summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Hexagon/MCTargetDesc
diff options
context:
space:
mode:
authorColin LeMahieu <colinl@codeaurora.org>2015-06-04 21:16:16 +0000
committerColin LeMahieu <colinl@codeaurora.org>2015-06-04 21:16:16 +0000
commitfc52c11d803d3975f17d443f504344d80cef70ed (patch)
treecd88a6d3e0f2d0c81087f24e64dd20fd344524e9 /llvm/lib/Target/Hexagon/MCTargetDesc
parentb8f38668d5d735cef02adbef7958776bc5426f56 (diff)
downloadbcm5719-llvm-fc52c11d803d3975f17d443f504344d80cef70ed.tar.gz
bcm5719-llvm-fc52c11d803d3975f17d443f504344d80cef70ed.zip
[Hexagon] Adding functionality for duplexing. Duplexing is a way to compress commonly used pairs of instructions in order to reduce code size. The test case duplex.ll normally would be 8 bytes, assign register to 0 and jump to link register. After duplexing this is only 4 bytes. This also tests the HexagonMCShuffler code path which is used to make sure duplexed instructions still follow slot requirements.
llvm-svn: 239095
Diffstat (limited to 'llvm/lib/Target/Hexagon/MCTargetDesc')
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/CMakeLists.txt1
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp1
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h12
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp8
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp82
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp1100
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp68
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h60
-rw-r--r--llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCShuffler.cpp55
9 files changed, 1383 insertions, 4 deletions
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/CMakeLists.txt b/llvm/lib/Target/Hexagon/MCTargetDesc/CMakeLists.txt
index 90b34d304b7..d0fae8a5192 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/CMakeLists.txt
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/CMakeLists.txt
@@ -4,6 +4,7 @@ add_llvm_library(LLVMHexagonDesc
HexagonInstPrinter.cpp
HexagonMCAsmInfo.cpp
HexagonMCCodeEmitter.cpp
+ HexagonMCDuplexInfo.cpp
HexagonMCInstrInfo.cpp
HexagonMCShuffler.cpp
HexagonMCTargetDesc.cpp
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp
index b4db977e361..76894840153 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonAsmBackend.cpp
@@ -16,6 +16,7 @@
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCFixupKindInfo.h"
+#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
index 342a61190e6..4f84e0d79e6 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
@@ -43,6 +43,7 @@ namespace HexagonII {
TypeXTYPE = 8,
TypeMEMOP = 9,
TypeNV = 10,
+ TypeDUPLEX = 11,
TypePREFIX = 30, // Such as extenders.
TypeENDLOOP = 31 // Such as end of a HW loop.
};
@@ -190,6 +191,17 @@ namespace HexagonII {
MO_GPREL
};
+ // Hexagon Sub-instruction classes.
+ enum SubInstructionGroup {
+ HSIG_None = 0,
+ HSIG_L1,
+ HSIG_L2,
+ HSIG_S1,
+ HSIG_S2,
+ HSIG_A,
+ HSIG_Compound
+ };
+
enum InstParseBits {
INST_PARSE_MASK = 0x0000c000,
INST_PARSE_PACKET_END = 0x0000c000,
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp
index 73f20f52439..3fe20395c40 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonInstPrinter.cpp
@@ -129,7 +129,13 @@ void HexagonInstPrinter::printInst(MCInst const *MI, raw_ostream &OS,
HasExtender = false;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(*MI)) {
MCInst const &MCI = *I.getInst();
- printInstruction(&MCI, OS);
+ if (HexagonMCInstrInfo::isDuplex(MII, MCI)) {
+ printInstruction(MCI.getOperand(1).getInst(), OS);
+ OS << '\v';
+ HasExtender = false;
+ printInstruction(MCI.getOperand(0).getInst(), OS);
+ } else
+ printInstruction(&MCI, OS);
setExtender(MCI);
OS << "\n";
}
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
index 6796a22f725..1eee852996f 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
@@ -40,18 +40,25 @@ HexagonMCCodeEmitter::HexagonMCCodeEmitter(MCInstrInfo const &aMII,
uint32_t HexagonMCCodeEmitter::parseBits(size_t Instruction, size_t Last,
MCInst const &MCB,
MCInst const &MCI) const {
+ bool Duplex = HexagonMCInstrInfo::isDuplex(MCII, MCI);
if (Instruction == 0) {
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
+ assert(!Duplex);
assert(Instruction != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
if (Instruction == 1) {
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
+ assert(!Duplex);
assert(Instruction != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
+ if (Duplex) {
+ assert(Instruction == Last);
+ return HexagonII::INST_PARSE_DUPLEX;
+ }
if(Instruction == Last)
return HexagonII::INST_PARSE_PACKET_END;
return HexagonII::INST_PARSE_NOT_END;
@@ -149,6 +156,81 @@ void HexagonMCCodeEmitter::EncodeSingleInstruction(
llvm_unreachable("Unimplemented Instruction");
}
Binary |= Parse;
+
+ // if we need to emit a duplexed instruction
+ if (HMB.getOpcode() >= Hexagon::DuplexIClass0 &&
+ HMB.getOpcode() <= Hexagon::DuplexIClassF) {
+ assert(Parse == HexagonII::INST_PARSE_DUPLEX &&
+ "Emitting duplex without duplex parse bits");
+ unsigned dupIClass;
+ switch (HMB.getOpcode()) {
+ case Hexagon::DuplexIClass0:
+ dupIClass = 0;
+ break;
+ case Hexagon::DuplexIClass1:
+ dupIClass = 1;
+ break;
+ case Hexagon::DuplexIClass2:
+ dupIClass = 2;
+ break;
+ case Hexagon::DuplexIClass3:
+ dupIClass = 3;
+ break;
+ case Hexagon::DuplexIClass4:
+ dupIClass = 4;
+ break;
+ case Hexagon::DuplexIClass5:
+ dupIClass = 5;
+ break;
+ case Hexagon::DuplexIClass6:
+ dupIClass = 6;
+ break;
+ case Hexagon::DuplexIClass7:
+ dupIClass = 7;
+ break;
+ case Hexagon::DuplexIClass8:
+ dupIClass = 8;
+ break;
+ case Hexagon::DuplexIClass9:
+ dupIClass = 9;
+ break;
+ case Hexagon::DuplexIClassA:
+ dupIClass = 10;
+ break;
+ case Hexagon::DuplexIClassB:
+ dupIClass = 11;
+ break;
+ case Hexagon::DuplexIClassC:
+ dupIClass = 12;
+ break;
+ case Hexagon::DuplexIClassD:
+ dupIClass = 13;
+ break;
+ case Hexagon::DuplexIClassE:
+ dupIClass = 14;
+ break;
+ case Hexagon::DuplexIClassF:
+ dupIClass = 15;
+ break;
+ default:
+ llvm_unreachable("Unimplemented DuplexIClass");
+ break;
+ }
+ // 29 is the bit position.
+ // 0b1110 =0xE bits are masked off and down shifted by 1 bit.
