diff options
author | Craig Topper <craig.topper@gmail.com> | 2017-04-28 05:31:46 +0000 |
---|---|---|
committer | Craig Topper <craig.topper@gmail.com> | 2017-04-28 05:31:46 +0000 |
commit | d0af7e8ab822031960c68d5893ec07c1d186b67a (patch) | |
tree | 463207d3c15bb2f1f850059734fa13c1823aed40 /llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp | |
parent | 6e256873e40aacd59fa7a6e3103686693741d4d1 (diff) | |
download | bcm5719-llvm-d0af7e8ab822031960c68d5893ec07c1d186b67a.tar.gz bcm5719-llvm-d0af7e8ab822031960c68d5893ec07c1d186b67a.zip |
[SelectionDAG] Use KnownBits struct in DAG's computeKnownBits and simplifyDemandedBits
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 586 |
1 files changed, 276 insertions, 310 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp index 9573d3b8e55..a246ec87863 100644 --- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -1967,9 +1967,9 @@ bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { /// for bits that V cannot have. bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth) const { - APInt KnownZero, KnownOne; - computeKnownBits(Op, KnownZero, KnownOne, Depth); - return Mask.isSubsetOf(KnownZero); + KnownBits Known; + computeKnownBits(Op, Known, Depth); + return Mask.isSubsetOf(Known.Zero); } /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that @@ -1985,31 +1985,30 @@ static const APInt *getValidShiftAmountConstant(SDValue V) { } /// Determine which bits of Op are known to be either zero or one and return -/// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are -/// those that are shared by every vector element. -void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, - APInt &KnownOne, unsigned Depth) const { +/// them in Known. For vectors, the known bits are those that are shared by +/// every vector element. +void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, + unsigned Depth) const { EVT VT = Op.getValueType(); APInt DemandedElts = VT.isVector() ? APInt::getAllOnesValue(VT.getVectorNumElements()) : APInt(1, 1); - computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); + computeKnownBits(Op, Known, DemandedElts, Depth); } /// Determine which bits of Op are known to be either zero or one and return -/// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows -/// us to only collect the known bits that are shared by the requested vector -/// elements. -void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, - APInt &KnownOne, const APInt &DemandedElts, +/// them in Known. The DemandedElts argument allows us to only collect the known +/// bits that are shared by the requested vector elements. +void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known, + const APInt &DemandedElts, unsigned Depth) const { unsigned BitWidth = Op.getScalarValueSizeInBits(); - KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. + Known = KnownBits(BitWidth); // Don't know anything. if (Depth == 6) return; // Limit search depth. - APInt KnownZero2, KnownOne2; + KnownBits Known2; unsigned NumElts = DemandedElts.getBitWidth(); if (!DemandedElts) @@ -2019,35 +2018,35 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, switch (Opcode) { case ISD::Constant: // We know all of the bits for a constant! - KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); - KnownZero = ~KnownOne; + Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); + Known.Zero = ~Known.One; break; case ISD::BUILD_VECTOR: // Collect the known bits that are shared by every demanded vector element. assert(NumElts == Op.getValueType().getVectorNumElements() && "Unexpected vector size"); - KnownZero.setAllBits(); KnownOne.setAllBits(); + Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { if (!DemandedElts[i]) continue; SDValue SrcOp = Op.getOperand(i); - computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1); + computeKnownBits(SrcOp, Known2, Depth + 1); // BUILD_VECTOR can implicitly truncate sources, we must handle this. if (SrcOp.getValueSizeInBits() != BitWidth) { assert(SrcOp.getValueSizeInBits() > BitWidth && "Expected BUILD_VECTOR implicit truncation"); - KnownOne2 = KnownOne2.trunc(BitWidth); - KnownZero2 = KnownZero2.trunc(BitWidth); + Known2.One = Known2.One.trunc(BitWidth); + Known2.Zero = Known2.Zero.trunc(BitWidth); } // Known bits are the values that are shared by every demanded element. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; } break; @@ -2055,7 +2054,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // Collect the known bits that are shared by every vector element referenced // by the shuffle. APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); - KnownZero.setAllBits(); KnownOne.setAllBits(); + Known.Zero.setAllBits(); Known.One.setAllBits(); const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); for (unsigned i = 0; i != NumElts; ++i) { @@ -2066,8 +2065,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (M < 0) { // For UNDEF elements, we don't know anything about the common state of // the shuffle result. - KnownOne.clearAllBits(); - KnownZero.clearAllBits(); + Known.One.clearAllBits(); + Known.Zero.clearAllBits(); DemandedLHS.clearAllBits(); DemandedRHS.clearAllBits(); break; @@ -2081,24 +2080,24 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // Known bits are the values that are shared by every demanded element. if (!!DemandedLHS) { SDValue LHS = Op.getOperand(0); - computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1); - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; } // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; if (!!DemandedRHS) { SDValue RHS = Op.getOperand(1); - computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1); - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; } break; } case ISD::CONCAT_VECTORS: { // Split DemandedElts and test each of the demanded subvectors. - KnownZero.setAllBits(); KnownOne.setAllBits(); + Known.Zero.setAllBits(); Known.One.setAllBits(); EVT SubVectorVT = Op.getOperand(0).getValueType(); unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); unsigned NumSubVectors = Op.getNumOperands(); @@ -2107,12 +2106,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, DemandedSub = DemandedSub.trunc(NumSubVectorElts); if (!!DemandedSub) { SDValue Sub = Op.getOperand(i); - computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1); - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + computeKnownBits(Sub, Known2, DemandedSub, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; } // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; } break; @@ -2127,9 +2126,9 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // Offset the demanded elts by the subvector index. uint64_t Idx = SubIdx->getZExtValue(); APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx); - computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1); + computeKnownBits(Src, Known, DemandedSrc, Depth + 1); } else { - computeKnownBits(Src, KnownZero, KnownOne, Depth + 1); + computeKnownBits(Src, Known, Depth + 1); } break; } @@ -2143,7 +2142,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // Fast handling of 'identity' bitcasts. if (BitWidth == SubBitWidth) { - computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1); + computeKnownBits(N0, Known, DemandedElts, Depth + 1); break; } @@ -2167,10 +2166,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, SubDemandedElts.setBit(i * SubScale); for (unsigned i = 0; i != SubScale; ++i) { - computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i), + computeKnownBits(N0, Known2, SubDemandedElts.shl(i), Depth + 1); - KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i); - KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i); + Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i); + Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i); } } @@ -2187,16 +2186,16 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (DemandedElts[i]) SubDemandedElts.setBit(i / SubScale); - computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1); + computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1); - KnownZero.setAllBits(); KnownOne.setAllBits(); + Known.Zero.setAllBits(); Known.One.setAllBits(); for (unsigned i = 0; i != NumElts; ++i) if (DemandedElts[i]) { unsigned Offset = (i % SubScale) * BitWidth; - KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth); - KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth); + Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); + Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; } } @@ -2204,101 +2203,91 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, } case ISD::AND: // If either the LHS or the RHS are Zero, the result is zero. - computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // Output known-1 bits are only known if set in both the LHS & RHS. - KnownOne &= KnownOne2; + Known.One &= Known2.One; // Output known-0 are known to be clear if zero in either the LHS | RHS. - KnownZero |= KnownZero2; + Known.Zero |= Known2.Zero; break; case