summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
diff options
context:
space:
mode:
authorFlorian Hahn <flo@fhahn.com>2020-01-04 18:44:38 +0000
committerFlorian Hahn <flo@fhahn.com>2020-01-04 18:44:38 +0000
commitb8a3c34eee06c17ae42dc00218ba4f0c815e9a2c (patch)
treec211f02514ad6301ee0155b42e3f6fac4cc83a03 /llvm/lib/Analysis/ScalarEvolutionExpander.cpp
parent51ef53f3bd23559203fe9af82ff2facbfedc1db3 (diff)
downloadbcm5719-llvm-b8a3c34eee06c17ae42dc00218ba4f0c815e9a2c.tar.gz
bcm5719-llvm-b8a3c34eee06c17ae42dc00218ba4f0c815e9a2c.zip
Revert "[SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC)."
This reverts commit 51ef53f3bd23559203fe9af82ff2facbfedc1db3, as it breaks some bots.
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolutionExpander.cpp')
-rw-r--r--llvm/lib/Analysis/ScalarEvolutionExpander.cpp2452
1 files changed, 2452 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
new file mode 100644
index 00000000000..dc5d02aa3a3
--- /dev/null
+++ b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -0,0 +1,2452 @@
+//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution expander,
+// which is used to generate the code corresponding to a given scalar evolution
+// expression.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
+/// reusing an existing cast if a suitable one exists, moving an existing
+/// cast if a suitable one exists but isn't in the right place, or
+/// creating a new one.
+Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
+ Instruction::CastOps Op,
+ BasicBlock::iterator IP) {
+ // This function must be called with the builder having a valid insertion
+ // point. It doesn't need to be the actual IP where the uses of the returned
+ // cast will be added, but it must dominate such IP.
+ // We use this precondition to produce a cast that will dominate all its
+ // uses. In particular, this is crucial for the case where the builder's
+ // insertion point *is* the point where we were asked to put the cast.
+ // Since we don't know the builder's insertion point is actually
+ // where the uses will be added (only that it dominates it), we are
+ // not allowed to move it.
+ BasicBlock::iterator BIP = Builder.GetInsertPoint();
+
+ Instruction *Ret = nullptr;
+
+ // Check to see if there is already a cast!
+ for (User *U : V->users())
+ if (U->getType() == Ty)
+ if (CastInst *CI = dyn_cast<CastInst>(U))
+ if (CI->getOpcode() == Op) {
+ // If the cast isn't where we want it, create a new cast at IP.
+ // Likewise, do not reuse a cast at BIP because it must dominate
+ // instructions that might be inserted before BIP.
+ if (BasicBlock::iterator(CI) != IP || BIP == IP) {
+ // Create a new cast, and leave the old cast in place in case
+ // it is being used as an insert point.
+ Ret = CastInst::Create(Op, V, Ty, "", &*IP);
+ Ret->takeName(CI);
+ CI->replaceAllUsesWith(Ret);
+ break;
+ }
+ Ret = CI;
+ break;
+ }
+
+ // Create a new cast.
+ if (!Ret)
+ Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
+
+ // We assert at the end of the function since IP might point to an
+ // instruction with different dominance properties than a cast
+ // (an invoke for example) and not dominate BIP (but the cast does).
+ assert(SE.DT.dominates(Ret, &*BIP));
+
+ rememberInstruction(Ret);
+ return Ret;
+}
+
+static BasicBlock::iterator findInsertPointAfter(Instruction *I,
+ BasicBlock *MustDominate) {
+ BasicBlock::iterator IP = ++I->getIterator();
+ if (auto *II = dyn_cast<InvokeInst>(I))
+ IP = II->getNormalDest()->begin();
+
+ while (isa<PHINode>(IP))
+ ++IP;
+
+ if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
+ ++IP;
+ } else if (isa<CatchSwitchInst>(IP)) {
+ IP = MustDominate->getFirstInsertionPt();
+ } else {
+ assert(!IP->isEHPad() && "unexpected eh pad!");
+ }
+
+ return IP;
+}
+
+/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
+/// which must be possible with a noop cast, doing what we can to share
+/// the casts.
+Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
+ Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
+ assert((Op == Instruction::BitCast ||
+ Op == Instruction::PtrToInt ||
+ Op == Instruction::IntToPtr) &&
+ "InsertNoopCastOfTo cannot perform non-noop casts!");
+ assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
+ "InsertNoopCastOfTo cannot change sizes!");
+
+ // Short-circuit unnecessary bitcasts.
+ if (Op == Instruction::BitCast) {
+ if (V->getType() == Ty)
+ return V;
+ if (CastInst *CI = dyn_cast<CastInst>(V)) {
+ if (CI->getOperand(0)->getType() == Ty)
+ return CI->getOperand(0);
+ }
+ }
+ // Short-circuit unnecessary inttoptr<->ptrtoint casts.
+ if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
+ SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ if ((CI->getOpcode() == Instruction::PtrToInt ||
+ CI->getOpcode() == Instruction::IntToPtr) &&
+ SE.getTypeSizeInBits(CI->getType()) ==
+ SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
+ return CI->getOperand(0);
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if ((CE->getOpcode() == Instruction::PtrToInt ||
+ CE->getOpcode() == Instruction::IntToPtr) &&
+ SE.getTypeSizeInBits(CE->getType()) ==
+ SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
+ return CE->getOperand(0);
+ }
+
+ // Fold a cast of a constant.
+ if (Constant *C = dyn_cast<Constant>(V))
+ return ConstantExpr::getCast(Op, C, Ty);
+
+ // Cast the argument at the beginning of the entry block, after
+ // any bitcasts of other arguments.
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
+ while ((isa<BitCastInst>(IP) &&
+ isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
+ cast<BitCastInst>(IP)->getOperand(0) != A) ||
+ isa<DbgInfoIntrinsic>(IP))
+ ++IP;
+ return ReuseOrCreateCast(A, Ty, Op, IP);
+ }
+
+ // Cast the instruction immediately after the instruction.
+ Instruction *I = cast<Instruction>(V);
+ BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
+ return ReuseOrCreateCast(I, Ty, Op, IP);
+}
+
+/// InsertBinop - Insert the specified binary operator, doing a small amount
+/// of work to avoid inserting an obviously redundant operation, and hoisting
+/// to an outer loop when the opportunity is there and it is safe.
+Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
+ Value *LHS, Value *RHS,
+ SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
+ // Fold a binop with constant operands.
+ if (Constant *CLHS = dyn_cast<Constant>(LHS))
+ if (Constant *CRHS = dyn_cast<Constant>(RHS))
+ return ConstantExpr::get(Opcode, CLHS, CRHS);
+
+ // Do a quick scan to see if we have this binop nearby. If so, reuse it.
+ unsigned ScanLimit = 6;
+ BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
+ // Scanning starts from the last instruction before the insertion point.
+ BasicBlock::iterator IP = Builder.GetInsertPoint();
+ if (IP != BlockBegin) {
+ --IP;
+ for (; ScanLimit; --IP, --ScanLimit) {
+ // Don't count dbg.value against the ScanLimit, to avoid perturbing the
+ // generated code.
+ if (isa<DbgInfoIntrinsic>(IP))
+ ScanLimit++;
+
+ auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
+ // Ensure that no-wrap flags match.
+ if (isa<OverflowingBinaryOperator>(I)) {
+ if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
+ return true;
+ if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
+ return true;
+ }
+ // Conservatively, do not use any instruction which has any of exact
+ // flags installed.
+ if (isa<PossiblyExactOperator>(I) && I->isExact())
+ return true;
+ return false;
+ };
+ if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
+ IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
+ return &*IP;
+ if (IP == BlockBegin) break;
+ }
+ }
+
+ // Save the original insertion point so we can restore it when we're done.
+ DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
+ SCEVInsertPointGuard Guard(Builder, this);
+
+ if (IsSafeToHoist) {
+ // Move the insertion point out of as many loops as we can.
+ while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
+ if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) break;
+
+ // Ok, move up a level.
+ Builder.SetInsertPoint(Preheader->getTerminator());
+ }
+ }
+
+ // If we haven't found this binop, insert it.
+ Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
+ BO->setDebugLoc(Loc);
+ if (Flags & SCEV::FlagNUW)
+ BO->setHasNoUnsignedWrap();
+ if (Flags & SCEV::FlagNSW)
+ BO->setHasNoSignedWrap();
+ rememberInstruction(BO);
+
+ return BO;
+}
+
+/// FactorOutConstant - Test if S is divisible by Factor, using signed
+/// division. If so, update S with Factor divided out and return true.
+/// S need not be evenly divisible if a reasonable remainder can be
+/// computed.
+static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
+ const SCEV *Factor, ScalarEvolution &SE,
+ const DataLayout &DL) {
+ // Everything is divisible by one.
+ if (Factor->isOne())
+ return true;
+
+ // x/x == 1.
+ if (S == Factor) {
+ S = SE.getConstant(S->getType(), 1);
+ return true;
+ }
+
+ // For a Constant, check for a multiple of the given factor.
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
+ // 0/x == 0.
+ if (C->isZero())
+ return true;
+ // Check for divisibility.
+ if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
+ ConstantInt *CI =
+ ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
+ // If the quotient is zero and the remainder is non-zero, reject
+ // the value at this scale. It will be considered for subsequent
+ // smaller scales.