+ // Last bit is moved to bit position 13
+ Binary = ((dupIClass & 0xE) << (29 - 1)) | ((dupIClass & 0x1) << 13);
+
+ const MCInst *subInst0 = HMB.getOperand(0).getInst();
+ const MCInst *subInst1 = HMB.getOperand(1).getInst();
+
+ // get subinstruction slot 0
+ unsigned subInstSlot0Bits = getBinaryCodeForInstr(*subInst0, Fixups, STI);
+ // get subinstruction slot 1
+ unsigned subInstSlot1Bits = getBinaryCodeForInstr(*subInst1, Fixups, STI);
+
+ Binary |= subInstSlot0Bits | (subInstSlot1Bits << 16);
+ }
support::endian::Writer<support::little>(OS).write<uint32_t>(Binary);
++MCNumEmitted;
}
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
new file mode 100644
index 00000000000..eb629774a2c
--- /dev/null
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
@@ -0,0 +1,1100 @@
+//===----- HexagonMCDuplexInfo.cpp - Instruction bundle checking ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements duplexing of instructions to reduce code size
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonBaseInfo.h"
+#include "MCTargetDesc/HexagonMCInstrInfo.h"
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <map>
+
+using namespace llvm;
+using namespace Hexagon;
+
+#define DEBUG_TYPE "hexagon-mcduplex-info"
+
+// pair table of subInstructions with opcodes
+static std::pair<unsigned, unsigned> opcodeData[] = {
+ std::make_pair((unsigned)V4_SA1_addi, 0),
+ std::make_pair((unsigned)V4_SA1_addrx, 6144),
+ std::make_pair((unsigned)V4_SA1_addsp, 3072),
+ std::make_pair((unsigned)V4_SA1_and1, 4608),
+ std::make_pair((unsigned)V4_SA1_clrf, 6768),
+ std::make_pair((unsigned)V4_SA1_clrfnew, 6736),
+ std::make_pair((unsigned)V4_SA1_clrt, 6752),
+ std::make_pair((unsigned)V4_SA1_clrtnew, 6720),
+ std::make_pair((unsigned)V4_SA1_cmpeqi, 6400),
+ std::make_pair((unsigned)V4_SA1_combine0i, 7168),
+ std::make_pair((unsigned)V4_SA1_combine1i, 7176),
+ std::make_pair((unsigned)V4_SA1_combine2i, 7184),
+ std::make_pair((unsigned)V4_SA1_combine3i, 7192),
+ std::make_pair((unsigned)V4_SA1_combinerz, 7432),
+ std::make_pair((unsigned)V4_SA1_combinezr, 7424),
+ std::make_pair((unsigned)V4_SA1_dec, 4864),
+ std::make_pair((unsigned)V4_SA1_inc, 4352),
+ std::make_pair((unsigned)V4_SA1_seti, 2048),
+ std::make_pair((unsigned)V4_SA1_setin1, 6656),
+ std::make_pair((unsigned)V4_SA1_sxtb, 5376),
+ std::make_pair((unsigned)V4_SA1_sxth, 5120),
+ std::make_pair((unsigned)V4_SA1_tfr, 4096),
+ std::make_pair((unsigned)V4_SA1_zxtb, 5888),
+ std::make_pair((unsigned)V4_SA1_zxth, 5632),
+ std::make_pair((unsigned)V4_SL1_loadri_io, 0),
+ std::make_pair((unsigned)V4_SL1_loadrub_io, 4096),
+ std::make_pair((unsigned)V4_SL2_deallocframe, 7936),
+ std::make_pair((unsigned)V4_SL2_jumpr31, 8128),
+ std::make_pair((unsigned)V4_SL2_jumpr31_f, 8133),
+ std::make_pair((unsigned)V4_SL2_jumpr31_fnew, 8135),
+ std::make_pair((unsigned)V4_SL2_jumpr31_t, 8132),
+ std::make_pair((unsigned)V4_SL2_jumpr31_tnew, 8134),
+ std::make_pair((unsigned)V4_SL2_loadrb_io, 4096),
+ std::make_pair((unsigned)V4_SL2_loadrd_sp, 7680),
+ std::make_pair((unsigned)V4_SL2_loadrh_io, 0),
+ std::make_pair((unsigned)V4_SL2_loadri_sp, 7168),
+ std::make_pair((unsigned)V4_SL2_loadruh_io, 2048),
+ std::make_pair((unsigned)V4_SL2_return, 8000),
+ std::make_pair((unsigned)V4_SL2_return_f, 8005),
+ std::make_pair((unsigned)V4_SL2_return_fnew, 8007),
+ std::make_pair((unsigned)V4_SL2_return_t, 8004),
+ std::make_pair((unsigned)V4_SL2_return_tnew, 8006),
+ std::make_pair((unsigned)V4_SS1_storeb_io, 4096),
+ std::make_pair((unsigned)V4_SS1_storew_io, 0),
+ std::make_pair((unsigned)V4_SS2_allocframe, 7168),
+ std::make_pair((unsigned)V4_SS2_storebi0, 4608),
+ std::make_pair((unsigned)V4_SS2_storebi1, 4864),
+ std::make_pair((unsigned)V4_SS2_stored_sp, 2560),
+ std::make_pair((unsigned)V4_SS2_storeh_io, 0),
+ std::make_pair((unsigned)V4_SS2_storew_sp, 2048),
+ std::make_pair((unsigned)V4_SS2_storewi0, 4096),
+ std::make_pair((unsigned)V4_SS2_storewi1, 4352)};
+
+static std::map<unsigned, unsigned>
+ subinstOpcodeMap(opcodeData,
+ opcodeData + sizeof(opcodeData) / sizeof(opcodeData[0]));
+
+bool HexagonMCInstrInfo::isDuplexPairMatch(unsigned Ga, unsigned Gb) {
+ switch (Ga) {
+ case HexagonII::HSIG_None:
+ default:
+ return false;
+ case HexagonII::HSIG_L1:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_L2:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+ Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_S1:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+ Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_S2:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+ Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
+ Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_A:
+ return (Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_Compound:
+ return (Gb == HexagonII::HSIG_Compound);
+ }
+ return false;
+}
+
+unsigned HexagonMCInstrInfo::iClassOfDuplexPair(unsigned Ga, unsigned Gb) {
+ switch (Ga) {
+ case HexagonII::HSIG_None:
+ default:
+ break;
+ case HexagonII::HSIG_L1:
+ switch (Gb) {
+ default:
+ break;
+ case HexagonII::HSIG_L1:
+ return 0;
+ case HexagonII::HSIG_A:
+ return 0x4;
+ }
+ case HexagonII::HSIG_L2:
+ switch (Gb) {
+ default:
+ break;
+ case HexagonII::HSIG_L1:
+ return 0x1;
+ case HexagonII::HSIG_L2:
+ return 0x2;
+ case HexagonII::HSIG_A:
+ return 0x5;
+ }
+ case HexagonII::HSIG_S1:
+ switch (Gb) {
+ default:
+ break;
+ case HexagonII::HSIG_L1:
+ return 0x8;
+ case HexagonII::HSIG_L2:
+ return 0x9;
+ case HexagonII::HSIG_S1:
+ return 0xA;
+ case HexagonII::HSIG_A:
+ return 0x6;
+ }
+ case HexagonII::HSIG_S2:
+ switch (Gb) {
+ default:
+ break;
+ case HexagonII::HSIG_L1:
+ return 0xC;
+ case HexagonII::HSIG_L2:
+ return 0xD;
+ case HexagonII::HSIG_S1:
+ return 0xB;
+ case HexagonII::HSIG_S2:
+ return 0xE;
+ case HexagonII::HSIG_A:
+ return 0x7;
+ }
+ case HexagonII::HSIG_A:
+ switch (Gb) {
+ default:
+ break;
+ case HexagonII::HSIG_A:
+ return 0x3;
+ }
+ case HexagonII::HSIG_Compound:
+ switch (Gb) {
+ case HexagonII::HSIG_Compound:
+ return 0xFFFFFFFF;
+ }
+ }
+ return 0xFFFFFFFF;
+}
+
+unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
+ unsigned DstReg, PredReg, SrcReg, Src1Reg, Src2Reg;
+
+ switch (MCI.getOpcode()) {
+ default:
+ return HexagonII::HSIG_None;
+ //
+ // Group L1:
+ //
+ // Rd = memw(Rs+#u4:2)
+ // Rd = memub(Rs+#u4:0)
+ case Hexagon::L2_loadri_io:
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ // Special case this one from Group L2.