ISD::OR: - computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // Output known-0 bits are only known if clear in both the LHS & RHS. - KnownZero &= KnownZero2; + Known.Zero &= Known2.Zero; // Output known-1 are known to be set if set in either the LHS | RHS. - KnownOne |= KnownOne2; + Known.One |= Known2.One; break; case ISD::XOR: { - computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // Output known-0 bits are known if clear or set in both the LHS & RHS. - APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); // Output known-1 are known to be set if set in only one of the LHS, RHS. - KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); - KnownZero = KnownZeroOut; + Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); + Known.Zero = KnownZeroOut; break; } case ISD::MUL: { - computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // If low bits are zero in either operand, output low known-0 bits. // Also compute a conservative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the // interesting case of alignment computation. - KnownOne.clearAllBits(); - unsigned TrailZ = KnownZero.countTrailingOnes() + - KnownZero2.countTrailingOnes(); - unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + - KnownZero2.countLeadingOnes(), + Known.One.clearAllBits(); + unsigned TrailZ = Known.Zero.countTrailingOnes() + + Known2.Zero.countTrailingOnes(); + unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() + + Known2.Zero.countLeadingOnes(), BitWidth) - BitWidth; - KnownZero.clearAllBits(); - KnownZero.setLowBits(std::min(TrailZ, BitWidth)); - KnownZero.setHighBits(std::min(LeadZ, BitWidth)); + Known.Zero.clearAllBits(); + Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); + Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); break; } case ISD::UDIV: { // For the purposes of computing leading zeros we can conservatively // treat a udiv as a logical right shift by the power of 2 known to // be less than the denominator. - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - unsigned LeadZ = KnownZero2.countLeadingOnes(); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); + unsigned LeadZ = Known2.Zero.countLeadingOnes(); - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); + unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros(); if (RHSUnknownLeadingOnes != BitWidth) LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); - KnownZero.setHighBits(LeadZ); + Known.Zero.setHighBits(LeadZ); break; } case ISD::SELECT: - computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(2), Known, Depth+1); // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); + computeKnownBits(Op.getOperand(1), Known2, Depth+1); // Only known if known in both the LHS and RHS. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; break; case ISD::SELECT_CC: - computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(3), Known, Depth+1); // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; - computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); + computeKnownBits(Op.getOperand(2), Known2, Depth+1); // Only known if known in both the LHS and RHS. - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; break; case ISD::SMULO: case ISD::UMULO: @@ -2311,49 +2300,46 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) - KnownZero.setBitsFrom(1); + Known.Zero.setBitsFrom(1); break; case ISD::SETCC: // If we know the result of a setcc has the top bits zero, use this info. if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) - KnownZero.setBitsFrom(1); + Known.Zero.setBitsFrom(1); break; case ISD::SHL: if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - KnownZero <<= *ShAmt; - KnownOne <<= *ShAmt; + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + Known.Zero <<= *ShAmt; + Known.One <<= *ShAmt; // Low bits are known zero. - KnownZero.setLowBits(ShAmt->getZExtValue()); + Known.Zero.setLowBits(ShAmt->getZExtValue()); } break; case ISD::SRL: if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - KnownZero.lshrInPlace(*ShAmt); - KnownOne.lshrInPlace(*ShAmt); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + Known.Zero.lshrInPlace(*ShAmt); + Known.One.lshrInPlace(*ShAmt); // High bits are known zero. - KnownZero.setHighBits(ShAmt->getZExtValue()); + Known.Zero.setHighBits(ShAmt->getZExtValue()); } break; case ISD::SRA: if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - KnownZero.lshrInPlace(*ShAmt); - KnownOne.lshrInPlace(*ShAmt); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + Known.Zero.lshrInPlace(*ShAmt); + Known.One.lshrInPlace(*ShAmt); // If we know the value of the sign bit, then we know it is copied across // the high bits by the shift amount. APInt SignMask = APInt::getSignMask(BitWidth); SignMask.lshrInPlace(*ShAmt); // Adjust to where it is now in the mask. - if (KnownZero.intersects(SignMask)) { - KnownZero.setHighBits(ShAmt->getZExtValue());// New bits are known zero. - } else if (KnownOne.intersects(SignMask)) { - KnownOne.setHighBits(ShAmt->getZExtValue()); // New bits are known one. + if (Known.Zero.intersects(SignMask)) { + Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero. + } else if (Known.One.intersects(SignMask)) { + Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one. } } break; @@ -2374,22 +2360,21 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (NewBits.getBoolValue()) InputDemandedBits |= InSignMask; - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - KnownOne &= InputDemandedBits; - KnownZero &= InputDemandedBits; + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + Known.One &= InputDemandedBits; + Known.Zero &= InputDemandedBits; // If the sign bit of the input is known set or clear, then we know the // top bits of the result. - if (KnownZero.intersects(InSignMask)) { // Input sign bit known clear - KnownZero |= NewBits; - KnownOne &= ~NewBits; - } else if (KnownOne.intersects(InSignMask)) { // Input sign bit known set - KnownOne |= NewBits; - KnownZero &= ~NewBits; + if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear + Known.Zero |= NewBits; + Known.One &= ~NewBits; + } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set + Known.One |= NewBits; + Known.Zero &= ~NewBits; } else { // Input sign bit unknown - KnownZero &= ~NewBits; - KnownOne &= ~NewBits; + Known.Zero &= ~NewBits; + Known.One &= ~NewBits; } break; } @@ -2398,7 +2383,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTPOP: { - KnownZero.setBitsFrom(Log2_32(BitWidth)+1); + Known.Zero.setBitsFrom(Log2_32(BitWidth)+1); break; } case ISD::LOAD: { @@ -2407,36 +2392,35 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { EVT VT = LD->getMemoryVT(); unsigned MemBits = VT.getScalarSizeInBits(); - KnownZero.setBitsFrom(MemBits); + Known.Zero.setBitsFrom(MemBits); } else if (const MDNode *Ranges = LD->getRanges()) { if (LD->getExtensionType() == ISD::NON_EXTLOAD) - computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne); + computeKnownBitsFromRangeMetadata(*Ranges, Known.Zero, Known.One); } break; } case ISD::ZERO_EXTEND_VECTOR_INREG: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarSizeInBits(); - KnownZero = KnownZero.trunc(InBits); - KnownOne = KnownOne.trunc(InBits); - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, + Known.Zero = Known.Zero.trunc(InBits); + Known.One = Known.One.trunc(InBits); + computeKnownBits(Op.getOperand(0), Known, DemandedElts.zext(InVT.getVectorNumElements()), Depth + 1); - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); - KnownZero.setBitsFrom(InBits); + Known.Zero = Known.Zero.zext(BitWidth); + Known.One = Known.One.zext(BitWidth); + Known.Zero.setBitsFrom(InBits); break; } case ISD::ZERO_EXTEND: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarSizeInBits(); - KnownZero = KnownZero.trunc(InBits); - KnownOne = KnownOne.trunc(InBits); - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); - KnownZero.setBitsFrom(InBits); + Known.Zero = Known.Zero.trunc(InBits); + Known.One = Known.One.trunc(InBits); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + Known.Zero = Known.Zero.zext(BitWidth); + Known.One = Known.One.zext(BitWidth); + Known.Zero.setBitsFrom(InBits); break; } // TODO ISD::SIGN_EXTEND_VECTOR_INREG @@ -2444,49 +2428,47 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarSizeInBits(); - KnownZero = KnownZero.trunc(InBits); - KnownOne = KnownOne.trunc(InBits); - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); + Known.Zero = Known.Zero.trunc(InBits); + Known.One = Known.One.trunc(InBits); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); // If the sign bit is known to be zero or one, then sext will extend // it to the top bits, else it will just zext. - KnownZero = KnownZero.sext(BitWidth); - KnownOne = KnownOne.sext(BitWidth); + Known.Zero = Known.Zero.sext(BitWidth); + Known.One = Known.One.sext(BitWidth); break; } case ISD::ANY_EXTEND: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarSizeInBits(); - KnownZero = KnownZero.trunc(InBits); - KnownOne = KnownOne.trunc(InBits); - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); + Known.Zero = Known.Zero.trunc(InBits); + Known.One = Known.One.trunc(InBits); + computeKnownBits(Op.getOperand(0), Known, Depth+1); + Known.Zero = Known.Zero.zext(BitWidth); + Known.One = Known.One.zext(BitWidth); break; } case ISD::TRUNCATE: { EVT InVT = Op.getOperand(0).getValueType(); unsigned InBits = InVT.getScalarSizeInBits(); - KnownZero = KnownZero.zext(InBits); - KnownOne = KnownOne.zext(InBits); - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - KnownZero = KnownZero.trunc(BitWidth); - KnownOne = KnownOne.trunc(BitWidth); + Known.Zero = Known.Zero.zext(InBits); + Known.One = Known.One.zext(InBits); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + Known.Zero = Known.Zero.trunc(BitWidth); + Known.One = Known.One.trunc(BitWidth); break; } case ISD::AssertZext: { EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); - KnownZero |= (~InMask); - KnownOne &= (~KnownZero); + computeKnownBits(Op.getOperand(0), Known, Depth+1); + Known.Zero |= (~InMask); + Known.One &= (~Known.Zero); break; } case ISD::FGETSIGN: // All bits are zero except the low bit. - KnownZero.setBitsFrom(1); + Known.Zero.setBitsFrom(1); break; case ISD::USUBO: case ISD::SSUBO: @@ -2495,7 +2477,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) - KnownZero.setBitsFrom(1); + Known.Zero.setBitsFrom(1); break; } LLVM_FALLTHROUGH; @@ -2509,16 +2491,16 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); // NLZ can't be BitWidth with no sign bit APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); // If all of the MaskV bits are known to be zero, then we know the // output top bits are zero, because we now know that the output is // from [0-C]. - if ((KnownZero2 & MaskV) == MaskV) { + if ((Known2.Zero & MaskV) == MaskV) { unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); // Top bits known zero. - KnownZero.setHighBits(NLZ2); + Known.Zero.setHighBits(NLZ2); } } } @@ -2526,17 +2508,15 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // If low bits are know to be zero in both operands, then we know they are // going to be 0 in the result. Both addition and complement operations // preserve the low zero bits. - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); + unsigned KnownZeroLow = Known2.Zero.countTrailingOnes(); if (KnownZeroLow == 0) break; - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); KnownZeroLow = std::min(KnownZeroLow, - KnownZero2.countTrailingOnes()); - KnownZero.setBits(0, KnownZeroLow); + Known2.Zero.countTrailingOnes()); + Known.Zero.setBits(0, KnownZeroLow); break; } case ISD::UADDO: @@ -2546,7 +2526,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1) - KnownZero.setBitsFrom(1); + Known.Zero.setBitsFrom(1); break; } LLVM_FALLTHROUGH; @@ -2560,17 +2540,16 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // known to be clear. For example, if one input has the top 10 bits clear // and the other has the top 8 bits clear, we know the top 7 bits of the // output must be clear. - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - unsigned KnownZeroHigh = KnownZero2.countLeadingOnes(); - unsigned KnownZeroLow = KnownZero2.countTrailingOnes(); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); + unsigned KnownZeroHigh = Known2.Zero.countLeadingOnes(); + unsigned KnownZeroLow = Known2.Zero.countTrailingOnes(); - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); KnownZeroHigh = std::min(KnownZeroHigh, - KnownZero2.countLeadingOnes()); + Known2.Zero.countLeadingOnes()); KnownZeroLow = std::min(KnownZeroLow, - KnownZero2.countTrailingOnes()); + Known2.Zero.countTrailingOnes()); if (Opcode == ISD::ADDE) { // With ADDE, a carry bit may be added in, so we can only use this @@ -2578,13 +2557,13 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // We then return to the caller that the low bit is unknown but that // other bits are known zero. if (KnownZeroLow >= 2) - KnownZero.setBits(1, KnownZeroLow); + Known.Zero.setBits(1, KnownZeroLow); break; } - KnownZero.setLowBits(KnownZeroLow); + Known.Zero.setLowBits(KnownZeroLow); if (KnownZeroHigh > 1) - KnownZero.setHighBits(KnownZeroHigh - 1); + Known.Zero.setHighBits(KnownZeroHigh - 1); break; } case ISD::SREM: @@ -2592,23 +2571,22 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, const APInt &RA = Rem->getAPIntValue().abs(); if (RA.isPowerOf2()) { APInt LowBits = RA - 1; - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // The low