+ if (!CI->isZero()) {
+ const SCEV *Div = SE.getConstant(CI);
+ S = Div;
+ Remainder = SE.getAddExpr(
+ Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
+ return true;
+ }
+ }
+ }
+
+ // In a Mul, check if there is a constant operand which is a multiple
+ // of the given factor.
+ if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
+ // Size is known, check if there is a constant operand which is a multiple
+ // of the given factor. If so, we can factor it.
+ const SCEVConstant *FC = cast<SCEVConstant>(Factor);
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
+ if (!C->getAPInt().srem(FC->getAPInt())) {
+ SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
+ NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
+ S = SE.getMulExpr(NewMulOps);
+ return true;
+ }
+ }
+
+ // In an AddRec, check if both start and step are divisible.
+ if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
+ const SCEV *Step = A->getStepRecurrence(SE);
+ const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
+ if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
+ return false;
+ if (!StepRem->isZero())
+ return false;
+ const SCEV *Start = A->getStart();
+ if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
+ return false;
+ S = SE.getAddRecExpr(Start, Step, A->getLoop(),
+ A->getNoWrapFlags(SCEV::FlagNW));
+ return true;
+ }
+
+ return false;
+}
+
+/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
+/// is the number of SCEVAddRecExprs present, which are kept at the end of
+/// the list.
+///
+static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
+ Type *Ty,
+ ScalarEvolution &SE) {
+ unsigned NumAddRecs = 0;
+ for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
+ ++NumAddRecs;
+ // Group Ops into non-addrecs and addrecs.
+ SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
+ SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
+ // Let ScalarEvolution sort and simplify the non-addrecs list.
+ const SCEV *Sum = NoAddRecs.empty() ?
+ SE.getConstant(Ty, 0) :
+ SE.getAddExpr(NoAddRecs);
+ // If it returned an add, use the operands. Otherwise it simplified
+ // the sum into a single value, so just use that.
+ Ops.clear();
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
+ Ops.append(Add->op_begin(), Add->op_end());
+ else if (!Sum->isZero())
+ Ops.push_back(Sum);
+ // Then append the addrecs.
+ Ops.append(AddRecs.begin(), AddRecs.end());
+}
+
+/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
+/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
+/// This helps expose more opportunities for folding parts of the expressions
+/// into GEP indices.
+///
+static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
+ Type *Ty,
+ ScalarEvolution &SE) {
+ // Find the addrecs.
+ SmallVector<const SCEV *, 8> AddRecs;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
+ const SCEV *Start = A->getStart();
+ if (Start->isZero()) break;
+ const SCEV *Zero = SE.getConstant(Ty, 0);
+ AddRecs.push_back(SE.getAddRecExpr(Zero,
+ A->getStepRecurrence(SE),
+ A->getLoop(),
+ A->getNoWrapFlags(SCEV::FlagNW)));
+ if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
+ Ops[i] = Zero;
+ Ops.append(Add->op_begin(), Add->op_end());
+ e += Add->getNumOperands();
+ } else {
+ Ops[i] = Start;
+ }
+ }
+ if (!AddRecs.empty()) {
+ // Add the addrecs onto the end of the list.
+ Ops.append(AddRecs.begin(), AddRecs.end());
+ // Resort the operand list, moving any constants to the front.
+ SimplifyAddOperands(Ops, Ty, SE);
+ }
+}
+
+/// expandAddToGEP - Expand an addition expression with a pointer type into
+/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
+/// BasicAliasAnalysis and other passes analyze the result. See the rules
+/// for getelementptr vs. inttoptr in
+/// http://llvm.org/docs/LangRef.html#pointeraliasing
+/// for details.
+///
+/// Design note: The correctness of using getelementptr here depends on
+/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
+/// they may introduce pointer arithmetic which may not be safely converted
+/// into getelementptr.
+///
+/// Design note: It might seem desirable for this function to be more
+/// loop-aware. If some of the indices are loop-invariant while others
+/// aren't, it might seem desirable to emit multiple GEPs, keeping the
+/// loop-invariant portions of the overall computation outside the loop.
+/// However, there are a few reasons this is not done here. Hoisting simple
+/// arithmetic is a low-level optimization that often isn't very
+/// important until late in the optimization process. In fact, passes
+/// like InstructionCombining will combine GEPs, even if it means
+/// pushing loop-invariant computation down into loops, so even if the
+/// GEPs were split here, the work would quickly be undone. The
+/// LoopStrengthReduction pass, which is usually run quite late (and
+/// after the last InstructionCombining pass), takes care of hoisting
+/// loop-invariant portions of expressions, after considering what
+/// can be folded using target addressing modes.
+///
+Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
+ const SCEV *const *op_end,
+ PointerType *PTy,
+ Type *Ty,
+ Value *V) {
+ Type *OriginalElTy = PTy->getElementType();
+ Type *ElTy = OriginalElTy;
+ SmallVector<Value *, 4> GepIndices;
+ SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
+ bool AnyNonZeroIndices = false;
+
+ // Split AddRecs up into parts as either of the parts may be usable
+ // without the other.
+ SplitAddRecs(Ops, Ty, SE);
+
+ Type *IntIdxTy = DL.getIndexType(PTy);
+
+ // Descend down the pointer's type and attempt to convert the other
+ // operands into GEP indices, at each level. The first index in a GEP
+ // indexes into the array implied by the pointer operand; the rest of
+ // the indices index into the element or field type selected by the
+ // preceding index.
+ for (;;) {
+ // If the scale size is not 0, attempt to factor out a scale for
+ // array indexing.
+ SmallVector<const SCEV *, 8> ScaledOps;
+ if (ElTy->isSized()) {
+ const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
+ if (!ElSize->isZero()) {
+ SmallVector<const SCEV *, 8> NewOps;
+ for (const SCEV *Op : Ops) {
+ const SCEV *Remainder = SE.getConstant(Ty, 0);
+ if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
+ // Op now has ElSize factored out.
+ ScaledOps.push_back(Op);
+ if (!Remainder->isZero())
+ NewOps.push_back(Remainder);
+ AnyNonZeroIndices = true;
+ } else {
+ // The operand was not divisible, so add it to the list of operands
+ // we'll scan next iteration.
+ NewOps.push_back(Op);
+ }
+ }
+ // If we made any changes, update Ops.
+ if (!ScaledOps.empty()) {
+ Ops = NewOps;
+ SimplifyAddOperands(Ops, Ty, SE);
+ }
+ }
+ }
+
+ // Record the scaled array index for this level of the type. If
+ // we didn't find any operands that could be factored, tentatively
+ // assume that element zero was selected (since the zero offset
+ // would obviously be folded away).
+ Value *Scaled = ScaledOps.empty() ?
+ Constant::getNullValue(Ty) :
+ expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
+ GepIndices.push_back(Scaled);
+
+ // Collect struct field index operands.
+ while (StructType *STy = dyn_cast<StructType>(ElTy)) {
+ bool FoundFieldNo = false;
+ // An empty struct has no fields.
+ if (STy->getNumElements() == 0) break;
+ // Field offsets are known. See if a constant offset falls within any of
+ // the struct fields.
+ if (Ops.empty())
+ break;
+ if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
+ if (SE.getTypeSizeInBits(C->getType()) <= 64) {
+ const StructLayout &SL = *DL.getStructLayout(STy);
+ uint64_t FullOffset = C->getValue()->getZExtValue();
+ if (FullOffset < SL.getSizeInBytes()) {
+ unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
+ GepIndices.push_back(
+ ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
+ ElTy = STy->getTypeAtIndex(ElIdx);
+ Ops[0] =
+ SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
+ AnyNonZeroIndices = true;
+ FoundFieldNo = true;
+ }
+ }
+ // If no struct field offsets were found, tentatively assume that
+ // field zero was selected (since the zero offset would obviously
+ // be folded away).
+ if (!FoundFieldNo) {
+ ElTy = STy->getTypeAtIndex(0u);
+ GepIndices.push_back(
+ Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
+ }
+ }
+
+ if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
+ ElTy = ATy->getElementType();
+ else
+ break;
+ }
+
+ // If none of the operands were convertible to proper GEP indices, cast
+ // the base to i8* and do an ugly getelementptr with that. It's still
+ // better than ptrtoint+arithmetic+inttoptr at least.
+ if (!AnyNonZeroIndices) {
+ // Cast the base to i8*.
+ V = InsertNoopCastOfTo(V,
+ Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
+
+ assert(!isa<Instruction>(V) ||
+ SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
+
+ // Expand the operands for a plain byte offset.
+ Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
+
+ // Fold a GEP with constant operands.
+ if (Constant *CLHS = dyn_cast<Constant>(V))
+ if (Constant *CRHS = dyn_cast<Constant>(Idx))
+ return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
+ CLHS, CRHS);
+
+ // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
+ unsigned ScanLimit = 6;
+ BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
+ // Scanning starts from the last instruction before the insertion point.
+ BasicBlock::iterator IP = Builder.GetInsertPoint();
+ if (IP != BlockBegin) {
+ --IP;
+ for (; ScanLimit; --IP, --ScanLimit) {
+ // Don't count dbg.value against the ScanLimit, to avoid perturbing the
+ // generated code.
