summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
diff options
context:
space:
mode:
authorCraig Topper <craig.topper@gmail.com>2017-04-28 05:31:46 +0000
committerCraig Topper <craig.topper@gmail.com>2017-04-28 05:31:46 +0000
commitd0af7e8ab822031960c68d5893ec07c1d186b67a (patch)
tree463207d3c15bb2f1f850059734fa13c1823aed40 /llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
parent6e256873e40aacd59fa7a6e3103686693741d4d1 (diff)
downloadbcm5719-llvm-d0af7e8ab822031960c68d5893ec07c1d186b67a.tar.gz
bcm5719-llvm-d0af7e8ab822031960c68d5893ec07c1d186b67a.zip
[SelectionDAG] Use KnownBits struct in DAG's computeKnownBits and simplifyDemandedBits
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently. This is largely a mechanical transformation from KnownZero to Known.Zero. Differential Revision: https://reviews.llvm.org/D32569 llvm-svn: 301620
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r--llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp586
1 files changed, 276 insertions, 310 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
index 9573d3b8e55..a246ec87863 100644
--- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
+++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -1967,9 +1967,9 @@ bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
unsigned Depth) const {
- APInt KnownZero, KnownOne;
- computeKnownBits(Op, KnownZero, KnownOne, Depth);
- return Mask.isSubsetOf(KnownZero);
+ KnownBits Known;
+ computeKnownBits(Op, Known, Depth);
+ return Mask.isSubsetOf(Known.Zero);
}
/// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
@@ -1985,31 +1985,30 @@ static const APInt *getValidShiftAmountConstant(SDValue V) {
}
/// Determine which bits of Op are known to be either zero or one and return
-/// them in the KnownZero/KnownOne bitsets. For vectors, the known bits are
-/// those that are shared by every vector element.
-void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth) const {
+/// them in Known. For vectors, the known bits are those that are shared by
+/// every vector element.
+void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
+ unsigned Depth) const {
EVT VT = Op.getValueType();
APInt DemandedElts = VT.isVector()
? APInt::getAllOnesValue(VT.getVectorNumElements())
: APInt(1, 1);
- computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
+ computeKnownBits(Op, Known, DemandedElts, Depth);
}
/// Determine which bits of Op are known to be either zero or one and return
-/// them in the KnownZero/KnownOne bitsets. The DemandedElts argument allows
-/// us to only collect the known bits that are shared by the requested vector
-/// elements.
-void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
- APInt &KnownOne, const APInt &DemandedElts,
+/// them in Known. The DemandedElts argument allows us to only collect the known
+/// bits that are shared by the requested vector elements.
+void SelectionDAG::computeKnownBits(SDValue Op, KnownBits &Known,
+ const APInt &DemandedElts,
unsigned Depth) const {
unsigned BitWidth = Op.getScalarValueSizeInBits();
- KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
+ Known = KnownBits(BitWidth); // Don't know anything.
if (Depth == 6)
return; // Limit search depth.
- APInt KnownZero2, KnownOne2;
+ KnownBits Known2;
unsigned NumElts = DemandedElts.getBitWidth();
if (!DemandedElts)
@@ -2019,35 +2018,35 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
switch (Opcode) {
case ISD::Constant:
// We know all of the bits for a constant!
- KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
- KnownZero = ~KnownOne;
+ Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
+ Known.Zero = ~Known.One;
break;
case ISD::BUILD_VECTOR:
// Collect the known bits that are shared by every demanded vector element.
assert(NumElts == Op.getValueType().getVectorNumElements() &&
"Unexpected vector size");
- KnownZero.setAllBits(); KnownOne.setAllBits();
+ Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
if (!DemandedElts[i])
continue;
SDValue SrcOp = Op.getOperand(i);
- computeKnownBits(SrcOp, KnownZero2, KnownOne2, Depth + 1);
+ computeKnownBits(SrcOp, Known2, Depth + 1);
// BUILD_VECTOR can implicitly truncate sources, we must handle this.
if (SrcOp.getValueSizeInBits() != BitWidth) {
assert(SrcOp.getValueSizeInBits() > BitWidth &&
"Expected BUILD_VECTOR implicit truncation");
- KnownOne2 = KnownOne2.trunc(BitWidth);
- KnownZero2 = KnownZero2.trunc(BitWidth);
+ Known2.One = Known2.One.trunc(BitWidth);
+ Known2.Zero = Known2.Zero.trunc(BitWidth);
}
// Known bits are the values that are shared by every demanded element.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
}
break;
@@ -2055,7 +2054,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// Collect the known bits that are shared by every vector element referenced
// by the shuffle.
APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
- KnownZero.setAllBits(); KnownOne.setAllBits();
+ Known.Zero.setAllBits(); Known.One.setAllBits();
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
for (unsigned i = 0; i != NumElts; ++i) {
@@ -2066,8 +2065,8 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (M < 0) {
// For UNDEF elements, we don't know anything about the common state of
// the shuffle result.
- KnownOne.clearAllBits();
- KnownZero.clearAllBits();
+ Known.One.clearAllBits();
+ Known.Zero.clearAllBits();
DemandedLHS.clearAllBits();
DemandedRHS.clearAllBits();
break;
@@ -2081,24 +2080,24 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// Known bits are the values that are shared by every demanded element.
if (!!DemandedLHS) {
SDValue LHS = Op.getOperand(0);
- computeKnownBits(LHS, KnownZero2, KnownOne2, DemandedLHS, Depth + 1);
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ computeKnownBits(LHS, Known2, DemandedLHS, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
}
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
if (!!DemandedRHS) {
SDValue RHS = Op.getOperand(1);
- computeKnownBits(RHS, KnownZero2, KnownOne2, DemandedRHS, Depth + 1);
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ computeKnownBits(RHS, Known2, DemandedRHS, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
}
break;
}
case ISD::CONCAT_VECTORS: {
// Split DemandedElts and test each of the demanded subvectors.
- KnownZero.setAllBits(); KnownOne.setAllBits();
+ Known.Zero.setAllBits(); Known.One.setAllBits();
EVT SubVectorVT = Op.getOperand(0).getValueType();
unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
unsigned NumSubVectors = Op.getNumOperands();
@@ -2107,12 +2106,12 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
DemandedSub = DemandedSub.trunc(NumSubVectorElts);
if (!!DemandedSub) {
SDValue Sub = Op.getOperand(i);
- computeKnownBits(Sub, KnownZero2, KnownOne2, DemandedSub, Depth + 1);
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ computeKnownBits(Sub, Known2, DemandedSub, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
}
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
}
break;
@@ -2127,9 +2126,9 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// Offset the demanded elts by the subvector index.
uint64_t Idx = SubIdx->getZExtValue();
APInt DemandedSrc = DemandedElts.zext(NumSrcElts).shl(Idx);
- computeKnownBits(Src, KnownZero, KnownOne, DemandedSrc, Depth + 1);
+ computeKnownBits(Src, Known, DemandedSrc, Depth + 1);
} else {
- computeKnownBits(Src, KnownZero, KnownOne, Depth + 1);
+ computeKnownBits(Src, Known, Depth + 1);
}
break;
}
@@ -2143,7 +2142,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// Fast handling of 'identity' bitcasts.