bits of the first operand are unchanged by the srem. - KnownZero = KnownZero2 & LowBits; - KnownOne = KnownOne2 & LowBits; + Known.Zero = Known2.Zero & LowBits; + Known.One = Known2.One & LowBits; // If the first operand is non-negative or has all low bits zero, then // the upper bits are all zero. - if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) - KnownZero |= ~LowBits; + if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) + Known.Zero |= ~LowBits; // If the first operand is negative and not all low bits are zero, then // the upper bits are all one. - if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) - KnownOne |= ~LowBits; - assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) + Known.One |= ~LowBits; + assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); } } break; @@ -2617,42 +2595,39 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, const APInt &RA = Rem->getAPIntValue(); if (RA.isPowerOf2()) { APInt LowBits = (RA - 1); - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // The upper bits are all zero, the lower ones are unchanged. - KnownZero = KnownZero2 | ~LowBits; - KnownOne = KnownOne2 & LowBits; + Known.Zero = Known2.Zero | ~LowBits; + Known.One = Known2.One & LowBits; break; } } // Since the result is less than or equal to either operand, any leading // zero bits in either operand must also exist in the result. - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - - uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), - KnownZero2.countLeadingOnes()); - KnownOne.clearAllBits(); - KnownZero.clearAllBits(); - KnownZero.setHighBits(Leaders); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); + + uint32_t Leaders = std::max(Known.Zero.countLeadingOnes(), + Known2.Zero.countLeadingOnes()); + Known.One.clearAllBits(); + Known.Zero.clearAllBits(); + Known.Zero.setHighBits(Leaders); break; } case ISD::EXTRACT_ELEMENT: { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(0), Known, Depth+1); const unsigned Index = Op.getConstantOperandVal(1); const unsigned BitWidth = Op.getValueSizeInBits(); // Remove low part of known bits mask - KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); - KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); + Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth); + Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth); // Remove high part of known bit mask - KnownZero = KnownZero.trunc(BitWidth); - KnownOne = KnownOne.trunc(BitWidth); + Known.Zero = Known.Zero.trunc(BitWidth); + Known.One = Known.One.trunc(BitWidth); break; } case ISD::EXTRACT_VECTOR_ELT: { @@ -2665,22 +2640,22 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know // anything about the extended bits. if (BitWidth > EltBitWidth) { - KnownZero = KnownZero.trunc(EltBitWidth); - KnownOne = KnownOne.trunc(EltBitWidth); + Known.Zero = Known.Zero.trunc(EltBitWidth); + Known.One = Known.One.trunc(EltBitWidth); } ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { // If we know the element index, just demand that vector element. unsigned Idx = ConstEltNo->getZExtValue(); APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); - computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1); + computeKnownBits(InVec, Known, DemandedElt, Depth + 1); } else { // Unknown element index, so ignore DemandedElts and demand them all. - computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); + computeKnownBits(InVec, Known, Depth + 1); } if (BitWidth > EltBitWidth) { - KnownZero = KnownZero.zext(BitWidth); - KnownOne = KnownOne.zext(BitWidth); + Known.Zero = Known.Zero.zext(BitWidth); + Known.One = Known.One.zext(BitWidth); } break; } @@ -2693,117 +2668,110 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { // If we know the element index, split the demand between the // source vector and the inserted element. - KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); + Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); unsigned EltIdx = CEltNo->getZExtValue(); // If we demand the inserted element then add its common known bits. if (DemandedElts[EltIdx]) { - computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); - KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); - KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; + computeKnownBits(InVal, Known2, Depth + 1); + Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); + Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());; } // If we demand the source vector then add its