+ if (isa<DbgInfoIntrinsic>(IP))
+ ScanLimit++;
+ if (IP->getOpcode() == Instruction::GetElementPtr &&
+ IP->getOperand(0) == V && IP->getOperand(1) == Idx)
+ return &*IP;
+ if (IP == BlockBegin) break;
+ }
+ }
+
+ // Save the original insertion point so we can restore it when we're done.
+ SCEVInsertPointGuard Guard(Builder, this);
+
+ // Move the insertion point out of as many loops as we can.
+ while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
+ if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) break;
+
+ // Ok, move up a level.
+ Builder.SetInsertPoint(Preheader->getTerminator());
+ }
+
+ // Emit a GEP.
+ Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
+ rememberInstruction(GEP);
+
+ return GEP;
+ }
+
+ {
+ SCEVInsertPointGuard Guard(Builder, this);
+
+ // Move the insertion point out of as many loops as we can.
+ while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
+ if (!L->isLoopInvariant(V)) break;
+
+ bool AnyIndexNotLoopInvariant = any_of(
+ GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
+
+ if (AnyIndexNotLoopInvariant)
+ break;
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) break;
+
+ // Ok, move up a level.
+ Builder.SetInsertPoint(Preheader->getTerminator());
+ }
+
+ // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
+ // because ScalarEvolution may have changed the address arithmetic to
+ // compute a value which is beyond the end of the allocated object.
+ Value *Casted = V;
+ if (V->getType() != PTy)
+ Casted = InsertNoopCastOfTo(Casted, PTy);
+ Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
+ Ops.push_back(SE.getUnknown(GEP));
+ rememberInstruction(GEP);
+ }
+
+ return expand(SE.getAddExpr(Ops));
+}
+
+Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
+ Value *V) {
+ const SCEV *const Ops[1] = {Op};
+ return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
+}
+
+/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
+/// SCEV expansion. If they are nested, this is the most nested. If they are
+/// neighboring, pick the later.
+static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
+ DominatorTree &DT) {
+ if (!A) return B;
+ if (!B) return A;
+ if (A->contains(B)) return B;
+ if (B->contains(A)) return A;
+ if (DT.dominates(A->getHeader(), B->getHeader())) return B;
+ if (DT.dominates(B->getHeader(), A->getHeader())) return A;
+ return A; // Arbitrarily break the tie.
+}
+
+/// getRelevantLoop - Get the most relevant loop associated with the given
+/// expression, according to PickMostRelevantLoop.
+const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
+ // Test whether we've already computed the most relevant loop for this SCEV.
+ auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
+ if (!Pair.second)
+ return Pair.first->second;
+
+ if (isa<SCEVConstant>(S))
+ // A constant has no relevant loops.
+ return nullptr;
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
+ if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
+ return Pair.first->second = SE.LI.getLoopFor(I->getParent());
+ // A non-instruction has no relevant loops.
+ return nullptr;
+ }
+ if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
+ const Loop *L = nullptr;
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
+ L = AR->getLoop();
+ for (const SCEV *Op : N->operands())
+ L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
+ return RelevantLoops[N] = L;
+ }
+ if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
+ const Loop *Result = getRelevantLoop(C->getOperand());
+ return RelevantLoops[C] = Result;
+ }
+ if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
+ const Loop *Result = PickMostRelevantLoop(
+ getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
+ return RelevantLoops[D] = Result;
+ }
+ llvm_unreachable("Unexpected SCEV type!");
+}
+
+namespace {
+
+/// LoopCompare - Compare loops by PickMostRelevantLoop.
+class LoopCompare {
+ DominatorTree &DT;
+public:
+ explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
+
+ bool operator()(std::pair<const Loop *, const SCEV *> LHS,
+ std::pair<const Loop *, const SCEV *> RHS) const {
+ // Keep pointer operands sorted at the end.
+ if (LHS.second->getType()->isPointerTy() !=
+ RHS.second->getType()->isPointerTy())
+ return LHS.second->getType()->isPointerTy();
+
+ // Compare loops with PickMostRelevantLoop.
+ if (LHS.first != RHS.first)
+ return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
+
+ // If one operand is a non-constant negative and the other is not,
+ // put the non-constant negative on the right so that a sub can
+ // be used instead of a negate and add.
+ if (LHS.second->isNonConstantNegative()) {
+ if (!RHS.second->isNonConstantNegative())
+ return false;
+ } else if (RHS.second->isNonConstantNegative())
+ return true;
+
+ // Otherwise they are equivalent according to this comparison.
+ return false;
+ }
+};
+
+}
+
+Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+
+ // Collect all the add operands in a loop, along with their associated loops.
+ // Iterate in reverse so that constants are emitted last, all else equal, and
+ // so that pointer operands are inserted first, which the code below relies on
+ // to form more involved GEPs.
+ SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
+ for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
+ E(S->op_begin()); I != E; ++I)
+ OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
+
+ // Sort by loop. Use a stable sort so that constants follow non-constants and
+ // pointer operands precede non-pointer operands.
+ llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
+
+ // Emit instructions to add all the operands. Hoist as much as possible
+ // out of loops, and form meaningful getelementptrs where possible.
+ Value *Sum = nullptr;
+ for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
+ const Loop *CurLoop = I->first;
+ const SCEV *Op = I->second;
+ if (!Sum) {
+ // This is the first operand. Just expand it.
+ Sum = expand(Op);
+ ++I;
+ } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
+ // The running sum expression is a pointer. Try to form a getelementptr
+ // at this level with that as the base.
+ SmallVector<const SCEV *, 4> NewOps;
+ for (; I != E && I->first == CurLoop; ++I) {
+ // If the operand is SCEVUnknown and not instructions, peek through
+ // it, to enable more of it to be folded into the GEP.
+ const SCEV *X = I->second;
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
+ if (!isa<Instruction>(U->getValue()))
+ X = SE.getSCEV(U->getValue());
+ NewOps.push_back(X);
+ }
+ Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
+ } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
+ // The running sum is an integer, and there's a pointer at this level.
+ // Try to form a getelementptr. If the running sum is instructions,
+ // use a SCEVUnknown to avoid re-analyzing them.
+ SmallVector<const SCEV *, 4> NewOps;
+ NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
+ SE.getSCEV(Sum));
+ for (++I; I != E && I->first == CurLoop; ++I)
+ NewOps.push_back(I->second);
+ Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
+ } else if (Op->isNonConstantNegative()) {
+ // Instead of doing a negate and add, just do a subtract.
+ Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
+ Sum = InsertNoopCastOfTo(Sum, Ty);
+ Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
+ /*IsSafeToHoist*/ true);
+ ++I;
+ } else {
+ // A simple add.
+ Value *W = expandCodeFor(Op, Ty);
+ Sum = InsertNoopCastOfTo(Sum, Ty);
+ // Canonicalize a constant to the RHS.
+ if (isa<Constant>(Sum)) std::swap(Sum, W);
+ Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
+ /*IsSafeToHoist*/ true);
+ ++I;
+ }
+ }
+
+ return Sum;
+}
+
+Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+
+ // Collect all the mul operands in a loop, along with their associated loops.
+ // Iterate in reverse so that constants are emitted last, all else equal.
+ SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
+ for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
+ E(S->op_begin()); I != E; ++I)
+ OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
+
+ // Sort by loop. Use a stable sort so that constants follow non-constants.
+ llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
+
+ // Emit instructions to mul all the operands. Hoist as much as possible
+ // out of loops.
+ Value *Prod = nullptr;
+ auto I = OpsAndLoops.begin();
+
+ // Expand the calculation of X pow N in the following manner:
+ // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
+ // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
+ const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
+ auto E = I;
+ // Calculate how many times the same operand from the same loop is included
+ // into this power.
+ uint64_t Exponent = 0;
+ const uint64_t MaxExponent = UINT64_MAX >> 1;
+ // No one sane will ever try to calculate such huge exponents, but if we
+ // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
+ // below when the power of 2 exceeds our Exponent, and we want it to be
+ // 1u << 31 at most to not deal with unsigned overflow.
+ while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
+ ++Exponent;
+ ++E;
+ }
+ assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
+
+ // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
+ // that are needed into the result.
+ Value *P = expandCodeFor(I->second, Ty);
+ Value *Result = nullptr;
+ if (Exponent & 1)
+ Result = P;
+ for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
+ P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
+ /*IsSafeToHoist*/ true);
+ if (Exponent & BinExp)
+ Result = Result ? InsertBinop(Instruction::Mul, Result, P,
+ SCEV::FlagAnyWrap,
+ /*IsSafeToHoist*/ true)
+ : P;
+ }
+
+ I = E;
+ assert(Result && "Nothing was expanded?");
+ return Result;
+ };
+
+ while (I != OpsAndLoops.end()) {
+ if (!Prod) {
+ // This is the first operand. Just expand it.
+ Prod = ExpandOpBinPowN();
+ } else if (I->second->isAllOnesValue()) {
+ // Instead of doing a multiply by negative one, just do a negate.
+ Prod = InsertNoopCastOfTo(Prod, Ty);
+ Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
+ SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
+ ++I;
+ } else {
+ // A simple mul.
+ Value *W = ExpandOpBinPowN();
+ Prod = InsertNoopCastOfTo(Prod, Ty);
+ // Canonicalize a constant to the RHS.
+ if (isa<Constant>(Prod)) std::swap(Prod, W);
+ const APInt *RHS;
+ if (match(W, m_Power2(RHS))) {
+ // Canonicalize Prod*(1<<C) to Prod<<C.