+ // Rd = memw(r29+#u5:2)
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
+ if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
+ MCI.getOperand(2).isImm() &&
+ isShiftedUInt<5, 2>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_L2;
+ }
+ // Rd = memw(Rs+#u4:2)
+ if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ (MCI.getOperand(2).isImm() &&
+ isShiftedUInt<4, 2>(MCI.getOperand(2).getImm()))) {
+ return HexagonII::HSIG_L1;
+ }
+ }
+ break;
+ case Hexagon::L2_loadrub_io:
+ // Rd = memub(Rs+#u4:0)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ MCI.getOperand(2).isImm() && isUInt<4>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_L1;
+ }
+ break;
+ //
+ // Group L2:
+ //
+ // Rd = memh/memuh(Rs+#u3:1)
+ // Rd = memb(Rs+#u3:0)
+ // Rd = memw(r29+#u5:2) - Handled above.
+ // Rdd = memd(r29+#u5:3)
+ // deallocframe
+ // [if ([!]p0[.new])] dealloc_return
+ // [if ([!]p0[.new])] jumpr r31
+ case Hexagon::L2_loadrh_io:
+ case Hexagon::L2_loadruh_io:
+ // Rd = memh/memuh(Rs+#u3:1)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ MCI.getOperand(2).isImm() &&
+ isShiftedUInt<3, 1>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_L2;
+ }
+ break;
+ case Hexagon::L2_loadrb_io:
+ // Rd = memb(Rs+#u3:0)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ MCI.getOperand(2).isImm() && isUInt<3>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_L2;
+ }
+ break;
+ case Hexagon::L2_loadrd_io:
+ // Rdd = memd(r29+#u5:3)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
+ MCI.getOperand(2).isImm() &&
+ isShiftedUInt<5, 3>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_L2;
+ }
+ break;
+
+ case Hexagon::L4_return:
+
+ case Hexagon::L2_deallocframe:
+
+ return HexagonII::HSIG_L2;
+ case Hexagon::EH_RETURN_JMPR:
+
+ case Hexagon::J2_jumpr:
+ case Hexagon::JMPret:
+ // jumpr r31
+ // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
+ DstReg = MCI.getOperand(0).getReg();
+ if (Hexagon::R31 == DstReg) {
+ return HexagonII::HSIG_L2;
+ }
+ break;
+
+ case Hexagon::J2_jumprt:
+ case Hexagon::J2_jumprf:
+ case Hexagon::J2_jumprtnew:
+ case Hexagon::J2_jumprfnew:
+ case Hexagon::JMPrett:
+ case Hexagon::JMPretf:
+ case Hexagon::JMPrettnew:
+ case Hexagon::JMPretfnew:
+ case Hexagon::JMPrettnewpt:
+ case Hexagon::JMPretfnewpt:
+ DstReg = MCI.getOperand(1).getReg();
+ SrcReg = MCI.getOperand(0).getReg();
+ // [if ([!]p0[.new])] jumpr r31
+ if ((HexagonMCInstrInfo::isPredReg(SrcReg) && (Hexagon::P0 == SrcReg)) &&
+ (Hexagon::R31 == DstReg)) {
+ return HexagonII::HSIG_L2;
+ }
+ break;
+ case Hexagon::L4_return_t:
+
+ case Hexagon::L4_return_f:
+
+ case Hexagon::L4_return_tnew_pnt:
+
+ case Hexagon::L4_return_fnew_pnt:
+
+ case Hexagon::L4_return_tnew_pt:
+
+ case Hexagon::L4_return_fnew_pt:
+ // [if ([!]p0[.new])] dealloc_return
+ SrcReg = MCI.getOperand(0).getReg();
+ if (Hexagon::P0 == SrcReg) {
+ return HexagonII::HSIG_L2;
+ }
+ break;
+ //
+ // Group S1:
+ //
+ // memw(Rs+#u4:2) = Rt
+ // memb(Rs+#u4:0) = Rt
+ case Hexagon::S2_storeri_io:
+ // Special case this one from Group S2.
+ // memw(r29+#u5:2) = Rt
+ Src1Reg = MCI.getOperand(0).getReg();
+ Src2Reg = MCI.getOperand(2).getReg();
+ if (HexagonMCInstrInfo::isIntReg(Src1Reg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
+ Hexagon::R29 == Src1Reg && MCI.getOperand(1).isImm() &&
+ isShiftedUInt<5, 2>(MCI.getOperand(1).getImm())) {
+ return HexagonII::HSIG_S2;
+ }
+ // memw(Rs+#u4:2) = Rt
+ if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
+ MCI.getOperand(1).isImm() &&
+ isShiftedUInt<4, 2>(MCI.getOperand(1).getImm())) {
+ return HexagonII::HSIG_S1;
+ }
+ break;
+ case Hexagon::S2_storerb_io:
+ // memb(Rs+#u4:0) = Rt
+ Src1Reg = MCI.getOperand(0).getReg();
+ Src2Reg = MCI.getOperand(2).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
+ MCI.getOperand(1).isImm() && isUInt<4>(MCI.getOperand(1).getImm())) {
+ return HexagonII::HSIG_S1;
+ }
+ break;
+ //
+ // Group S2:
+ //
+ // memh(Rs+#u3:1) = Rt
+ // memw(r29+#u5:2) = Rt
+ // memd(r29+#s6:3) = Rtt
+ // memw(Rs+#u4:2) = #U1
+ // memb(Rs+#u4) = #U1
+ // allocframe(#u5:3)
+ case Hexagon::S2_storerh_io:
+ // memh(Rs+#u3:1) = Rt
+ Src1Reg = MCI.getOperand(0).getReg();
+ Src2Reg = MCI.getOperand(2).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
+ MCI.getOperand(1).isImm() &&
+ isShiftedUInt<3, 1>(MCI.getOperand(1).getImm())) {
+ return HexagonII::HSIG_S2;
+ }
+ break;
+ case Hexagon::S2_storerd_io:
+ // memd(r29+#s6:3) = Rtt
+ Src1Reg = MCI.getOperand(0).getReg();
+ Src2Reg = MCI.getOperand(2).getReg();
+ if (HexagonMCInstrInfo::isDblRegForSubInst(Src2Reg) &&
+ HexagonMCInstrInfo::isIntReg(Src1Reg) && Hexagon::R29 == Src1Reg &&
+ MCI.getOperand(1).isImm() &&
+ isShiftedInt<6, 3>(MCI.getOperand(1).getImm())) {
+ return HexagonII::HSIG_S2;
+ }
+ break;
+ case Hexagon::S4_storeiri_io:
+ // memw(Rs+#u4:2) = #U1
+ Src1Reg = MCI.getOperand(0).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
+ MCI.getOperand(1).isImm() &&
+ isShiftedUInt<4, 2>(MCI.getOperand(1).getImm()) &&
+ MCI.getOperand(2).isImm() && isUInt<1>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_S2;
+ }
+ break;
+ case Hexagon::S4_storeirb_io:
+ // memb(Rs+#u4) = #U1
+ Src1Reg = MCI.getOperand(0).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
+ MCI.getOperand(1).isImm() && isUInt<4>(MCI.getOperand(1).getImm()) &&
+ MCI.getOperand(2).isImm() && MCI.getOperand(2).isImm() &&
+ isUInt<1>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_S2;
+ }
+ break;
+ case Hexagon::S2_allocframe:
+ if (MCI.getOperand(0).isImm() &&
+ isShiftedUInt<5, 3>(MCI.getOperand(0).getImm())) {
+ return HexagonII::HSIG_S2;
+ }
+ break;
+ //
+ // Group A:
+ //
+ // Rx = add(Rx,#s7)
+ // Rd = Rs
+ // Rd = #u6
+ // Rd = #-1
+ // if ([!]P0[.new]) Rd = #0
+ // Rd = add(r29,#u6:2)
+ // Rx = add(Rx,Rs)
+ // P0 = cmp.eq(Rs,#u2)
+ // Rdd = combine(#0,Rs)
+ // Rdd = combine(Rs,#0)
+ // Rdd = combine(#u2,#U2)
+ // Rd = add(Rs,#1)
+ // Rd = add(Rs,#-1)
+ // Rd = sxth/sxtb/zxtb/zxth(Rs)
+ // Rd = and(Rs,#1)
+ case Hexagon::A2_addi:
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
+ // Rd = add(r29,#u6:2)
+ if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
+ MCI.getOperand(2).isImm() &&
+ isShiftedUInt<6, 2>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_A;
+ }
+ // Rx = add(Rx,#s7)
+ if (DstReg == SrcReg) {
+ return HexagonII::HSIG_A;
+ }
+ // Rd = add(Rs,#1)
+ // Rd = add(Rs,#-1)
+ if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ MCI.getOperand(2).isImm() && ((MCI.getOperand(2).getImm() == 1) ||
+ (MCI.getOperand(2).getImm() == -1))) {
+ return HexagonII::HSIG_A;
+ }
+ }
+ break;
+ case Hexagon::A2_add:
+ // Rx = add(Rx,Rs)
+ DstReg = MCI.getOperand(0).getReg();
+ Src1Reg = MCI.getOperand(1).getReg();
+ Src2Reg = MCI.getOperand(2).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg)) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A2_andir:
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ MCI.getOperand(2).isImm() && ((MCI.getOperand(2).getImm() == 1) ||
+ (MCI.getOperand(2).getImm() == 255))) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A2_tfr:
+ // Rd = Rs
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A2_tfrsi:
+ DstReg = MCI.getOperand(0).getReg();
+
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::C2_cmoveit:
+ case Hexagon::C2_cmovenewit:
+ case Hexagon::C2_cmoveif:
+ case Hexagon::C2_cmovenewif:
+ // if ([!]P0[.new]) Rd = #0
+ // Actual form:
+ // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
+ DstReg = MCI.getOperand(0).getReg(); // Rd
+ PredReg = MCI.getOperand(1).getReg(); // P0
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ Hexagon::P0 == PredReg && MCI.getOperand(2).isImm() &&
+ MCI.getOperand(2).getImm() == 0) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::C2_cmpeqi:
+ // P0 = cmp.eq(Rs,#u2)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (Hexagon::P0 == DstReg &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ MCI.getOperand(2).isImm() && isUInt<2>(MCI.getOperand(2).getImm())) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineii:
+ // Rdd = combine(#u2,#U2)
+ DstReg = MCI.getOperand(0).getReg();
+ if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
+ // TODO: Handle Globals/Symbols
+ (MCI.getOperand(1).isImm() && isUInt<2>(MCI.getOperand(1).getImm())) &&
+ ((MCI.getOperand(2).isImm() &&
+ isUInt<2>(MCI.getOperand(2).getImm())))) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A4_combineri:
+ // Rdd = combine(Rs,#0)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ (MCI.getOperand(2).isImm() && MCI.getOperand(2).getImm() == 0)) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A4_combineir:
+ // Rdd = combine(#0,Rs)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(2).getReg();
+ if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
+ (MCI.getOperand(1).isImm() && MCI.getOperand(1).getImm() == 0)) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A2_sxtb:
+ case Hexagon::A2_sxth:
+ case Hexagon::A2_zxtb:
+ case Hexagon::A2_zxth:
+ // Rd = sxth/sxtb/zxtb/zxth(Rs)
+ DstReg = MCI.getOperand(0).getReg();
+ SrcReg = MCI.getOperand(1).getReg();
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
+ HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) {
+ return HexagonII::HSIG_A;
+ }
+ break;
+ }
+
+ return HexagonII::HSIG_None;
+}
+
+bool HexagonMCInstrInfo::subInstWouldBeExtended(MCInst const &potentialDuplex) {
+
+ unsigned DstReg, SrcReg;
+
+ switch (potentialDuplex.getOpcode()) {
+ case Hexagon::A2_addi:
+ // testing for case of: Rx = add(Rx,#s7)
+ DstReg = potentialDuplex.getOperand(0).getReg();
+ SrcReg = potentialDuplex.getOperand(1).getReg();
+ if (DstReg == SrcReg && HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
+ if (potentialDuplex.getOperand(2).isExpr())
+ return true;
+ if (potentialDuplex.getOperand(2).isImm() &&
+ !(isShiftedInt<7, 0>(potentialDuplex.getOperand(2).getImm())))
+ return true;
+ }
+ break;
+ case Hexagon::A2_tfrsi:
+ DstReg = potentialDuplex.getOperand(0).getReg();
+
+ if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
+ if (potentialDuplex.getOperand(1).isExpr())
+ return true;
+ // Check for case of Rd = #-1.
+ if (potentialDuplex.getOperand(1).isImm() &&
+ (potentialDuplex.getOperand(1).getImm() == -1))
+ return false;
+ // Check for case of Rd = #u6.
+ if (potentialDuplex.getOperand(1).isImm() &&
+ !isShiftedUInt<6, 0>(potentialDuplex.getOperand(1).getImm()))
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ return false;
+}
+
+/// non-Symmetrical. See if these two instructions are fit for duplex pair.
+bool HexagonMCInstrInfo::isOrderedDuplexPair(MCInstrInfo const &MCII,
+ MCInst const &MIa, bool ExtendedA,
+ MCInst const &MIb, bool ExtendedB,
+ bool bisReversable) {
+ // Slot 1 cannot be extended in duplexes PRM 10.5
+ if (ExtendedA)
+ return false;
+ // Only A2_addi and A2_tfrsi can be extended in duplex form PRM 10.5
+ if (ExtendedB) {
+ unsigned Opcode = MIb.getOpcode();
+ if ((Opcode != Hexagon::A2_addi) && (Opcode != Hexagon::A2_tfrsi))
+ return false;
+ }
+ unsigned MIaG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIa),
+ MIbG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIb);
+
+ // If a duplex contains 2 insns in the same group, the insns must be
+ // ordered such that the numerically smaller opcode is in slot 1.
