summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/BPF/BTFDebug.cpp
diff options
context:
space:
mode:
authorYonghong Song <yhs@fb.com>2019-03-28 21:59:49 +0000
committerYonghong Song <yhs@fb.com>2019-03-28 21:59:49 +0000
commit360a4e2ca6ead28b4d761b189c3995be5ac72a91 (patch)
tree23732508543f26ec86a25e44a5622f0fef04e5e0 /llvm/lib/Target/BPF/BTFDebug.cpp
parent3dd72ea810dbb0c45c5815d2f43cc2b393d274a1 (diff)
downloadbcm5719-llvm-360a4e2ca6ead28b4d761b189c3995be5ac72a91.tar.gz
bcm5719-llvm-360a4e2ca6ead28b4d761b189c3995be5ac72a91.zip
[BPF] add proper multi-dimensional array support
For multi-dimensional array like below int a[2][3]; the previous implementation generates BTF_KIND_ARRAY type like below: . element_type: int . index_type: unsigned int . number of elements: 6 This is not the best way to represent arrays, esp., when converting BTF back to headers and users will see int a[6]; instead. This patch generates proper support for multi-dimensional arrays. For "int a[2][3]", the two BTF_KIND_ARRAY types will be generated: Type #n: . element_type: int . index_type: unsigned int . number of elements: 3 Type #(n+1): . element_type: #n . index_type: unsigned int . number of elements: 2 The linux kernel already supports such a multi-dimensional array representation properly. Signed-off-by: Yonghong Song <yhs@fb.com> Differential Revision: https://reviews.llvm.org/D59943 llvm-svn: 357215
Diffstat (limited to 'llvm/lib/Target/BPF/BTFDebug.cpp')
-rw-r--r--llvm/lib/Target/BPF/BTFDebug.cpp68
1 files changed, 35 insertions, 33 deletions
diff --git a/llvm/lib/Target/BPF/BTFDebug.cpp b/llvm/lib/Target/BPF/BTFDebug.cpp
index f054933a2aa..6218ef41add 100644
--- a/llvm/lib/Target/BPF/BTFDebug.cpp
+++ b/llvm/lib/Target/BPF/BTFDebug.cpp
@@ -158,45 +158,24 @@ void BTFTypeEnum::emitType(MCStreamer &OS) {
}
}
-BTFTypeArray::BTFTypeArray(const DICompositeType *ATy) : ATy(ATy) {
+BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
Kind = BTF::BTF_KIND_ARRAY;
+ BTFType.NameOff = 0;
BTFType.Info = Kind << 24;
+ BTFType.Size = 0;
+
+ ArrayInfo.ElemType = ElemTypeId;
+ ArrayInfo.Nelems = NumElems;
}
-/// Represent a BTF array. BTF does not record array dimensions,
-/// so conceptually a BTF array is a one-dimensional array.
+/// Represent a BTF array.
void BTFTypeArray::completeType(BTFDebug &BDebug) {
- BTFType.NameOff = BDebug.addString(ATy->getName());
- BTFType.Size = 0;
-
- auto *BaseType = ATy->getBaseType().resolve();
- ArrayInfo.ElemType = BDebug.getTypeId(BaseType);
// The IR does not really have a type for the index.
// A special type for array index should have been
// created during initial type traversal. Just
// retrieve that type id.
ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
-
- // Get the number of array elements.
- // If the array size is 0, set the number of elements as 0.
- // Otherwise, recursively traverse the base types to
- // find the element size. The number of elements is
- // the totoal array size in bits divided by
- // element size in bits.
- uint64_t ArraySizeInBits = ATy->getSizeInBits();
- if (!ArraySizeInBits) {
- ArrayInfo.Nelems = 0;
- } else {
- uint32_t BaseTypeSize = BaseType->getSizeInBits();
- while (!BaseTypeSize) {
- const auto *DDTy = cast<DIDerivedType>(BaseType);
- BaseType = DDTy->getBaseType().resolve();
- assert(BaseType);
- BaseTypeSize = BaseType->getSizeInBits();
- }
- ArrayInfo.Nelems = ATy->getSizeInBits() / BaseTypeSize;
- }
}
void BTFTypeArray::emitType(MCStreamer &OS) {
@@ -447,8 +426,34 @@ void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
}
void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
- auto TypeEntry = llvm::make_unique<BTFTypeArray>(CTy);
- TypeId = addType(std::move(TypeEntry), CTy);
+ // Visit array element type.
+ uint32_t ElemTypeId;
+ visitTypeEntry(CTy->getBaseType().resolve(), ElemTypeId);
+
+ if (!CTy->getSizeInBits()) {
+ auto TypeEntry = llvm::make_unique<BTFTypeArray>(ElemTypeId, 0);
+ ElemTypeId = addType(std::move(TypeEntry), CTy);
+ } else {
+ // Visit array dimensions.
+ DINodeArray Elements = CTy->getElements();
+ for (int I = Elements.size() - 1; I >= 0; --I) {
+ if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
+ if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
+ const DISubrange *SR = cast<DISubrange>(Element);
+ auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
+ int64_t Count = CI->getSExtValue();
+
+ auto TypeEntry = llvm::make_unique<BTFTypeArray>(ElemTypeId, Count);
+ if (I == 0)
+ ElemTypeId = addType(std::move(TypeEntry), CTy);
+ else
+ ElemTypeId = addType(std::move(TypeEntry));
+ }
+ }
+ }
+
+ // The array TypeId is the type id of the outermost dimension.
+ TypeId = ElemTypeId;
// The IR does not have a type for array index while BTF wants one.
// So create an array index type if there is none.
@@ -457,9 +462,6 @@ void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
0, "__ARRAY_SIZE_TYPE__");
ArrayIndexTypeId = addType(std::move(TypeEntry));
}
-
- // Visit array element type.
- visitTypeEntry(CTy->getBaseType().resolve());
}
void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
OpenPOWER on IntegriCloud