+ assert(!Ty->isVectorTy() && "vector types are not SCEVable");
+ auto NWFlags = S->getNoWrapFlags();
+ // clear nsw flag if shl will produce poison value.
+ if (RHS->logBase2() == RHS->getBitWidth() - 1)
+ NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
+ Prod = InsertBinop(Instruction::Shl, Prod,
+ ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
+ /*IsSafeToHoist*/ true);
+ } else {
+ Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
+ /*IsSafeToHoist*/ true);
+ }
+ }
+ }
+
+ return Prod;
+}
+
+Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+
+ Value *LHS = expandCodeFor(S->getLHS(), Ty);
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
+ const APInt &RHS = SC->getAPInt();
+ if (RHS.isPowerOf2())
+ return InsertBinop(Instruction::LShr, LHS,
+ ConstantInt::get(Ty, RHS.logBase2()),
+ SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
+ }
+
+ Value *RHS = expandCodeFor(S->getRHS(), Ty);
+ return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
+ /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
+}
+
+/// Move parts of Base into Rest to leave Base with the minimal
+/// expression that provides a pointer operand suitable for a
+/// GEP expansion.
+static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
+ ScalarEvolution &SE) {
+ while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
+ Base = A->getStart();
+ Rest = SE.getAddExpr(Rest,
+ SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
+ A->getStepRecurrence(SE),
+ A->getLoop(),
+ A->getNoWrapFlags(SCEV::FlagNW)));
+ }
+ if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
+ Base = A->getOperand(A->getNumOperands()-1);
+ SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
+ NewAddOps.back() = Rest;
+ Rest = SE.getAddExpr(NewAddOps);
+ ExposePointerBase(Base, Rest, SE);
+ }
+}
+
+/// Determine if this is a well-behaved chain of instructions leading back to
+/// the PHI. If so, it may be reused by expanded expressions.
+bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
+ const Loop *L) {
+ if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
+ (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
+ return false;
+ // If any of the operands don't dominate the insert position, bail.
+ // Addrec operands are always loop-invariant, so this can only happen
+ // if there are instructions which haven't been hoisted.
+ if (L == IVIncInsertLoop) {
+ for (User::op_iterator OI = IncV->op_begin()+1,
+ OE = IncV->op_end(); OI != OE; ++OI)
+ if (Instruction *OInst = dyn_cast<Instruction>(OI))
+ if (!SE.DT.dominates(OInst, IVIncInsertPos))
+ return false;
+ }
+ // Advance to the next instruction.
+ IncV = dyn_cast<Instruction>(IncV->getOperand(0));
+ if (!IncV)
+ return false;
+
+ if (IncV->mayHaveSideEffects())
+ return false;
+
+ if (IncV == PN)
+ return true;
+
+ return isNormalAddRecExprPHI(PN, IncV, L);
+}
+
+/// getIVIncOperand returns an induction variable increment's induction
+/// variable operand.
+///
+/// If allowScale is set, any type of GEP is allowed as long as the nonIV
+/// operands dominate InsertPos.
+///
+/// If allowScale is not set, ensure that a GEP increment conforms to one of the
+/// simple patterns generated by getAddRecExprPHILiterally and
+/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
+Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
+ Instruction *InsertPos,
+ bool allowScale) {
+ if (IncV == InsertPos)
+ return nullptr;
+
+ switch (IncV->getOpcode()) {
+ default:
+ return nullptr;
+ // Check for a simple Add/Sub or GEP of a loop invariant step.
+ case Instruction::Add:
+ case Instruction::Sub: {
+ Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
+ if (!OInst || SE.DT.dominates(OInst, InsertPos))
+ return dyn_cast<Instruction>(IncV->getOperand(0));
+ return nullptr;
+ }
+ case Instruction::BitCast:
+ return dyn_cast<Instruction>(IncV->getOperand(0));
+ case Instruction::GetElementPtr:
+ for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
+ if (isa<Constant>(*I))
+ continue;
+ if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
+ if (!SE.DT.dominates(OInst, InsertPos))
+ return nullptr;
+ }
+ if (allowScale) {
+ // allow any kind of GEP as long as it can be hoisted.
+ continue;
+ }
+ // This must be a pointer addition of constants (pretty), which is already
+ // handled, or some number of address-size elements (ugly). Ugly geps
+ // have 2 operands. i1* is used by the expander to represent an
+ // address-size element.
+ if (IncV->getNumOperands() != 2)
+ return nullptr;
+ unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
+ if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
+ && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
+ return nullptr;
+ break;
+ }
+ return dyn_cast<Instruction>(IncV->getOperand(0));
+ }
+}
+
+/// If the insert point of the current builder or any of the builders on the
+/// stack of saved builders has 'I' as its insert point, update it to point to
+/// the instruction after 'I'. This is intended to be used when the instruction
+/// 'I' is being moved. If this fixup is not done and 'I' is moved to a
+/// different block, the inconsistent insert point (with a mismatched
+/// Instruction and Block) can lead to an instruction being inserted in a block
+/// other than its parent.
+void SCEVExpander::fixupInsertPoints(Instruction *I) {
+ BasicBlock::iterator It(*I);
+ BasicBlock::iterator NewInsertPt = std::next(It);
+ if (Builder.GetInsertPoint() == It)
+ Builder.SetInsertPoint(&*NewInsertPt);
+ for (auto *InsertPtGuard : InsertPointGuards)
+ if (InsertPtGuard->GetInsertPoint() == It)
+ InsertPtGuard->SetInsertPoint(NewInsertPt);
+}
+
+/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
+/// it available to other uses in this loop. Recursively hoist any operands,
+/// until we reach a value that dominates InsertPos.
+bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
+ if (SE.DT.dominates(IncV, InsertPos))
+ return true;
+
+ // InsertPos must itself dominate IncV so that IncV's new position satisfies
+ // its existing users.
+ if (isa<PHINode>(InsertPos) ||
+ !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
+ return false;
+
+ if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
+ return false;
+
+ // Check that the chain of IV operands leading back to Phi can be hoisted.
+ SmallVector<Instruction*, 4> IVIncs;
+ for(;;) {
+ Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
+ if (!Oper)
+ return false;
+ // IncV is safe to hoist.
+ IVIncs.push_back(IncV);
+ IncV = Oper;
+ if (SE.DT.dominates(IncV, InsertPos))
+ break;
+ }
+ for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
+ fixupInsertPoints(*I);
+ (*I)->moveBefore(InsertPos);
+ }
+ return true;
+}
+
+/// Determine if this cyclic phi is in a form that would have been generated by
+/// LSR. We don't care if the phi was actually expanded in this pass, as long
+/// as it is in a low-cost form, for example, no implied multiplication. This
+/// should match any patterns generated by getAddRecExprPHILiterally and
+/// expandAddtoGEP.
+bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
+ const Loop *L) {
+ for(Instruction *IVOper = IncV;
+ (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
+ /*allowScale=*/false));) {
+ if (IVOper == PN)
+ return true;
+ }
+ return false;
+}
+
+/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
+/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
+/// need to materialize IV increments elsewhere to handle difficult situations.
+Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
+ Type *ExpandTy, Type *IntTy,
+ bool useSubtract) {
+ Value *IncV;
+ // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
+ if (ExpandTy->isPointerTy()) {
+ PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
+ // If the step isn't constant, don't use an implicitly scaled GEP, because
+ // that would require a multiply inside the loop.
+ if (!isa<ConstantInt>(StepV))
+ GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
+ GEPPtrTy->getAddressSpace());
+ IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
+ if (IncV->getType() != PN->getType()) {
+ IncV = Builder.CreateBitCast(IncV, PN->getType());
+ rememberInstruction(IncV);
+ }
+ } else {
+ IncV = useSubtract ?
+ Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
+ Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
+ rememberInstruction(IncV);
+ }
+ return IncV;
+}
+
+/// Hoist the addrec instruction chain rooted in the loop phi above the
+/// position. This routine assumes that this is possible (has been checked).
+void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
+ Instruction *Pos, PHINode *LoopPhi) {
+ do {
+ if (DT->dominates(InstToHoist, Pos))
+ break;
+ // Make sure the increment is where we want it. But don't move it
+ // down past a potential existing post-inc user.
+ fixupInsertPoints(InstToHoist);
+ InstToHoist->moveBefore(Pos);
+ Pos = InstToHoist;
+ InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
+ } while (InstToHoist != LoopPhi);
+}
+
+/// Check whether we can cheaply express the requested SCEV in terms of
+/// the available PHI SCEV by truncation and/or inversion of the step.
+static bool canBeCheaplyTransformed(ScalarEvolution &SE,
+ const SCEVAddRecExpr *Phi,
+ const SCEVAddRecExpr *Requested,
+ bool &InvertStep) {
+ Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
+ Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
+
+ if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
+ return false;
+
+ // Try truncate it if necessary.
+ Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
+ if (!Phi)
+ return false;
+
+ // Check whether truncation will help.