+ if ((MIaG != HexagonII::HSIG_None) && (MIaG == MIbG) && bisReversable) {
+ MCInst SubInst0 = HexagonMCInstrInfo::deriveSubInst(MIa);
+ MCInst SubInst1 = HexagonMCInstrInfo::deriveSubInst(MIb);
+
+ unsigned zeroedSubInstS0 =
+ subinstOpcodeMap.find(SubInst0.getOpcode())->second;
+ unsigned zeroedSubInstS1 =
+ subinstOpcodeMap.find(SubInst1.getOpcode())->second;
+
+ if (zeroedSubInstS0 < zeroedSubInstS1)
+ // subinstS0 (maps to slot 0) must be greater than
+ // subinstS1 (maps to slot 1)
+ return false;
+ }
+
+ // allocframe must always be in slot 0
+ if (MIb.getOpcode() == Hexagon::S2_allocframe)
+ return false;
+
+ if ((MIaG != HexagonII::HSIG_None) && (MIbG != HexagonII::HSIG_None)) {
+ // Prevent 2 instructions with extenders from duplexing
+ // Note that MIb (slot1) can be extended and MIa (slot0)
+ // can never be extended
+ if (subInstWouldBeExtended(MIa))
+ return false;
+
+ // If duplexing produces an extender, but the original did not
+ // have an extender, do not duplex.
+ if (subInstWouldBeExtended(MIb) && !ExtendedB)
+ return false;
+ }
+
+ // If jumpr r31 appears, it must be in slot 0, and never slot 1 (MIb).
+ if (MIbG == HexagonII::HSIG_L2) {
+ if ((MIb.getNumOperands() > 1) && MIb.getOperand(1).isReg() &&
+ (MIb.getOperand(1).getReg() == Hexagon::R31))
+ return false;
+ if ((MIb.getNumOperands() > 0) && MIb.getOperand(0).isReg() &&
+ (MIb.getOperand(0).getReg() == Hexagon::R31))
+ return false;
+ }
+
+ // If a store appears, it must be in slot 0 (MIa) 1st, and then slot 1 (MIb);
+ // therefore, not duplexable if slot 1 is a store, and slot 0 is not.
+ if ((MIbG == HexagonII::HSIG_S1) || (MIbG == HexagonII::HSIG_S2)) {
+ if ((MIaG != HexagonII::HSIG_S1) && (MIaG != HexagonII::HSIG_S2))
+ return false;
+ }
+
+ return (isDuplexPairMatch(MIaG, MIbG));
+}
+
+/// Symmetrical. See if these two instructions are fit for duplex pair.
+bool HexagonMCInstrInfo::isDuplexPair(MCInst const &MIa, MCInst const &MIb) {
+ unsigned MIaG = getDuplexCandidateGroup(MIa),
+ MIbG = getDuplexCandidateGroup(MIb);
+ return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
+}
+
+inline static void addOps(MCInst &subInstPtr, MCInst const &Inst,
+ unsigned opNum) {
+ if (Inst.getOperand(opNum).isReg()) {
+ switch (Inst.getOperand(opNum).getReg()) {
+ default:
+ llvm_unreachable("Not Duplexable Register");
+ break;
+ case Hexagon::R0:
+ case Hexagon::R1:
+ case Hexagon::R2:
+ case Hexagon::R3:
+ case Hexagon::R4:
+ case Hexagon::R5:
+ case Hexagon::R6:
+ case Hexagon::R7:
+ case Hexagon::D0:
+ case Hexagon::D1:
+ case Hexagon::D2:
+ case Hexagon::D3:
+ case Hexagon::R16:
+ case Hexagon::R17:
+ case Hexagon::R18:
+ case Hexagon::R19:
+ case Hexagon::R20:
+ case Hexagon::R21:
+ case Hexagon::R22:
+ case Hexagon::R23:
+ case Hexagon::D8:
+ case Hexagon::D9:
+ case Hexagon::D10:
+ case Hexagon::D11:
+ subInstPtr.addOperand(Inst.getOperand(opNum));
+ break;
+ }
+ } else
+ subInstPtr.addOperand(Inst.getOperand(opNum));
+}
+
+MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
+ MCInst Result;
+ switch (Inst.getOpcode()) {
+ default:
+ // dbgs() << "opcode: "<< Inst->getOpcode() << "\n";
+ llvm_unreachable("Unimplemented subinstruction \n");
+ break;
+ case Hexagon::A2_addi:
+ if (Inst.getOperand(2).isImm() && Inst.getOperand(2).getImm() == 1) {
+ Result.setOpcode(Hexagon::V4_SA1_inc);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break;
+ } // 1,2 SUBInst $Rd = add($Rs, #1)
+ else if (Inst.getOperand(2).isImm() && Inst.getOperand(2).getImm() == -1) {
+ Result.setOpcode(Hexagon::V4_SA1_dec);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break;
+ } // 1,2 SUBInst $Rd = add($Rs,#-1)
+ else if (Inst.getOperand(1).getReg() == Hexagon::R29) {
+ Result.setOpcode(Hexagon::V4_SA1_addsp);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break;
+ } // 1,3 SUBInst $Rd = add(r29, #$u6_2)
+ else {
+ Result.setOpcode(Hexagon::V4_SA1_addi);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break;
+ } // 1,2,3 SUBInst $Rx = add($Rx, #$s7)
+ case Hexagon::A2_add:
+ Result.setOpcode(Hexagon::V4_SA1_addrx);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst $Rx = add($_src_, $Rs)
+ case Hexagon::S2_allocframe:
+ Result.setOpcode(Hexagon::V4_SS2_allocframe);
+ addOps(Result, Inst, 0);
+ break; // 1 SUBInst allocframe(#$u5_3)
+ case Hexagon::A2_andir:
+ if (Inst.getOperand(2).getImm() == 255) {
+ Result.setOpcode(Hexagon::V4_SA1_zxtb);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 $Rd = and($Rs, #255)
+ } else {
+ Result.setOpcode(Hexagon::V4_SA1_and1);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rd = and($Rs, #1)
+ }
+ case Hexagon::C2_cmpeqi:
+ Result.setOpcode(Hexagon::V4_SA1_cmpeqi);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 2,3 SUBInst p0 = cmp.eq($Rs, #$u2)
+ case Hexagon::A4_combineii:
+ case Hexagon::A2_combineii:
+ if (Inst.getOperand(1).getImm() == 1) {
+ Result.setOpcode(Hexagon::V4_SA1_combine1i);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 1,3 SUBInst $Rdd = combine(#1, #$u2)
+ }
+
+ if (Inst.getOperand(1).getImm() == 3) {
+ Result.setOpcode(Hexagon::V4_SA1_combine3i);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 1,3 SUBInst $Rdd = combine(#3, #$u2)
+ }
+ if (Inst.getOperand(1).getImm() == 0) {
+ Result.setOpcode(Hexagon::V4_SA1_combine0i);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 1,3 SUBInst $Rdd = combine(#0, #$u2)
+ }
+ if (Inst.getOperand(1).getImm() == 2) {
+ Result.setOpcode(Hexagon::V4_SA1_combine2i);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 1,3 SUBInst $Rdd = combine(#2, #$u2)
+ }
+ case Hexagon::A4_combineir:
+ Result.setOpcode(Hexagon::V4_SA1_combinezr);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 1,3 SUBInst $Rdd = combine(#0, $Rs)