if (BitWidth == SubBitWidth) {
- computeKnownBits(N0, KnownZero, KnownOne, DemandedElts, Depth + 1);
+ computeKnownBits(N0, Known, DemandedElts, Depth + 1);
break;
}
@@ -2167,10 +2166,10 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
SubDemandedElts.setBit(i * SubScale);
for (unsigned i = 0; i != SubScale; ++i) {
- computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts.shl(i),
+ computeKnownBits(N0, Known2, SubDemandedElts.shl(i),
Depth + 1);
- KnownOne |= KnownOne2.zext(BitWidth).shl(SubBitWidth * i);
- KnownZero |= KnownZero2.zext(BitWidth).shl(SubBitWidth * i);
+ Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * i);
+ Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * i);
}
}
@@ -2187,16 +2186,16 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (DemandedElts[i])
SubDemandedElts.setBit(i / SubScale);
- computeKnownBits(N0, KnownZero2, KnownOne2, SubDemandedElts, Depth + 1);
+ computeKnownBits(N0, Known2, SubDemandedElts, Depth + 1);
- KnownZero.setAllBits(); KnownOne.setAllBits();
+ Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
unsigned Offset = (i % SubScale) * BitWidth;
- KnownOne &= KnownOne2.lshr(Offset).trunc(BitWidth);
- KnownZero &= KnownZero2.lshr(Offset).trunc(BitWidth);
+ Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
+ Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
}
}
@@ -2204,101 +2203,91 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
}
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
+ Known.One &= Known2.One;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
+ Known.Zero |= Known2.Zero;
break;
case ISD::OR:
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
+ Known.Zero &= Known2.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
+ Known.One |= Known2.One;
break;
case ISD::XOR: {
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- KnownZero = KnownZeroOut;
+ Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
+ Known.Zero = KnownZeroOut;
break;
}
case ISD::MUL: {
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known, DemandedElts, Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conservative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
- KnownOne.clearAllBits();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
+ Known.One.clearAllBits();
+ unsigned TrailZ = Known.Zero.countTrailingOnes() +
+ Known2.Zero.countTrailingOnes();
+ unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() +
+ Known2.Zero.countLeadingOnes(),
BitWidth) - BitWidth;
- KnownZero.clearAllBits();
- KnownZero.setLowBits(std::min(TrailZ, BitWidth));
- KnownZero.setHighBits(std::min(LeadZ, BitWidth));
+ Known.Zero.clearAllBits();
+ Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
+ Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
break;
}
case ISD::UDIV: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- unsigned LeadZ = KnownZero2.countLeadingOnes();
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
+ unsigned LeadZ = Known2.Zero.countLeadingOnes();
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
+ unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero.setHighBits(LeadZ);
+ Known.Zero.setHighBits(LeadZ);
break;
}
case ISD::SELECT:
- computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(2), Known, Depth+1);
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(1), Known2, Depth+1);
// Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
break;
case ISD::SELECT_CC:
- computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(3), Known, Depth+1);
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
- computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
+ computeKnownBits(Op.getOperand(2), Known2, Depth+1);
// Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
break;
case ISD::SMULO:
case ISD::UMULO:
@@ -2311,49 +2300,46 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
- KnownZero.setBitsFrom(1);
+ Known.Zero.setBitsFrom(1);
break;
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
- KnownZero.setBitsFrom(1);
+ Known.Zero.setBitsFrom(1);
break;
case ISD::SHL:
if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- KnownZero <<= *ShAmt;
- KnownOne <<= *ShAmt;
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ Known.Zero <<= *ShAmt;
+ Known.One <<= *ShAmt;
// Low bits are known zero.
- KnownZero.setLowBits(ShAmt->getZExtValue());
+ Known.Zero.setLowBits(ShAmt->getZExtValue());
}
break;
case ISD::SRL:
if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- KnownZero.lshrInPlace(*ShAmt);
- KnownOne.lshrInPlace(*ShAmt);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ Known.Zero.lshrInPlace(*ShAmt);
+ Known.One.lshrInPlace(*ShAmt);
// High bits are known zero.
- KnownZero.setHighBits(ShAmt->getZExtValue());
+ Known.Zero.setHighBits(ShAmt->getZExtValue());
}
break;
case ISD::SRA:
if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- KnownZero.lshrInPlace(*ShAmt);
- KnownOne.lshrInPlace(*ShAmt);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ Known.Zero.lshrInPlace(*ShAmt);
+ Known.One.lshrInPlace(*ShAmt);
// If we know the value of the sign bit, then we know it is copied across
// the high bits by the shift amount.
APInt SignMask = APInt::getSignMask(BitWidth);
SignMask.lshrInPlace(*ShAmt); // Adjust to where it is now in the mask.
- if (KnownZero.intersects(SignMask)) {
- KnownZero.setHighBits(ShAmt->getZExtValue());// New bits are known zero.