+ if (Phi == Requested) {
+ InvertStep = false;
+ return true;
+ }
+
+ // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
+ if (SE.getAddExpr(Requested->getStart(),
+ SE.getNegativeSCEV(Requested)) == Phi) {
+ InvertStep = true;
+ return true;
+ }
+
+ return false;
+}
+
+static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
+ if (!isa<IntegerType>(AR->getType()))
+ return false;
+
+ unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
+ Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
+ SE.getSignExtendExpr(AR, WideTy));
+ const SCEV *ExtendAfterOp =
+ SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
+ return ExtendAfterOp == OpAfterExtend;
+}
+
+static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
+ if (!isa<IntegerType>(AR->getType()))
+ return false;
+
+ unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
+ Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
+ SE.getZeroExtendExpr(AR, WideTy));
+ const SCEV *ExtendAfterOp =
+ SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
+ return ExtendAfterOp == OpAfterExtend;
+}
+
+/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
+/// the base addrec, which is the addrec without any non-loop-dominating
+/// values, and return the PHI.
+PHINode *
+SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
+ const Loop *L,
+ Type *ExpandTy,
+ Type *IntTy,
+ Type *&TruncTy,
+ bool &InvertStep) {
+ assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
+
+ // Reuse a previously-inserted PHI, if present.
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ if (LatchBlock) {
+ PHINode *AddRecPhiMatch = nullptr;
+ Instruction *IncV = nullptr;
+ TruncTy = nullptr;
+ InvertStep = false;
+
+ // Only try partially matching scevs that need truncation and/or
+ // step-inversion if we know this loop is outside the current loop.
+ bool TryNonMatchingSCEV =
+ IVIncInsertLoop &&
+ SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
+
+ for (PHINode &PN : L->getHeader()->phis()) {
+ if (!SE.isSCEVable(PN.getType()))
+ continue;
+
+ const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
+ if (!PhiSCEV)
+ continue;
+
+ bool IsMatchingSCEV = PhiSCEV == Normalized;
+ // We only handle truncation and inversion of phi recurrences for the
+ // expanded expression if the expanded expression's loop dominates the
+ // loop we insert to. Check now, so we can bail out early.
+ if (!IsMatchingSCEV && !TryNonMatchingSCEV)
+ continue;
+
+ // TODO: this possibly can be reworked to avoid this cast at all.
+ Instruction *TempIncV =
+ dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
+ if (!TempIncV)
+ continue;
+
+ // Check whether we can reuse this PHI node.
+ if (LSRMode) {
+ if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
+ continue;
+ if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
+ continue;
+ } else {
+ if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
+ continue;
+ }
+
+ // Stop if we have found an exact match SCEV.
+ if (IsMatchingSCEV) {
+ IncV = TempIncV;
+ TruncTy = nullptr;
+ InvertStep = false;
+ AddRecPhiMatch = &PN;
+ break;
+ }
+
+ // Try whether the phi can be translated into the requested form
+ // (truncated and/or offset by a constant).
+ if ((!TruncTy || InvertStep) &&
+ canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
+ // Record the phi node. But don't stop we might find an exact match
+ // later.
+ AddRecPhiMatch = &PN;
+ IncV = TempIncV;
+ TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
+ }
+ }
+
+ if (AddRecPhiMatch) {
+ // Potentially, move the increment. We have made sure in
+ // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
+ if (L == IVIncInsertLoop)
+ hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
+
+ // Ok, the add recurrence looks usable.
+ // Remember this PHI, even in post-inc mode.
+ InsertedValues.insert(AddRecPhiMatch);
+ // Remember the increment.
+ rememberInstruction(IncV);
+ return AddRecPhiMatch;
+ }
+ }
+
+ // Save the original insertion point so we can restore it when we're done.
+ SCEVInsertPointGuard Guard(Builder, this);
+
+ // Another AddRec may need to be recursively expanded below. For example, if
+ // this AddRec is quadratic, the StepV may itself be an AddRec in this
+ // loop. Remove this loop from the PostIncLoops set before expanding such
+ // AddRecs. Otherwise, we cannot find a valid position for the step
+ // (i.e. StepV can never dominate its loop header). Ideally, we could do
+ // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
+ // so it's not worth implementing SmallPtrSet::swap.
+ PostIncLoopSet SavedPostIncLoops = PostIncLoops;
+ PostIncLoops.clear();
+
+ // Expand code for the start value into the loop preheader.
+ assert(L->getLoopPreheader() &&
+ "Can't expand add recurrences without a loop preheader!");
+ Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
+ L->getLoopPreheader()->getTerminator());
+
+ // StartV must have been be inserted into L's preheader to dominate the new
+ // phi.
+ assert(!isa<Instruction>(StartV) ||
+ SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
+ L->getHeader()));
+
+ // Expand code for the step value. Do this before creating the PHI so that PHI
+ // reuse code doesn't see an incomplete PHI.
+ const SCEV *Step = Normalized->getStepRecurrence(SE);
+ // If the stride is negative, insert a sub instead of an add for the increment
+ // (unless it's a constant, because subtracts of constants are canonicalized
+ // to adds).
+ bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
+ if (useSubtract)
+ Step = SE.getNegativeSCEV(Step);
+ // Expand the step somewhere that dominates the loop header.
+ Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
+
+ // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
+ // we actually do emit an addition. It does not apply if we emit a
+ // subtraction.
+ bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
+ bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
+
+ // Create the PHI.
+ BasicBlock *Header = L->getHeader();
+ Builder.SetInsertPoint(Header, Header->begin());
+ pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
+ PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
+ Twine(IVName) + ".iv");
+ rememberInstruction(PN);
+
+ // Create the step instructions and populate the PHI.
+ for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
+ BasicBlock *Pred = *HPI;
+
+ // Add a start value.
+ if (!L->contains(Pred)) {
+ PN->addIncoming(StartV, Pred);
+ continue;
+ }
+
+ // Create a step value and add it to the PHI.
+ // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
+ // instructions at IVIncInsertPos.
+ Instruction *InsertPos = L == IVIncInsertLoop ?
+ IVIncInsertPos : Pred->getTerminator();
+ Builder.SetInsertPoint(InsertPos);
+ Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
+
+ if (isa<OverflowingBinaryOperator>(IncV)) {
+ if (IncrementIsNUW)
+ cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
+ if (IncrementIsNSW)
+ cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
+ }
+ PN->addIncoming(IncV, Pred);
+ }
+
+ // After expanding subexpressions, restore the PostIncLoops set so the caller
+ // can ensure that IVIncrement dominates the current uses.
+ PostIncLoops = SavedPostIncLoops;
+
+ // Remember this PHI, even in post-inc mode.
+ InsertedValues.insert(PN);
+
+ return PN;
+}
+
+Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
+ Type *STy = S->getType();
+ Type *IntTy = SE.getEffectiveSCEVType(STy);
+ const Loop *L = S->getLoop();
+
+ // Determine a normalized form of this expression, which is the expression
+ // before any post-inc adjustment is made.
+ const SCEVAddRecExpr *Normalized = S;
+ if (PostIncLoops.count(L)) {
+ PostIncLoopSet Loops;
+ Loops.insert(L);
+ Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
+ }
+
+ // Strip off any non-loop-dominating component from the addrec start.
+ const SCEV *Start = Normalized->getStart();
+ const SCEV *PostLoopOffset = nullptr;
+ if (!SE.properlyDominates(Start, L->getHeader())) {
+ PostLoopOffset = Start;
+ Start = SE.getConstant(Normalized->getType(), 0);
+ Normalized = cast<SCEVAddRecExpr>(
+ SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
+ Normalized->getLoop(),
+ Normalized->getNoWrapFlags(SCEV::FlagNW)));
+ }
+
+ // Strip off any non-loop-dominating component from the addrec step.
+ const SCEV *Step = Normalized->getStepRecurrence(SE);
+ const SCEV *PostLoopScale = nullptr;
+ if (!SE.dominates(Step, L->getHeader())) {
+ PostLoopScale = Step;
+ Step = SE.getConstant(Normalized->getType(), 1);
+ if (!Start->isZero()) {
+ // The normalization below assumes that Start is constant zero, so if
+ // it isn't re-associate Start to PostLoopOffset.
+ assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
+ PostLoopOffset = Start;
+ Start = SE.getConstant(Normalized->getType(), 0);
+ }
+ Normalized =
+ cast<SCEVAddRecExpr>(SE.getAddRecExpr(
+ Start, Step, Normalized->getLoop(),
+ Normalized->getNoWrapFlags(SCEV::FlagNW)));
+ }
+
+ // Expand the core addrec. If we need post-loop scaling, force it to
+ // expand to an integer type to avoid the need for additional casting.
+ Type *ExpandTy = PostLoopScale ? IntTy : STy;
+ // We can't use a pointer type for the addrec if the pointer type is
+ // non-integral.
+ Type *AddRecPHIExpandTy =
+ DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
+
+ // In some cases, we decide to reuse an existing phi node but need to truncate
+ // it and/or invert the step.
+ Type *TruncTy = nullptr;
+ bool InvertStep = false;
+ PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
+ IntTy, TruncTy, InvertStep);
+
+ // Accommodate post-inc mode, if necessary.
+ Value *Result;
+ if (!PostIncLoops.count(L))
+ Result = PN;
+ else {
+ // In PostInc mode, use the post-incremented value.
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ assert(LatchBlock && "PostInc mode requires a unique loop latch!");
+ Result = PN->getIncomingValueForBlock(LatchBlock);
+
+ // For an expansion to use the postinc form, the client must call
+ // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
+ // or dominated by IVIncInsertPos.
+ if (isa<Instruction>(Result) &&
+ !SE.DT.dominates(cast<Instruction>(Result),
+ &*Builder.GetInsertPoint())) {
+ // The induction variable's postinc expansion does not dominate this use.