+
+ case Hexagon::A4_combineri:
+ Result.setOpcode(Hexagon::V4_SA1_combinerz);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rdd = combine($Rs, #0)
+ case Hexagon::L4_return_tnew_pnt:
+ case Hexagon::L4_return_tnew_pt:
+ Result.setOpcode(Hexagon::V4_SL2_return_tnew);
+ break; // none SUBInst if (p0.new) dealloc_return:nt
+ case Hexagon::L4_return_fnew_pnt:
+ case Hexagon::L4_return_fnew_pt:
+ Result.setOpcode(Hexagon::V4_SL2_return_fnew);
+ break; // none SUBInst if (!p0.new) dealloc_return:nt
+ case Hexagon::L4_return_f:
+ Result.setOpcode(Hexagon::V4_SL2_return_f);
+ break; // none SUBInst if (!p0) dealloc_return
+ case Hexagon::L4_return_t:
+ Result.setOpcode(Hexagon::V4_SL2_return_t);
+ break; // none SUBInst if (p0) dealloc_return
+ case Hexagon::L4_return:
+ Result.setOpcode(Hexagon::V4_SL2_return);
+ break; // none SUBInst dealloc_return
+ case Hexagon::L2_deallocframe:
+ Result.setOpcode(Hexagon::V4_SL2_deallocframe);
+ break; // none SUBInst deallocframe
+ case Hexagon::EH_RETURN_JMPR:
+ case Hexagon::J2_jumpr:
+ case Hexagon::JMPret:
+ Result.setOpcode(Hexagon::V4_SL2_jumpr31);
+ break; // none SUBInst jumpr r31
+ case Hexagon::J2_jumprf:
+ case Hexagon::JMPretf:
+ Result.setOpcode(Hexagon::V4_SL2_jumpr31_f);
+ break; // none SUBInst if (!p0) jumpr r31
+ case Hexagon::J2_jumprfnew:
+ case Hexagon::JMPretfnewpt:
+ case Hexagon::JMPretfnew:
+ Result.setOpcode(Hexagon::V4_SL2_jumpr31_fnew);
+ break; // none SUBInst if (!p0.new) jumpr:nt r31
+ case Hexagon::J2_jumprt:
+ case Hexagon::JMPrett:
+ Result.setOpcode(Hexagon::V4_SL2_jumpr31_t);
+ break; // none SUBInst if (p0) jumpr r31
+ case Hexagon::J2_jumprtnew:
+ case Hexagon::JMPrettnewpt:
+ case Hexagon::JMPrettnew:
+ Result.setOpcode(Hexagon::V4_SL2_jumpr31_tnew);
+ break; // none SUBInst if (p0.new) jumpr:nt r31
+ case Hexagon::L2_loadrb_io:
+ Result.setOpcode(Hexagon::V4_SL2_loadrb_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst $Rd = memb($Rs + #$u3_0)
+ case Hexagon::L2_loadrd_io:
+ Result.setOpcode(Hexagon::V4_SL2_loadrd_sp);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 1,3 SUBInst $Rdd = memd(r29 + #$u5_3)
+ case Hexagon::L2_loadrh_io:
+ Result.setOpcode(Hexagon::V4_SL2_loadrh_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst $Rd = memh($Rs + #$u3_1)
+ case Hexagon::L2_loadrub_io:
+ Result.setOpcode(Hexagon::V4_SL1_loadrub_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst $Rd = memub($Rs + #$u4_0)
+ case Hexagon::L2_loadruh_io:
+ Result.setOpcode(Hexagon::V4_SL2_loadruh_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst $Rd = memuh($Rs + #$u3_1)
+ case Hexagon::L2_loadri_io:
+ if (Inst.getOperand(1).getReg() == Hexagon::R29) {
+ Result.setOpcode(Hexagon::V4_SL2_loadri_sp);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 2);
+ break; // 2 1,3 SUBInst $Rd = memw(r29 + #$u5_2)
+ } else {
+ Result.setOpcode(Hexagon::V4_SL1_loadri_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst $Rd = memw($Rs + #$u4_2)
+ }
+ case Hexagon::S4_storeirb_io:
+ if (Inst.getOperand(2).getImm() == 0) {
+ Result.setOpcode(Hexagon::V4_SS2_storebi0);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst memb($Rs + #$u4_0)=#0
+ } else if (Inst.getOperand(2).getImm() == 1) {
+ Result.setOpcode(Hexagon::V4_SS2_storebi1);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 2 1,2 SUBInst memb($Rs + #$u4_0)=#1
+ }
+ case Hexagon::S2_storerb_io:
+ Result.setOpcode(Hexagon::V4_SS1_storeb_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
+ case Hexagon::S2_storerd_io:
+ Result.setOpcode(Hexagon::V4_SS2_stored_sp);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 2,3 SUBInst memd(r29 + #$s6_3) = $Rtt
+ case Hexagon::S2_storerh_io:
+ Result.setOpcode(Hexagon::V4_SS2_storeh_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
+ case Hexagon::S4_storeiri_io:
+ if (Inst.getOperand(2).getImm() == 0) {
+ Result.setOpcode(Hexagon::V4_SS2_storewi0);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#0
+ } else if (Inst.getOperand(2).getImm() == 1) {
+ Result.setOpcode(Hexagon::V4_SS2_storewi1);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#1
+ } else if (Inst.getOperand(0).getReg() == Hexagon::R29) {
+ Result.setOpcode(Hexagon::V4_SS2_storew_sp);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2);
+ break; // 1 2,3 SUBInst memw(r29 + #$u5_2) = $Rt
+ }
+ case Hexagon::S2_storeri_io:
+ if (Inst.getOperand(0).getReg() == Hexagon::R29) {
+ Result.setOpcode(Hexagon::V4_SS2_storew_sp);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2); // 1,2,3 SUBInst memw(sp + #$u5_2) = $Rt
+ } else {
+ Result.setOpcode(Hexagon::V4_SS1_storew_io);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ addOps(Result, Inst, 2); // 1,2,3 SUBInst memw($Rs + #$u4_2) = $Rt
+ }
+ break;
+ case Hexagon::A2_sxtb:
+ Result.setOpcode(Hexagon::V4_SA1_sxtb);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rd = sxtb($Rs)
+ case Hexagon::A2_sxth:
+ Result.setOpcode(Hexagon::V4_SA1_sxth);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rd = sxth($Rs)
+ case Hexagon::A2_tfr:
+ Result.setOpcode(Hexagon::V4_SA1_tfr);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rd = $Rs
+ case Hexagon::C2_cmovenewif:
+ Result.setOpcode(Hexagon::V4_SA1_clrfnew);
+ addOps(Result, Inst, 0);
+ break; // 2 SUBInst if (!p0.new) $Rd = #0
+ case Hexagon::C2_cmovenewit:
+ Result.setOpcode(Hexagon::V4_SA1_clrtnew);
+ addOps(Result, Inst, 0);
+ break; // 2 SUBInst if (p0.new) $Rd = #0
+ case Hexagon::C2_cmoveif:
+ Result.setOpcode(Hexagon::V4_SA1_clrf);
+ addOps(Result, Inst, 0);
+ break; // 2 SUBInst if (!p0) $Rd = #0
+ case Hexagon::C2_cmoveit:
+ Result.setOpcode(Hexagon::V4_SA1_clrt);
+ addOps(Result, Inst, 0);
+ break; // 2 SUBInst if (p0) $Rd = #0
