mcfi);
-}
-
-} // End llvm namespace
OpenPOWER on IntegriCloud