+ // IVUsers tries to prevent this case, so it is rare. However, it can
+ // happen when an IVUser outside the loop is not dominated by the latch
+ // block. Adjusting IVIncInsertPos before expansion begins cannot handle
+ // all cases. Consider a phi outside whose operand is replaced during
+ // expansion with the value of the postinc user. Without fundamentally
+ // changing the way postinc users are tracked, the only remedy is
+ // inserting an extra IV increment. StepV might fold into PostLoopOffset,
+ // but hopefully expandCodeFor handles that.
+ bool useSubtract =
+ !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
+ if (useSubtract)
+ Step = SE.getNegativeSCEV(Step);
+ Value *StepV;
+ {
+ // Expand the step somewhere that dominates the loop header.
+ SCEVInsertPointGuard Guard(Builder, this);
+ StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
+ }
+ Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
+ }
+ }
+
+ // We have decided to reuse an induction variable of a dominating loop. Apply
+ // truncation and/or inversion of the step.
+ if (TruncTy) {
+ Type *ResTy = Result->getType();
+ // Normalize the result type.
+ if (ResTy != SE.getEffectiveSCEVType(ResTy))
+ Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
+ // Truncate the result.
+ if (TruncTy != Result->getType()) {
+ Result = Builder.CreateTrunc(Result, TruncTy);
+ rememberInstruction(Result);
+ }
+ // Invert the result.
+ if (InvertStep) {
+ Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
+ Result);
+ rememberInstruction(Result);
+ }
+ }
+
+ // Re-apply any non-loop-dominating scale.
+ if (PostLoopScale) {
+ assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
+ Result = InsertNoopCastOfTo(Result, IntTy);
+ Result = Builder.CreateMul(Result,
+ expandCodeFor(PostLoopScale, IntTy));
+ rememberInstruction(Result);
+ }
+
+ // Re-apply any non-loop-dominating offset.
+ if (PostLoopOffset) {
+ if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
+ if (Result->getType()->isIntegerTy()) {
+ Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
+ Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
+ } else {
+ Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
+ }
+ } else {
+ Result = InsertNoopCastOfTo(Result, IntTy);
+ Result = Builder.CreateAdd(Result,
+ expandCodeFor(PostLoopOffset, IntTy));
+ rememberInstruction(Result);
+ }
+ }
+
+ return Result;
+}
+
+Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
+ // In canonical mode we compute the addrec as an expression of a canonical IV
+ // using evaluateAtIteration and expand the resulting SCEV expression. This
+ // way we avoid introducing new IVs to carry on the comutation of the addrec
+ // throughout the loop.
+ //
+ // For nested addrecs evaluateAtIteration might need a canonical IV of a
+ // type wider than the addrec itself. Emitting a canonical IV of the
+ // proper type might produce non-legal types, for example expanding an i64
+ // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
+ // back to non-canonical mode for nested addrecs.
+ if (!CanonicalMode || (S->getNumOperands() > 2))
+ return expandAddRecExprLiterally(S);
+
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+ const Loop *L = S->getLoop();
+
+ // First check for an existing canonical IV in a suitable type.
+ PHINode *CanonicalIV = nullptr;
+ if (PHINode *PN = L->getCanonicalInductionVariable())
+ if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
+ CanonicalIV = PN;
+
+ // Rewrite an AddRec in terms of the canonical induction variable, if
+ // its type is more narrow.
+ if (CanonicalIV &&
+ SE.getTypeSizeInBits(CanonicalIV->getType()) >
+ SE.getTypeSizeInBits(Ty)) {
+ SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
+ for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
+ NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
+ Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
+ S->getNoWrapFlags(SCEV::FlagNW)));
+ BasicBlock::iterator NewInsertPt =
+ findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
+ V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
+ &*NewInsertPt);
+ return V;
+ }
+
+ // {X,+,F} --> X + {0,+,F}
+ if (!S->getStart()->isZero()) {
+ SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
+ NewOps[0] = SE.getConstant(Ty, 0);
+ const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
+ S->getNoWrapFlags(SCEV::FlagNW));
+
+ // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
+ // comments on expandAddToGEP for details.
+ const SCEV *Base = S->getStart();
+ // Dig into the expression to find the pointer base for a GEP.
+ const SCEV *ExposedRest = Rest;
+ ExposePointerBase(Base, ExposedRest, SE);
+ // If we found a pointer, expand the AddRec with a GEP.
+ if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
+ // Make sure the Base isn't something exotic, such as a multiplied
+ // or divided pointer value. In those cases, the result type isn't
+ // actually a pointer type.
+ if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
+ Value *StartV = expand(Base);
+ assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
+ return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
+ }
+ }
+
+ // Just do a normal add. Pre-expand the operands to suppress folding.
+ //
+ // The LHS and RHS values are factored out of the expand call to make the
+ // output independent of the argument evaluation order.
+ const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
+ const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
+ return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
+ }
+
+ // If we don't yet have a canonical IV, create one.
+ if (!CanonicalIV) {
+ // Create and insert the PHI node for the induction variable in the
+ // specified loop.
+ BasicBlock *Header = L->getHeader();
+ pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
+ CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
+ &Header->front());
+ rememberInstruction(CanonicalIV);
+
+ SmallSet<BasicBlock *, 4> PredSeen;
+ Constant *One = ConstantInt::get(Ty, 1);
+ for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
+ BasicBlock *HP = *HPI;
+ if (!PredSeen.insert(HP).second) {
+ // There must be an incoming value for each predecessor, even the
+ // duplicates!
+ CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
+ continue;
+ }
+
+ if (L->contains(HP)) {
+ // Insert a unit add instruction right before the terminator
+ // corresponding to the back-edge.
+ Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
+ "indvar.next",
+ HP->getTerminator());
+ Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
+ rememberInstruction(Add);
+ CanonicalIV->addIncoming(Add, HP);
+ } else {
+ CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
+ }
+ }
+ }
+
+ // {0,+,1} --> Insert a canonical induction variable into the loop!
+ if (S->isAffine() && S->getOperand(1)->isOne()) {
+ assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
+ "IVs with types different from the canonical IV should "
+ "already have been handled!");
+ return CanonicalIV;
+ }
+
+ // {0,+,F} --> {0,+,1} * F
+
+ // If this is a simple linear addrec, emit it now as a special case.
+ if (S->isAffine()) // {0,+,F} --> i*F
+ return
+ expand(SE.getTruncateOrNoop(
+ SE.getMulExpr(SE.getUnknown(CanonicalIV),
+ SE.getNoopOrAnyExtend(S->getOperand(1),
+ CanonicalIV->getType())),
+ Ty));
+
+ // If this is a chain of recurrences, turn it into a closed form, using the
+ // folders, then expandCodeFor the closed form. This allows the folders to
+ // simplify the expression without having to build a bunch of special code
+ // into this folder.
+ const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
+
+ // Promote S up to the canonical IV type, if the cast is foldable.
+ const SCEV *NewS = S;
+ const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
+ if (isa<SCEVAddRecExpr>(Ext))
+ NewS = Ext;
+
+ const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
+ //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
+
+ // Truncate the result down to the original type, if needed.
+ const SCEV *T = SE.getTruncateOrNoop(V, Ty);
+ return expand(T);
+}
+
+Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+ Value *V = expandCodeFor(S->getOperand(),
+ SE.getEffectiveSCEVType(S->getOperand()->getType()));
+ Value *I = Builder.CreateTrunc(V, Ty);
+ rememberInstruction(I);
+ return I;
+}
+
+Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+ Value *V = expandCodeFor(S->getOperand(),
+ SE.getEffectiveSCEVType(S->getOperand()->getType()));
+ Value *I = Builder.CreateZExt(V, Ty);
+ rememberInstruction(I);
+ return I;
+}
+
+Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
+ Type *Ty = SE.getEffectiveSCEVType(S->getType());
+ Value *V = expandCodeFor(S->getOperand(),
+ SE.getEffectiveSCEVType(S->getOperand()->getType()));
+ Value *I = Builder.CreateSExt(V, Ty);
+ rememberInstruction(I);
+ return I;
+}
+
+Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
+ Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
+ Type *Ty = LHS->getType();
+ for (int i = S->getNumOperands()-2; i >= 0; --i) {
+ // In the case of mixed integer and pointer types, do the
+ // rest of the comparisons as integer.
+ Type *OpTy = S->getOperand(i)->getType();
+ if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
+ Ty = SE.getEffectiveSCEVType(Ty);
+ LHS = InsertNoopCastOfTo(LHS, Ty);
+ }
+ Value *RHS = expandCodeFor(S->getOperand(i), Ty);
+ Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
+ rememberInstruction(ICmp);
+ Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
+ rememberInstruction(Sel);
+ LHS = Sel;
+ }
+ // In the case of mixed integer and pointer types, cast the
+ // final result back to the pointer type.
+ if (LHS->getType() != S->getType())
+ LHS = InsertNoopCastOfTo(LHS, S->getType());
+ return LHS;
+}
+
+Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
+ Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
+ Type *Ty = LHS->getType();
+ for (int i = S->getNumOperands()-2; i >= 0; --i) {
+ // In the case of mixed integer and pointer types, do the
+ // rest of the comparisons as integer.