- } else if (KnownOne.intersects(SignMask)) {
- KnownOne.setHighBits(ShAmt->getZExtValue()); // New bits are known one.
+ if (Known.Zero.intersects(SignMask)) {
+ Known.Zero.setHighBits(ShAmt->getZExtValue());// New bits are known zero.
+ } else if (Known.One.intersects(SignMask)) {
+ Known.One.setHighBits(ShAmt->getZExtValue()); // New bits are known one.
}
}
break;
@@ -2374,22 +2360,21 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (NewBits.getBoolValue())
InputDemandedBits |= InSignMask;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- KnownOne &= InputDemandedBits;
- KnownZero &= InputDemandedBits;
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ Known.One &= InputDemandedBits;
+ Known.Zero &= InputDemandedBits;
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
- if (KnownZero.intersects(InSignMask)) { // Input sign bit known clear
- KnownZero |= NewBits;
- KnownOne &= ~NewBits;
- } else if (KnownOne.intersects(InSignMask)) { // Input sign bit known set
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
+ if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
+ Known.Zero |= NewBits;
+ Known.One &= ~NewBits;
+ } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
+ Known.One |= NewBits;
+ Known.Zero &= ~NewBits;
} else { // Input sign bit unknown
- KnownZero &= ~NewBits;
- KnownOne &= ~NewBits;
+ Known.Zero &= ~NewBits;
+ Known.One &= ~NewBits;
}
break;
}
@@ -2398,7 +2383,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP: {
- KnownZero.setBitsFrom(Log2_32(BitWidth)+1);
+ Known.Zero.setBitsFrom(Log2_32(BitWidth)+1);
break;
}
case ISD::LOAD: {
@@ -2407,36 +2392,35 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
EVT VT = LD->getMemoryVT();
unsigned MemBits = VT.getScalarSizeInBits();
- KnownZero.setBitsFrom(MemBits);
+ Known.Zero.setBitsFrom(MemBits);
} else if (const MDNode *Ranges = LD->getRanges()) {
if (LD->getExtensionType() == ISD::NON_EXTLOAD)
- computeKnownBitsFromRangeMetadata(*Ranges, KnownZero, KnownOne);
+ computeKnownBitsFromRangeMetadata(*Ranges, Known.Zero, Known.One);
}
break;
}
case ISD::ZERO_EXTEND_VECTOR_INREG: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarSizeInBits();
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne,
+ Known.Zero = Known.Zero.trunc(InBits);
+ Known.One = Known.One.trunc(InBits);
+ computeKnownBits(Op.getOperand(0), Known,
DemandedElts.zext(InVT.getVectorNumElements()),
Depth + 1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- KnownZero.setBitsFrom(InBits);
+ Known.Zero = Known.Zero.zext(BitWidth);
+ Known.One = Known.One.zext(BitWidth);
+ Known.Zero.setBitsFrom(InBits);
break;
}
case ISD::ZERO_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarSizeInBits();
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- KnownZero.setBitsFrom(InBits);
+ Known.Zero = Known.Zero.trunc(InBits);
+ Known.One = Known.One.trunc(InBits);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ Known.Zero = Known.Zero.zext(BitWidth);
+ Known.One = Known.One.zext(BitWidth);
+ Known.Zero.setBitsFrom(InBits);
break;
}
// TODO ISD::SIGN_EXTEND_VECTOR_INREG
@@ -2444,49 +2428,47 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarSizeInBits();
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
+ Known.Zero = Known.Zero.trunc(InBits);
+ Known.One = Known.One.trunc(InBits);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
// If the sign bit is known to be zero or one, then sext will extend
// it to the top bits, else it will just zext.