+ case Hexagon::A2_tfrsi:
+ if (Inst.getOperand(1).isImm() && Inst.getOperand(1).getImm() == -1) {
+ Result.setOpcode(Hexagon::V4_SA1_setin1);
+ addOps(Result, Inst, 0);
+ break; // 2 1 SUBInst $Rd = #-1
+ } else {
+ Result.setOpcode(Hexagon::V4_SA1_seti);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rd = #$u6
+ }
+ case Hexagon::A2_zxtb:
+ Result.setOpcode(Hexagon::V4_SA1_zxtb);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 $Rd = and($Rs, #255)
+
+ case Hexagon::A2_zxth:
+ Result.setOpcode(Hexagon::V4_SA1_zxth);
+ addOps(Result, Inst, 0);
+ addOps(Result, Inst, 1);
+ break; // 1,2 SUBInst $Rd = zxth($Rs)
+ }
+ return Result;
+}
+
+static bool isStoreInst(unsigned opCode) {
+ switch (opCode) {
+ case Hexagon::S2_storeri_io:
+ case Hexagon::S2_storerb_io:
+ case Hexagon::S2_storerh_io:
+ case Hexagon::S2_storerd_io:
+ case Hexagon::S4_storeiri_io:
+ case Hexagon::S4_storeirb_io:
+ case Hexagon::S2_allocframe:
+ return true;
+ default:
+ return false;
+ }
+}
+
+SmallVector<DuplexCandidate, 8>
+HexagonMCInstrInfo::getDuplexPossibilties(MCInstrInfo const &MCII,
+ MCInst const &MCB) {
+ assert(isBundle(MCB));
+ SmallVector<DuplexCandidate, 8> duplexToTry;
+ // Use an "order matters" version of isDuplexPair.
+ unsigned numInstrInPacket = MCB.getNumOperands();
+
+ for (unsigned distance = 1; distance < numInstrInPacket; ++distance) {
+ for (unsigned j = HexagonMCInstrInfo::bundleInstructionsOffset,
+ k = j + distance;
+ (j < numInstrInPacket) && (k < numInstrInPacket); ++j, ++k) {
+
+ // Check if reversable.
+ bool bisReversable = true;
+ if (isStoreInst(MCB.getOperand(j).getInst()->getOpcode()) &&
+ isStoreInst(MCB.getOperand(k).getInst()->getOpcode())) {
+ DEBUG(dbgs() << "skip out of order write pair: " << k << "," << j
+ << "\n");
+ bisReversable = false;
+ }
+
+ // Try in order.
+ if (isOrderedDuplexPair(
+ MCII, *MCB.getOperand(k).getInst(),
+ HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1),
+ *MCB.getOperand(j).getInst(),
+ HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1),
+ bisReversable)) {
+ // Get iClass.
+ unsigned iClass = iClassOfDuplexPair(
+ getDuplexCandidateGroup(*MCB.getOperand(k).getInst()),
+ getDuplexCandidateGroup(*MCB.getOperand(j).getInst()));
+
+ // Save off pairs for duplex checking.
+ duplexToTry.push_back(DuplexCandidate(j, k, iClass));
+ DEBUG(dbgs() << "adding pair: " << j << "," << k << ":"
+ << MCB.getOperand(j).getInst()->getOpcode() << ","
+ << MCB.getOperand(k).getInst()->getOpcode() << "\n");
+ continue;
+ } else {
+ DEBUG(dbgs() << "skipping pair: " << j << "," << k << ":"
+ << MCB.getOperand(j).getInst()->getOpcode() << ","
+ << MCB.getOperand(k).getInst()->getOpcode() << "\n");
+ }
+
+ // Try reverse.
+ if (bisReversable) {
+ if (isOrderedDuplexPair(
+ MCII, *MCB.getOperand(j).getInst(),
+ HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1),
+ *MCB.getOperand(k).getInst(),
+ HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1),
+ bisReversable)) {
+ // Get iClass.
+ unsigned iClass = iClassOfDuplexPair(
+ getDuplexCandidateGroup(*MCB.getOperand(j).getInst()),
+ getDuplexCandidateGroup(*MCB.getOperand(k).getInst()));
+
+ // Save off pairs for duplex checking.
+ duplexToTry.push_back(DuplexCandidate(k, j, iClass));
+ DEBUG(dbgs() << "adding pair:" << k << "," << j << ":"
+ << MCB.getOperand(j).getInst()->getOpcode() << ","
+ << MCB.getOperand(k).getInst()->getOpcode() << "\n");
+ } else {
+ DEBUG(dbgs() << "skipping pair: " << k << "," << j << ":"
+ << MCB.getOperand(j).getInst()->getOpcode() << ","
+ << MCB.getOperand(k).getInst()->getOpcode() << "\n");
+ }
+ }
+ }
+ }
+ return duplexToTry;
+}
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp
index 7b0760e8318..2731278f0e4 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp
@@ -16,6 +16,8 @@
#include "Hexagon.h"
#include "HexagonBaseInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
namespace llvm {
@@ -33,6 +35,32 @@ size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
return (1);
}
+MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
+ MCInst const &inst0,
+ MCInst const &inst1) {
+ assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
+ MCInst *duplexInst = new (Context) MCInst;
+ duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
+
+ MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
+ MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
+ duplexInst->addOperand(MCOperand::createInst(SubInst0));
+ duplexInst->addOperand(MCOperand::createInst(SubInst1));
+ return duplexInst;
+}
+
+MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
+ size_t Index) {
+ assert(Index <= bundleSize(MCB));
+ if (Index == 0)
+ return nullptr;
+ MCInst const *Inst =
+ MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
+ if (isImmext(*Inst))
+ return Inst;
+ return nullptr;
+}
+
HexagonII::MemAccessSize
HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
@@ -188,6 +216,10 @@ bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
return false;
}
+bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
+ return extenderForIndex(MCB, Index) != nullptr;
+}
+
// Return whether the instruction is a legal new-value producer.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
@@ -214,6 +246,15 @@ bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
}
+bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
+ return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
+ (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
+}
+
+bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
+ return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
+}
+
// Return whether the instruction needs to be constant extended.
// 1) Always return true if the instruction has 'isExtended' flag set.