+ Type *OpTy = S->getOperand(i)->getType();
+ if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
+ Ty = SE.getEffectiveSCEVType(Ty);
+ LHS = InsertNoopCastOfTo(LHS, Ty);
+ }
+ Value *RHS = expandCodeFor(S->getOperand(i), Ty);
+ Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
+ rememberInstruction(ICmp);
+ Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
+ rememberInstruction(Sel);
+ LHS = Sel;
+ }
+ // In the case of mixed integer and pointer types, cast the
+ // final result back to the pointer type.
+ if (LHS->getType() != S->getType())
+ LHS = InsertNoopCastOfTo(LHS, S->getType());
+ return LHS;
+}
+
+Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
+ Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
+ Type *Ty = LHS->getType();
+ for (int i = S->getNumOperands() - 2; i >= 0; --i) {
+ // In the case of mixed integer and pointer types, do the
+ // rest of the comparisons as integer.
+ Type *OpTy = S->getOperand(i)->getType();
+ if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
+ Ty = SE.getEffectiveSCEVType(Ty);
+ LHS = InsertNoopCastOfTo(LHS, Ty);
+ }
+ Value *RHS = expandCodeFor(S->getOperand(i), Ty);
+ Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
+ rememberInstruction(ICmp);
+ Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
+ rememberInstruction(Sel);
+ LHS = Sel;
+ }
+ // In the case of mixed integer and pointer types, cast the
+ // final result back to the pointer type.
+ if (LHS->getType() != S->getType())
+ LHS = InsertNoopCastOfTo(LHS, S->getType());
+ return LHS;
+}
+
+Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
+ Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
+ Type *Ty = LHS->getType();
+ for (int i = S->getNumOperands() - 2; i >= 0; --i) {
+ // In the case of mixed integer and pointer types, do the
+ // rest of the comparisons as integer.
+ Type *OpTy = S->getOperand(i)->getType();
+ if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
+ Ty = SE.getEffectiveSCEVType(Ty);
+ LHS = InsertNoopCastOfTo(LHS, Ty);
+ }
+ Value *RHS = expandCodeFor(S->getOperand(i), Ty);
+ Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
+ rememberInstruction(ICmp);
+ Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
+ rememberInstruction(Sel);
+ LHS = Sel;
+ }
+ // In the case of mixed integer and pointer types, cast the
+ // final result back to the pointer type.
+ if (LHS->getType() != S->getType())
+ LHS = InsertNoopCastOfTo(LHS, S->getType());
+ return LHS;
+}
+
+Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
+ Instruction *IP) {
+ setInsertPoint(IP);
+ return expandCodeFor(SH, Ty);
+}
+
+Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
+ // Expand the code for this SCEV.
+ Value *V = expand(SH);
+ if (Ty) {
+ assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
+ "non-trivial casts should be done with the SCEVs directly!");
+ V = InsertNoopCastOfTo(V, Ty);
+ }
+ return V;
+}
+
+ScalarEvolution::ValueOffsetPair
+SCEVExpander::FindValueInExprValueMap(const SCEV *S,
+ const Instruction *InsertPt) {
+ SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
+ // If the expansion is not in CanonicalMode, and the SCEV contains any
+ // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
+ if (CanonicalMode || !SE.containsAddRecurrence(S)) {
+ // If S is scConstant, it may be worse to reuse an existing Value.
+ if (S->getSCEVType() != scConstant && Set) {
+ // Choose a Value from the set which dominates the insertPt.
+ // insertPt should be inside the Value's parent loop so as not to break
+ // the LCSSA form.
+ for (auto const &VOPair : *Set) {
+ Value *V = VOPair.first;
+ ConstantInt *Offset = VOPair.second;
+ Instruction *EntInst = nullptr;
+ if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
+ S->getType() == V->getType() &&
+ EntInst->getFunction() == InsertPt->getFunction() &&
+ SE.DT.dominates(EntInst, InsertPt) &&
+ (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
+ SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
+ return {V, Offset};
+ }
+ }
+ }
+ return {nullptr, nullptr};
+}
+
+// The expansion of SCEV will either reuse a previous Value in ExprValueMap,
+// or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
+// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
+// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
+// the expansion will try to reuse Value from ExprValueMap, and only when it
+// fails, expand the SCEV literally.
+Value *SCEVExpander::expand(const SCEV *S) {
+ // Compute an insertion point for this SCEV object. Hoist the instructions
+ // as far out in the loop nest as possible.
+ Instruction *InsertPt = &*Builder.GetInsertPoint();
+
+ // We can move insertion point only if there is no div or rem operations
+ // otherwise we are risky to move it over the check for zero denominator.
+ auto SafeToHoist = [](const SCEV *S) {
+ return !SCEVExprContains(S, [](const SCEV *S) {
+ if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
+ if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
+ // Division by non-zero constants can be hoisted.
+ return SC->getValue()->isZero();
+ // All other divisions should not be moved as they may be
+ // divisions by zero and should be kept within the
+ // conditions of the surrounding loops that guard their
+ // execution (see PR35406).
+ return true;
+ }
+ return false;
+ });
+ };
+ if (SafeToHoist(S)) {
+ for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
+ L = L->getParentLoop()) {
+ if (SE.isLoopInvariant(S, L)) {
+ if (!L) break;
+ if (BasicBlock *Preheader = L->getLoopPreheader())
+ InsertPt = Preheader->getTerminator();
+ else
+ // LSR sets the insertion point for AddRec start/step values to the
+ // block start to simplify value reuse, even though it's an invalid
+ // position. SCEVExpander must correct for this in all cases.
+ InsertPt = &*L->getHeader()->getFirstInsertionPt();
+ } else {
+ // If the SCEV is computable at this level, insert it into the header
+ // after the PHIs (and after any other instructions that we've inserted
+ // there) so that it is guaranteed to dominate any user inside the loop.
+ if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
+ InsertPt = &*L->getHeader()->getFirstInsertionPt();
+ while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
+ (isInsertedInstruction(InsertPt) ||
+ isa<DbgInfoIntrinsic>(InsertPt)))
+ InsertPt = &*std::next(InsertPt->getIterator());
+ break;
+ }
+ }
+ }
+
+ // IndVarSimplify sometimes sets the insertion point at the block start, even
+ // when there are PHIs at that point. We must correct for this.
+ if (isa<PHINode>(*InsertPt))
+ InsertPt = &*InsertPt->getParent()->getFirstInsertionPt();
+
+ // Check to see if we already expanded this here.
+ auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
+ if (I != InsertedExpressions.end())
+ return I->second;
+
+ SCEVInsertPointGuard Guard(Builder, this);
+ Builder.SetInsertPoint(InsertPt);
+
+ // Expand the expression into instructions.
+ ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
+ Value *V = VO.first;
+
+ if (!V)
+ V = visit(S);
+ else if (VO.second) {
+ if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
+ Type *Ety = Vty->getPointerElementType();
+ int64_t Offset = VO.second->getSExtValue();
+ int64_t ESize = SE.getTypeSizeInBits(Ety);
+ if ((Offset * 8) % ESize == 0) {
+ ConstantInt *Idx =
+ ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
+ V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
+ } else {
+ ConstantInt *Idx =
+ ConstantInt::getSigned(VO.second->getType(), -Offset);
+ unsigned AS = Vty->getAddressSpace();
+ V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
+ V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
+ "uglygep");
+ V = Builder.CreateBitCast(V, Vty);
+ }
+ } else {
+ V = Builder.CreateSub(V, VO.second);
+ }
+ }
+ // Remember the expanded value for this SCEV at this location.
+ //
+ // This is independent of PostIncLoops. The mapped value simply materializes
+ // the expression at this insertion point. If the mapped value happened to be
+ // a postinc expansion, it could be reused by a non-postinc user, but only if
+ // its insertion point was already at the head of the loop.
+ InsertedExpressions[std::make_pair(S, InsertPt)] = V;
+ return V;
+}
+
+void SCEVExpander::rememberInstruction(Value *I) {
+ if (!PostIncLoops.empty())
+ InsertedPostIncValues.insert(I);
+ else
+ InsertedValues.insert(I);
+}
+
+/// getOrInsertCanonicalInductionVariable - This method returns the
+/// canonical induction variable of the specified type for the specified
+/// loop (inserting one if there is none). A canonical induction variable
+/// starts at zero and steps by one on each iteration.
+PHINode *
+SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
+ Type *Ty) {
+ assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
+
+ // Build a SCEV for {0,+,1}<L>.
+ // Conservatively use FlagAnyWrap for now.
+ const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
+ SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
+
+ // Emit code for it.
+ SCEVInsertPointGuard Guard(Builder, this);
+ PHINode *V =
+ cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
+
+ return V;
+}
+
+/// replaceCongruentIVs - Check for congruent phis in this loop header and
+/// replace them with their most canonical representative. Return the number of
+/// phis eliminated.
+///
+/// This does not depend on any SCEVExpander state but should be used in
+/// the same context that SCEVExpander is used.
+unsigned
+SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts,
+ const TargetTransformInfo *TTI) {
+ // Find integer phis in order of increasing width.
+ SmallVector<PHINode*, 8> Phis;
+ for (PHINode &PN : L->getHeader()->phis())
+ Phis.push_back(&PN);
+
+ if (TTI)
+ llvm::sort(Phis, [](Value *LHS, Value *RHS) {
+ // Put pointers at the back and make sure pointer < pointer = false.