- KnownZero = KnownZero.sext(BitWidth);
- KnownOne = KnownOne.sext(BitWidth);
+ Known.Zero = Known.Zero.sext(BitWidth);
+ Known.One = Known.One.sext(BitWidth);
break;
}
case ISD::ANY_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarSizeInBits();
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
+ Known.Zero = Known.Zero.trunc(InBits);
+ Known.One = Known.One.trunc(InBits);
+ computeKnownBits(Op.getOperand(0), Known, Depth+1);
+ Known.Zero = Known.Zero.zext(BitWidth);
+ Known.One = Known.One.zext(BitWidth);
break;
}
case ISD::TRUNCATE: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarSizeInBits();
- KnownZero = KnownZero.zext(InBits);
- KnownOne = KnownOne.zext(InBits);
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- KnownZero = KnownZero.trunc(BitWidth);
- KnownOne = KnownOne.trunc(BitWidth);
+ Known.Zero = Known.Zero.zext(InBits);
+ Known.One = Known.One.zext(InBits);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ Known.Zero = Known.Zero.trunc(BitWidth);
+ Known.One = Known.One.trunc(BitWidth);
break;
}
case ISD::AssertZext: {
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero |= (~InMask);
- KnownOne &= (~KnownZero);
+ computeKnownBits(Op.getOperand(0), Known, Depth+1);
+ Known.Zero |= (~InMask);
+ Known.One &= (~Known.Zero);
break;
}
case ISD::FGETSIGN:
// All bits are zero except the low bit.
- KnownZero.setBitsFrom(1);
+ Known.Zero.setBitsFrom(1);
break;
case ISD::USUBO:
case ISD::SSUBO:
@@ -2495,7 +2477,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
- KnownZero.setBitsFrom(1);
+ Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
@@ -2509,16 +2491,16 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
Depth + 1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
+ if ((Known2.Zero & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
// Top bits known zero.
- KnownZero.setHighBits(NLZ2);
+ Known.Zero.setHighBits(NLZ2);
}
}
}
@@ -2526,17 +2508,15 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// If low bits are know to be zero in both operands, then we know they are
// going to be 0 in the result. Both addition and complement operations
// preserve the low zero bits.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
+ unsigned KnownZeroLow = Known2.Zero.countTrailingOnes();
if (KnownZeroLow == 0)
break;
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
KnownZeroLow = std::min(KnownZeroLow,
- KnownZero2.countTrailingOnes());
- KnownZero.setBits(0, KnownZeroLow);
+ Known2.Zero.countTrailingOnes());
+ Known.Zero.setBits(0, KnownZeroLow);
break;
}
case ISD::UADDO:
@@ -2546,7 +2526,7 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
- KnownZero.setBitsFrom(1);
+ Known.Zero.setBitsFrom(1);
break;
}
LLVM_FALLTHROUGH;
@@ -2560,17 +2540,16 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// known to be clear. For example, if one input has the top 10 bits clear
// and the other has the top 8 bits clear, we know the top 7 bits of the
// output must be clear.
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- unsigned KnownZeroHigh = KnownZero2.countLeadingOnes();
- unsigned KnownZeroLow = KnownZero2.countTrailingOnes();
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
+ unsigned KnownZeroHigh = Known2.Zero.countLeadingOnes();
+ unsigned KnownZeroLow = Known2.Zero.countTrailingOnes();
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts,
Depth + 1);
KnownZeroHigh = std::min(KnownZeroHigh,
- KnownZero2.countLeadingOnes());
+ Known2.Zero.countLeadingOnes());
KnownZeroLow = std::min(KnownZeroLow,
- KnownZero2.countTrailingOnes());
+ Known2.Zero.countTrailingOnes());
if (Opcode == ISD::ADDE) {
// With ADDE, a carry bit may be added in, so we can only use this
@@ -2578,13 +2557,13 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// We then return to the caller that the low bit is unknown but that
// other bits are known zero.
if (KnownZeroLow >= 2)
- KnownZero.setBits(1, KnownZeroLow);
+ Known.Zero.setBits(1, KnownZeroLow);
break;
}
- KnownZero.setLowBits(KnownZeroLow);
+ Known.Zero.setLowBits(KnownZeroLow);
if (KnownZeroHigh > 1)
- KnownZero.setHighBits(KnownZeroHigh - 1);
+ Known.Zero.setHighBits(KnownZeroHigh - 1);
break;
}
case ISD::SREM:
@@ -2592,23 +2571,22 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
const APInt &RA = Rem->getAPIntValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// The low bits of the first operand are unchanged by the srem.