common known bits, ensuring // that we don't demand the inserted element. APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); if (!!VectorElts) { - computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1); - KnownOne &= KnownOne2; - KnownZero &= KnownZero2; + computeKnownBits(InVec, Known2, VectorElts, Depth + 1); + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; } } else { // Unknown element index, so ignore DemandedElts and demand them all. - computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1); - computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1); - KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth()); - KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());; + computeKnownBits(InVec, Known, Depth + 1); + computeKnownBits(InVal, Known2, Depth + 1); + Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); + Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());; } break; } case ISD::BITREVERSE: { - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - KnownZero = KnownZero2.reverseBits(); - KnownOne = KnownOne2.reverseBits(); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); + Known.Zero = Known2.Zero.reverseBits(); + Known.One = Known2.One.reverseBits(); break; } case ISD::BSWAP: { - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - KnownZero = KnownZero2.byteSwap(); - KnownOne = KnownOne2.byteSwap(); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); + Known.Zero = Known2.Zero.byteSwap(); + Known.One = Known2.One.byteSwap(); break; } case ISD::ABS: { - computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1); // If the source's MSB is zero then we know the rest of the bits already. - if (KnownZero2[BitWidth - 1]) { - KnownZero = KnownZero2; - KnownOne = KnownOne2; + if (Known2.Zero[BitWidth - 1]) { + Known.Zero = Known2.Zero; + Known.One = Known2.One; break; } // We only know that the absolute values's MSB will be zero iff there is // a set bit that isn't the sign bit (otherwise it could be INT_MIN). - KnownOne2.clearBit(BitWidth - 1); - if (KnownOne2.getBoolValue()) { - KnownZero = APInt::getSignMask(BitWidth); + Known2.One.clearBit(BitWidth - 1); + if (Known2.One.getBoolValue()) { + Known.Zero = APInt::getSignMask(BitWidth); break; } break; } case ISD::UMIN: { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); // UMIN - we know that the result will have the maximum of the // known zero leading bits of the inputs. - unsigned LeadZero = KnownZero.countLeadingOnes(); - LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes()); + unsigned LeadZero = Known.Zero.countLeadingOnes(); + LeadZero = std::max(LeadZero, Known2.Zero.countLeadingOnes()); - KnownZero &= KnownZero2; - KnownOne &= KnownOne2; - KnownZero.setHighBits(LeadZero); + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; + Known.Zero.setHighBits(LeadZero); break; } case ISD::UMAX: { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, - Depth + 1); - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); // UMAX - we know that the result will have the maximum of the // known one leading bits of the inputs. - unsigned LeadOne = KnownOne.countLeadingOnes(); - LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes()); + unsigned LeadOne = Known.One.countLeadingOnes(); + LeadOne = std::max(LeadOne, Known2.One.countLeadingOnes()); - KnownZero &= KnownZero2; - KnownOne &= KnownOne2; - KnownOne.setHighBits(LeadOne); + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; + Known.One.setHighBits(LeadOne); break; } case ISD::SMIN: case ISD::SMAX: { - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts, + computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1); // If we don't know any bits, early out. - if (!KnownOne && !KnownZero) + if (!Known.One && !Known.Zero) break; - computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts, - Depth + 1); - KnownZero &= KnownZero2; - KnownOne &= KnownOne2; + computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1); + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; break; } case ISD::FrameIndex: case ISD::TargetFrameIndex: if (unsigned Align = InferPtrAlignment(Op)) { // The low bits are known zero if the pointer is aligned. - KnownZero.setLowBits(Log2_32(Align)); + Known.Zero.setLowBits(Log2_32(Align)); break; } break; @@ -2816,12 +2784,11 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_VOID: // Allow the target to implement this method for its