//
@@ -281,6 +322,15 @@ bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
return (Flags & innerLoopMask) != 0;
}
+bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
+ return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
+}
+
+bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
+ return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
+ (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
+}
+
// Return whether the insn is a new-value consumer.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
@@ -316,6 +366,10 @@ bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
}
+bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
+ return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
+}
+
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
}
@@ -367,6 +421,20 @@ bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
return false;
}
+void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
+ DuplexCandidate Candidate) {
+ assert(Candidate.packetIndexI < MCB.size());
+ assert(Candidate.packetIndexJ < MCB.size());
+ assert(isBundle(MCB));
+ MCInst *Duplex =
+ deriveDuplex(Context, Candidate.iClass,
+ *MCB.getOperand(Candidate.packetIndexJ).getInst(),
+ *MCB.getOperand(Candidate.packetIndexI).getInst());
+ assert(Duplex != nullptr);
+ MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
+ MCB.erase(MCB.begin() + Candidate.packetIndexJ);
+}
+
void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h
index 99970e2577c..f09dfd8cf47 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h
@@ -15,15 +15,14 @@
#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
#include "llvm/MC/MCInst.h"
-#include "llvm/MC/MCInstrInfo.h"
-
-#include <bitset>
namespace llvm {
+class MCContext;
class MCInstrDesc;
class MCInstrInfo;
class MCInst;
class MCOperand;
+class MCSubtargetInfo;
namespace HexagonII {
enum class MemAccessSize;
}
@@ -48,6 +47,16 @@ size_t bundleSize(MCInst const &MCI);
// Returns a iterator range of instructions in this bundle
iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
+// Return the extender for instruction at Index or nullptr if none
+MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
+
+// Create a duplex instruction given the two subinsts
+MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
+ MCInst const &inst1);
+
+// Convert this instruction in to a duplex subinst
+MCInst deriveSubInst(MCInst const &Inst);
+
// Return memory access size
HexagonII::MemAccessSize getAccessSize(MCInstrInfo const &MCII,
MCInst const &MCI);
@@ -60,6 +69,13 @@ unsigned short getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI);
MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
+// Return which duplex group this instruction belongs to
+unsigned getDuplexCandidateGroup(MCInst const &MI);
+
+// Return a list of all possible instruction duplex combinations
+SmallVector<DuplexCandidate, 8> getDuplexPossibilties(MCInstrInfo const &MCII,
+ MCInst const &MCB);
+
// Return the index of the extendable operand
unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
@@ -99,6 +115,9 @@ unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
MCInst const &MCI);
+// Does the packet have an extender for the instruction at Index
+bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
+
bool hasImmExt(MCInst const &MCI);
// Return whether the instruction is a legal new-value producer.
@@ -113,9 +132,24 @@ bool isBundle(MCInst const &MCI);
// Return whether the insn is an actual insn.
bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
+// Return the duplex iclass given the two duplex classes
+unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
+
// Return whether the instruction needs to be constant extended.
bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
+// Is this double register suitable for use in a duplex subinst
+bool isDblRegForSubInst(unsigned Reg);
+
+// Is this a duplex instruction
+bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
+
+// Can these instructions be duplexed
+bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
+
+// Can these duplex classes be combine in to a duplex instruction
+bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
+
// Return true if the insn may be extended based on the operand value.
bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
@@ -131,6 +165,12 @@ bool isImmext(MCInst const &MCI);
// Returns whether this bundle is an endloop0
bool isInnerLoop(MCInst const &MCI);
+// Is this an integer register
+bool isIntReg(unsigned Reg);
+
+// Is this register suitable for use in a duplex subinst
+bool isIntRegForSubInst(unsigned Reg);
+
// Return whether the insn is a new-value consumer.
bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
@@ -138,6 +178,11 @@ bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
bool isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI,
unsigned short OperandNum);
+// Can these two instructions be duplexed
+bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
+ bool ExtendedA, MCInst const &MIb, bool ExtendedB,
+ bool bisReversable);
+
// Returns whether this bundle is an endloop1
bool isOuterLoop(MCInst const &MCI);
@@ -147,6 +192,9 @@ bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
// Return whether the predicate sense is true
bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
+// Is this a predicate register
+bool isPredReg(unsigned Reg);
+
// Return whether the insn is a prefix.
bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
@@ -164,11 +212,17 @@ void padEndloop(MCInst &MCI);
bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
+// Replace the instructions inside MCB, represented by Candidate
+void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate);
+
// Marks a bundle as endloop0
void setInnerLoop(MCInst &MCI);
// Marks a bundle as endloop1
void setOuterLoop(MCInst &MCI);
+
+// Would duplexing this instruction create a requirement to extend
+bool subInstWouldBeExtended(MCInst const &potentialDuplex);
}
}
diff --git a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCShuffler.cpp b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCShuffler.cpp
index 37cf3754870..8e70280c1a0 100644
--- a/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCShuffler.cpp
+++ b/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCShuffler.cpp
@@ -147,6 +147,61 @@ bool llvm::HexagonMCShuffle(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
return true;
}
+unsigned
+llvm::HexagonMCShuffle(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
+ MCContext &Context, MCInst &MCB,
+ SmallVector<DuplexCandidate, 8> possibleDuplexes) {
+
+ if (DisableShuffle)
+ return HexagonShuffler::SHUFFLE_SUCCESS;
+
+ if (!HexagonMCInstrInfo::bundleSize(MCB)) {
+ // There once was a bundle:
+ // BUNDLE %D2<imp-def>, %R4<imp-def>, %R5<imp-def>, %D7<imp-def>, ...
+ // * %D2<def> = IMPLICIT_DEF; flags:
+ // * %D7<def> = IMPLICIT_DEF; flags:
+ // After the IMPLICIT_DEFs were removed by the asm printer, the bundle
+ // became empty.
+ DEBUG(dbgs() << "Skipping empty bundle");
+ return HexagonShuffler::SHUFFLE_SUCCESS;
+ } else if (!HexagonMCInstrInfo::isBundle(MCB)) {
+ DEBUG(dbgs() << "Skipping stand-alone insn");
+ return HexagonShuffler::SHUFFLE_SUCCESS;
+ }
+
+ bool doneShuffling = false;
+ unsigned shuffleError;
+ while (possibleDuplexes.size() > 0 && (!doneShuffling)) {
+ // case of Duplex Found
+ DuplexCandidate duplexToTry = possibleDuplexes.pop_back_val();
+ MCInst Attempt(MCB);
+ HexagonMCInstrInfo::replaceDuplex(Context, Attempt, duplexToTry);
+ HexagonMCShuffler MCS(MCII, STI, Attempt); // copy packet to the shuffler
+ if (MCS.size() == 1) { // case of one duplex
+ // copy the created duplex in the shuffler to the bundle
+ MCS.copyTo(MCB);
+ doneShuffling = true;
+ return HexagonShuffler::SHUFFLE_SUCCESS;
+ }
+ // try shuffle with this duplex
+ doneShuffling = MCS.reshuffleTo(MCB);
+ shuffleError = MCS.getError();
+
+ if (doneShuffling)
+ break;
+ }
+
+ if (doneShuffling == false) {
+ HexagonMCShuffler MCS(MCII, STI, MCB);
+ doneShuffling = MCS.reshuffleTo(MCB); // shuffle
+ shuffleError = MCS.getError();
+ }
+ if (!doneShuffling)
+ return shuffleError;
+
+ return HexagonShuffler::SHUFFLE_SUCCESS;
+}
+
bool llvm::HexagonMCShuffle(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
MCInst &MCB, MCInst const *AddMI, int fixupCount) {
if (!HexagonMCInstrInfo::isBundle(MCB) || !AddMI)
OpenPOWER on IntegriCloud