- KnownZero = KnownZero2 & LowBits;
- KnownOne = KnownOne2 & LowBits;
+ Known.Zero = Known2.Zero & LowBits;
+ Known.One = Known2.One & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
- if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
- KnownZero |= ~LowBits;
+ if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits))
+ Known.Zero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
- if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
- KnownOne |= ~LowBits;
- assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
+ if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0))
+ Known.One |= ~LowBits;
+ assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
}
}
break;
@@ -2617,42 +2595,39 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
const APInt &RA = Rem->getAPIntValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// The upper bits are all zero, the lower ones are unchanged.
- KnownZero = KnownZero2 | ~LowBits;
- KnownOne = KnownOne2 & LowBits;
+ Known.Zero = Known2.Zero | ~LowBits;
+ Known.One = Known2.One & LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
-
- uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
- KnownZero2.countLeadingOnes());
- KnownOne.clearAllBits();
- KnownZero.clearAllBits();
- KnownZero.setHighBits(Leaders);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
+
+ uint32_t Leaders = std::max(Known.Zero.countLeadingOnes(),
+ Known2.Zero.countLeadingOnes());
+ Known.One.clearAllBits();
+ Known.Zero.clearAllBits();
+ Known.Zero.setHighBits(Leaders);
break;
}
case ISD::EXTRACT_ELEMENT: {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ computeKnownBits(Op.getOperand(0), Known, Depth+1);
const unsigned Index = Op.getConstantOperandVal(1);
const unsigned BitWidth = Op.getValueSizeInBits();
// Remove low part of known bits mask
- KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth);
- KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth);
+ Known.Zero = Known.Zero.getHiBits(Known.Zero.getBitWidth() - Index * BitWidth);
+ Known.One = Known.One.getHiBits(Known.One.getBitWidth() - Index * BitWidth);
// Remove high part of known bit mask
- KnownZero = KnownZero.trunc(BitWidth);
- KnownOne = KnownOne.trunc(BitWidth);
+ Known.Zero = Known.Zero.trunc(BitWidth);
+ Known.One = Known.One.trunc(BitWidth);
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
@@ -2665,22 +2640,22 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
// If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
// anything about the extended bits.
if (BitWidth > EltBitWidth) {
- KnownZero = KnownZero.trunc(EltBitWidth);
- KnownOne = KnownOne.trunc(EltBitWidth);
+ Known.Zero = Known.Zero.trunc(EltBitWidth);
+ Known.One = Known.One.trunc(EltBitWidth);
}
ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
// If we know the element index, just demand that vector element.
unsigned Idx = ConstEltNo->getZExtValue();
APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
- computeKnownBits(InVec, KnownZero, KnownOne, DemandedElt, Depth + 1);
+ computeKnownBits(InVec, Known, DemandedElt, Depth + 1);
} else {
// Unknown element index, so ignore DemandedElts and demand them all.
- computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
+ computeKnownBits(InVec, Known, Depth + 1);
}
if (BitWidth > EltBitWidth) {
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
+ Known.Zero = Known.Zero.zext(BitWidth);
+ Known.One = Known.One.zext(BitWidth);
}
break;
}
@@ -2693,117 +2668,110 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
// If we know the element index, split the demand between the
// source vector and the inserted element.
- KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
+ Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
unsigned EltIdx = CEltNo->getZExtValue();
// If we demand the inserted element then add its common known bits.
if (DemandedElts[EltIdx]) {
- computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
- KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
- KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
+ computeKnownBits(InVal, Known2, Depth + 1);
+ Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
+ Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());;
}
// If we demand the source vector then add its common known bits, ensuring
// that we don't demand the inserted element.
APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
if (!!VectorElts) {
- computeKnownBits(InVec, KnownZero2, KnownOne2, VectorElts, Depth + 1);
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
+ computeKnownBits(InVec, Known2, VectorElts, Depth + 1);
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
}
} else {
// Unknown element index, so ignore DemandedElts and demand them all.