nodes. - TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, DemandedElts, - *this, Depth); + TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); break; } - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); } SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, @@ -2830,28 +2797,28 @@ SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, if (isNullConstant(N1)) return OFK_Never; - APInt N1Zero, N1One; - computeKnownBits(N1, N1Zero, N1One); - if (N1Zero.getBoolValue()) { - APInt N0Zero, N0One; - computeKnownBits(N0, N0Zero, N0One); + KnownBits N1Known; + computeKnownBits(N1, N1Known); + if (N1Known.Zero.getBoolValue()) { + KnownBits N0Known; + computeKnownBits(N0, N0Known); bool overflow; - (void)(~N0Zero).uadd_ov(~N1Zero, overflow); + (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); if (!overflow) return OFK_Never; } // mulhi + 1 never overflow if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && - (~N1Zero & 0x01) == ~N1Zero) + (~N1Known.Zero & 0x01) == ~N1Known.Zero) return OFK_Never; if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { - APInt N0Zero, N0One; - computeKnownBits(N0, N0Zero, N0One); + KnownBits N0Known; + computeKnownBits(N0, N0Known); - if ((~N0Zero & 0x01) == ~N0Zero) + if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) return OFK_Never; } @@ -2895,10 +2862,10 @@ bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { // to handle some common cases. // Fall back to computeKnownBits to catch other known cases. - APInt KnownZero, KnownOne; - computeKnownBits(Val, KnownZero, KnownOne); - return (KnownZero.countPopulation() == BitWidth - 1) && - (KnownOne.countPopulation() == 1); + KnownBits Known; + computeKnownBits(Val, Known); + return (Known.Zero.countPopulation() == BitWidth - 1) && + (Known.One.countPopulation() == 1); } unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { @@ -3068,17 +3035,17 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, // Special case decrementing a value (ADD X, -1): if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) if (CRHS->isAllOnesValue()) { - APInt KnownZero, KnownOne; - computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownBits Known; + computeKnownBits(Op.getOperand(0), Known, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. - if ((KnownZero | 1).isAllOnesValue()) + if ((Known.Zero | 1).isAllOnesValue()) return VTBits; // If we are subtracting one from a positive number, there is no carry // out of the result. - if (KnownZero.isNegative()) + if (Known.Zero.isNegative()) return Tmp; } @@ -3093,16 +3060,16 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, // Handle NEG. if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) if (CLHS->isNullValue()) { - APInt KnownZero, KnownOne; - computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); + KnownBits Known; + computeKnownBits(Op.getOperand(1), Known, Depth+1); // If the input is known to be 0 or 1, the output is 0/-1, which is all // sign bits set. - if ((KnownZero | 1).isAllOnesValue()) + if ((Known.Zero | 1).isAllOnesValue()) return VTBits; // If the input is known to be positive (the sign bit is known clear), // the output of the NEG has the same number of sign bits as the input. - if (KnownZero.isNegative()) + if (Known.Zero.isNegative()) return Tmp2; // Otherwise, we treat this like a SUB. @@ -3199,14 +3166,14 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, // Finally, if we can prove that the top bits of the result are 0's or 1's, // use this information. - APInt KnownZero, KnownOne; - computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth); + KnownBits Known; + computeKnownBits(Op, Known, DemandedElts, Depth); APInt Mask; - if (KnownZero.isNegative()) { // sign bit is 0 - Mask = KnownZero; - } else if (KnownOne.isNegative()) { // sign bit is 1; - Mask = KnownOne; + if (Known.Zero.isNegative()) { // sign bit is 0 + Mask = Known.Zero; + } else if (Known.One.isNegative()) { // sign bit is 1; + Mask = Known.One; } else { // Nothing known. return FirstAnswer; @@ -3284,11 +3251,10 @@ bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { assert(A.getValueType() == B.getValueType() && "Values must have the same type"); - APInt AZero, AOne; - APInt BZero, BOne; - computeKnownBits(A, AZero, AOne); - computeKnownBits(B, BZero, BOne); - return (AZero | BZero).isAllOnesValue(); + KnownBits AKnown, BKnown; + computeKnownBits(A, AKnown); + computeKnownBits(B, BKnown); + return (AKnown.Zero | BKnown.Zero).isAllOnesValue(); } static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT, |