- computeKnownBits(InVec, KnownZero, KnownOne, Depth + 1);
- computeKnownBits(InVal, KnownZero2, KnownOne2, Depth + 1);
- KnownOne &= KnownOne2.zextOrTrunc(KnownOne.getBitWidth());
- KnownZero &= KnownZero2.zextOrTrunc(KnownZero.getBitWidth());;
+ computeKnownBits(InVec, Known, Depth + 1);
+ computeKnownBits(InVal, Known2, Depth + 1);
+ Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
+ Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());;
}
break;
}
case ISD::BITREVERSE: {
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- KnownZero = KnownZero2.reverseBits();
- KnownOne = KnownOne2.reverseBits();
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
+ Known.Zero = Known2.Zero.reverseBits();
+ Known.One = Known2.One.reverseBits();
break;
}
case ISD::BSWAP: {
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- KnownZero = KnownZero2.byteSwap();
- KnownOne = KnownOne2.byteSwap();
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
+ Known.Zero = Known2.Zero.byteSwap();
+ Known.One = Known2.One.byteSwap();
break;
}
case ISD::ABS: {
- computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known2, DemandedElts, Depth + 1);
// If the source's MSB is zero then we know the rest of the bits already.
- if (KnownZero2[BitWidth - 1]) {
- KnownZero = KnownZero2;
- KnownOne = KnownOne2;
+ if (Known2.Zero[BitWidth - 1]) {
+ Known.Zero = Known2.Zero;
+ Known.One = Known2.One;
break;
}
// We only know that the absolute values's MSB will be zero iff there is
// a set bit that isn't the sign bit (otherwise it could be INT_MIN).
- KnownOne2.clearBit(BitWidth - 1);
- if (KnownOne2.getBoolValue()) {
- KnownZero = APInt::getSignMask(BitWidth);
+ Known2.One.clearBit(BitWidth - 1);
+ if (Known2.One.getBoolValue()) {
+ Known.Zero = APInt::getSignMask(BitWidth);
break;
}
break;
}
case ISD::UMIN: {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts, Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
// UMIN - we know that the result will have the maximum of the
// known zero leading bits of the inputs.
- unsigned LeadZero = KnownZero.countLeadingOnes();
- LeadZero = std::max(LeadZero, KnownZero2.countLeadingOnes());
+ unsigned LeadZero = Known.Zero.countLeadingOnes();
+ LeadZero = std::max(LeadZero, Known2.Zero.countLeadingOnes());
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
- KnownZero.setHighBits(LeadZero);
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
+ Known.Zero.setHighBits(LeadZero);
break;
}
case ISD::UMAX: {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
- Depth + 1);
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts,
Depth + 1);
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
// UMAX - we know that the result will have the maximum of the
// known one leading bits of the inputs.
- unsigned LeadOne = KnownOne.countLeadingOnes();
- LeadOne = std::max(LeadOne, KnownOne2.countLeadingOnes());
+ unsigned LeadOne = Known.One.countLeadingOnes();
+ LeadOne = std::max(LeadOne, Known2.One.countLeadingOnes());
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
- KnownOne.setHighBits(LeadOne);
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
+ Known.One.setHighBits(LeadOne);
break;
}
case ISD::SMIN:
case ISD::SMAX: {
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, DemandedElts,
+ computeKnownBits(Op.getOperand(0), Known, DemandedElts,
Depth + 1);
// If we don't know any bits, early out.
- if (!KnownOne && !KnownZero)
+ if (!Known.One && !Known.Zero)
break;
- computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, DemandedElts,
- Depth + 1);
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
+ computeKnownBits(Op.getOperand(1), Known2, DemandedElts, Depth + 1);
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
break;
}
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
if (unsigned Align = InferPtrAlignment(Op)) {
// The low bits are known zero if the pointer is aligned.
- KnownZero.setLowBits(Log2_32(Align));
+ Known.Zero.setLowBits(Log2_32(Align));
break;
}
break;
@@ -2816,12 +2784,11 @@ void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero,
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
// Allow the target to implement this method for its nodes.
- TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, DemandedElts,
- *this, Depth);
+ TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
break;
}
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}
SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
@@ -2830,28 +2797,28 @@ SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
if (isNullConstant(N1))
return OFK_Never;
- APInt N1Zero, N1One;
- computeKnownBits(N1, N1Zero, N1One);
- if (N1Zero.getBoolValue()) {
- APInt N0Zero, N0One;
- computeKnownBits(N0, N0Zero, N0One);
+ KnownBits N1Known;
+ computeKnownBits(N1, N1Known);
+ if (N1Known.Zero.getBoolValue()) {
+ KnownBits N0Known;
+ computeKnownBits(N0, N0Known);
bool overflow;
- (void)(~N0Zero).uadd_ov(~N1Zero, overflow);
+ (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
if (!overflow)
return OFK_Never;
}
// mulhi + 1 never overflow
if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
- (~N1Zero & 0x01) == ~N1Zero)
+ (~N1Known.Zero & 0x01) == ~N1Known.Zero)
return OFK_Never;
if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
- APInt N0Zero, N0One;
- computeKnownBits(N0, N0Zero, N0One);
+ KnownBits N0Known;
+ computeKnownBits(N0, N0Known);
- if ((~N0Zero & 0x01) == ~N0Zero)
+ if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
return OFK_Never;
}
@@ -2895,10 +2862,10 @@ bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
// to handle some common cases.
// Fall back to computeKnownBits to catch other known cases.
- APInt KnownZero, KnownOne;
- computeKnownBits(Val, KnownZero, KnownOne);
- return (KnownZero.countPopulation() == BitWidth - 1) &&
- (KnownOne.countPopulation() == 1);
+ KnownBits Known;
+ computeKnownBits(Val, Known);
+ return (Known.Zero.countPopulation() == BitWidth - 1) &&
+ (Known.One.countPopulation() == 1);
}
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
@@ -3068,17 +3035,17 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
// Special case decrementing a value (ADD X, -1):
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
if (CRHS->isAllOnesValue()) {
- APInt KnownZero, KnownOne;
- computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ KnownBits Known;
+ computeKnownBits(Op.getOperand(0), Known, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
- if ((KnownZero | 1).isAllOnesValue())
+ if ((Known.Zero | 1).isAllOnesValue())
return VTBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
- if (KnownZero.isNegative())
+ if (Known.Zero.isNegative())
return Tmp;
}
@@ -3093,16 +3060,16 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
// Handle NEG.
if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
if (CLHS->isNullValue()) {
- APInt KnownZero, KnownOne;
- computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
+ KnownBits Known;
+ computeKnownBits(Op.getOperand(1), Known, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
- if ((KnownZero | 1).isAllOnesValue())
+ if ((Known.Zero | 1).isAllOnesValue())
return VTBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
- if (KnownZero.isNegative())
+ if (Known.Zero.isNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
@@ -3199,14 +3166,14 @@ unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
- APInt KnownZero, KnownOne;
- computeKnownBits(Op, KnownZero, KnownOne, DemandedElts, Depth);
+ KnownBits Known;
+ computeKnownBits(Op, Known, DemandedElts, Depth);
APInt Mask;
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
+ if (Known.Zero.isNegative()) { // sign bit is 0
+ Mask = Known.Zero;
+ } else if (Known.One.isNegative()) { // sign bit is 1;
+ Mask = Known.One;
} else {
// Nothing known.
return FirstAnswer;
@@ -3284,11 +3251,10 @@ bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
assert(A.getValueType() == B.getValueType() &&
"Values must have the same type");
- APInt AZero, AOne;
- APInt BZero, BOne;
- computeKnownBits(A, AZero, AOne);
- computeKnownBits(B, BZero, BOne);
- return (AZero | BZero).isAllOnesValue();
+ KnownBits AKnown, BKnown;
+ computeKnownBits(A, AKnown);
+ computeKnownBits(B, BKnown);
+ return (AKnown.Zero | BKnown.Zero).isAllOnesValue();
}
static SDValue FoldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
OpenPOWER on IntegriCloud