+ if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
+ return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
+ return RHS->getType()->getPrimitiveSizeInBits() <
+ LHS->getType()->getPrimitiveSizeInBits();
+ });
+
+ unsigned NumElim = 0;
+ DenseMap<const SCEV *, PHINode *> ExprToIVMap;
+ // Process phis from wide to narrow. Map wide phis to their truncation
+ // so narrow phis can reuse them.
+ for (PHINode *Phi : Phis) {
+ auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
+ if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
+ return V;
+ if (!SE.isSCEVable(PN->getType()))
+ return nullptr;
+ auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
+ if (!Const)
+ return nullptr;
+ return Const->getValue();
+ };
+
+ // Fold constant phis. They may be congruent to other constant phis and
+ // would confuse the logic below that expects proper IVs.
+ if (Value *V = SimplifyPHINode(Phi)) {
+ if (V->getType() != Phi->getType())
+ continue;
+ Phi->replaceAllUsesWith(V);
+ DeadInsts.emplace_back(Phi);
+ ++NumElim;
+ DEBUG_WITH_TYPE(DebugType, dbgs()
+ << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
+ continue;
+ }
+
+ if (!SE.isSCEVable(Phi->getType()))
+ continue;
+
+ PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
+ if (!OrigPhiRef) {
+ OrigPhiRef = Phi;
+ if (Phi->getType()->isIntegerTy() && TTI &&
+ TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
+ // This phi can be freely truncated to the narrowest phi type. Map the
+ // truncated expression to it so it will be reused for narrow types.
+ const SCEV *TruncExpr =
+ SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
+ ExprToIVMap[TruncExpr] = Phi;
+ }
+ continue;
+ }
+
+ // Replacing a pointer phi with an integer phi or vice-versa doesn't make
+ // sense.
+ if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
+ continue;
+
+ if (BasicBlock *LatchBlock = L->getLoopLatch()) {
+ Instruction *OrigInc = dyn_cast<Instruction>(
+ OrigPhiRef->getIncomingValueForBlock(LatchBlock));
+ Instruction *IsomorphicInc =
+ dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
+
+ if (OrigInc && IsomorphicInc) {
+ // If this phi has the same width but is more canonical, replace the
+ // original with it. As part of the "more canonical" determination,
+ // respect a prior decision to use an IV chain.
+ if (OrigPhiRef->getType() == Phi->getType() &&
+ !(ChainedPhis.count(Phi) ||
+ isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
+ (ChainedPhis.count(Phi) ||
+ isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
+ std::swap(OrigPhiRef, Phi);
+ std::swap(OrigInc, IsomorphicInc);
+ }
+ // Replacing the congruent phi is sufficient because acyclic
+ // redundancy elimination, CSE/GVN, should handle the
+ // rest. However, once SCEV proves that a phi is congruent,
+ // it's often the head of an IV user cycle that is isomorphic
+ // with the original phi. It's worth eagerly cleaning up the
+ // common case of a single IV increment so that DeleteDeadPHIs
+ // can remove cycles that had postinc uses.
+ const SCEV *TruncExpr =
+ SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
+ if (OrigInc != IsomorphicInc &&
+ TruncExpr == SE.getSCEV(IsomorphicInc) &&
+ SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
+ hoistIVInc(OrigInc, IsomorphicInc)) {
+ DEBUG_WITH_TYPE(DebugType,
+ dbgs() << "INDVARS: Eliminated congruent iv.inc: "
+ << *IsomorphicInc << '\n');
+ Value *NewInc = OrigInc;
+ if (OrigInc->getType() != IsomorphicInc->getType()) {
+ Instruction *IP = nullptr;
+ if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
+ IP = &*PN->getParent()->getFirstInsertionPt();
+ else
+ IP = OrigInc->getNextNode();
+
+ IRBuilder<> Builder(IP);
+ Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
+ NewInc = Builder.CreateTruncOrBitCast(
+ OrigInc, IsomorphicInc->getType(), IVName);
+ }
+ IsomorphicInc->replaceAllUsesWith(NewInc);
+ DeadInsts.emplace_back(IsomorphicInc);
+ }
+ }
+ }
+ DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
+ << *Phi << '\n');
+ ++NumElim;
+ Value *NewIV = OrigPhiRef;
+ if (OrigPhiRef->getType() != Phi->getType()) {
+ IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
+ Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
+ NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
+ }
+ Phi->replaceAllUsesWith(NewIV);
+ DeadInsts.emplace_back(Phi);
+ }
+ return NumElim;
+}
+
+Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
+ const Instruction *At, Loop *L) {
+ Optional<ScalarEvolution::ValueOffsetPair> VO =
+ getRelatedExistingExpansion(S, At, L);
+ if (VO && VO.getValue().second == nullptr)
+ return VO.getValue().first;
+ return nullptr;
+}
+
+Optional<ScalarEvolution::ValueOffsetPair>
+SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
+ Loop *L) {
+ using namespace llvm::PatternMatch;
+
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ // Look for suitable value in simple conditions at the loop exits.
+ for (BasicBlock *BB : ExitingBlocks) {
+ ICmpInst::Predicate Pred;
+ Instruction *LHS, *RHS;
+
+ if (!match(BB->getTerminator(),
+ m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
+ m_BasicBlock(), m_BasicBlock())))
+ continue;
+
+ if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
+ return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
+
+ if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
+ return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
+ }
+
+ // Use expand's logic which is used for reusing a previous Value in
+ // ExprValueMap.
+ ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
+ if (VO.first)
+ return VO;
+
+ // There is potential to make this significantly smarter, but this simple
+ // heuristic already gets some interesting cases.
+
+ // Can not find suitable value.
+ return None;
+}
+
+bool SCEVExpander::isHighCostExpansionHelper(
+ const SCEV *S, Loop *L, const Instruction *At,
+ SmallPtrSetImpl<const SCEV *> &Processed) {
+
+ // If we can find an existing value for this scev available at the point "At"
+ // then consider the expression cheap.
+ if (At && getRelatedExistingExpansion(S, At, L))
+ return false;
+
+ // Zero/One operand expressions
+ switch (S->getSCEVType()) {
+ case scUnknown:
+ case scConstant:
+ return false;
+ case scTruncate:
+ return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
+ L, At, Processed);
+ case scZeroExtend:
+ return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
+ L, At, Processed);
+ case scSignExtend:
+ return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
+ L, At, Processed);
+ }
+
+ if (!Processed.insert(S).second)
+ return false;
+
+ if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
+ // If the divisor is a power of two and the SCEV type fits in a native
+ // integer (and the LHS not expensive), consider the division cheap
+ // irrespective of whether it occurs in the user code since it can be
+ // lowered into a right shift.
+ if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
+ if (SC->getAPInt().isPowerOf2()) {
+ if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed))
+ return true;
+ const DataLayout &DL =
+ L->getHeader()->getParent()->getParent()->getDataLayout();
+ unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
+ return DL.isIllegalInteger(Width);
+ }
+
+ // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
+ // HowManyLessThans produced to compute a precise expression, rather than a
+ // UDiv from the user's code. If we can't find a UDiv in the code with some
+ // simple searching, assume the former consider UDivExpr expensive to
+ // compute.
+ BasicBlock *ExitingBB = L->getExitingBlock();
+ if (!ExitingBB)
+ return true;
+
+ // At the beginning of this function we already tried to find existing value
+ // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
+ // involving division. This is just a simple search heuristic.
+ if (!At)
+ At = &ExitingBB->back();
+ if (!getRelatedExistingExpansion(
+ SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
+ return true;
+ }
+
+ // HowManyLessThans uses a Max expression whenever the loop is not guarded by
+ // the exit condition.
+ if (isa<SCEVMinMaxExpr>(S))
+ return true;
+
+ // Recurse past nary expressions, which commonly occur in the
+ // BackedgeTakenCount. They may already exist in program code, and if not,
+ // they are not too expensive rematerialize.
+ if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
+ for (auto *Op : NAry->operands())
+ if (isHighCostExpansionHelper(Op, L, At, Processed))
+ return true;
+ }
+
+ // If we haven't recognized an expensive SCEV pattern, assume it's an
+ // expression produced by program code.
+ return false;
+}
+
+Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
+ Instruction *IP) {
+ assert(IP);
+ switch (Pred->getKind()) {
+ case SCEVPredicate::P_Union:
+ return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
+ case SCEVPredicate::P_Equal:
+ return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
+ case SCEVPredicate::P_Wrap: {
+ auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
+ return expandWrapPredicate(AddRecPred, IP);
+ }
+ }
+ llvm_unreachable("Unknown SCEV predicate type");
+}
+
+Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
+ Instruction *IP) {
+ Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
+ Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
+
+ Builder.SetInsertPoint(IP);
+ auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
+ return I;
+}
+
+Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
+ Instruction *Loc, bool Signed) {
+ assert(AR->isAffine() && "Cannot generate RT check for "
+ "non-affine expression");
+
+ SCEVUnionPredicate Pred;
+ const SCEV *ExitCount =
+ SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
+
+ assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
+
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ const SCEV *Start = AR->getStart();
+
+ Type *ARTy = AR->getType();
+ unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
+ unsigned DstBits = SE.getTypeSizeInBits(ARTy);
+
+ // The expression {Start,+,Step} has nusw/nssw if
+ // Step < 0, Start - |Step| * Backedge <= Start
+ // Step >= 0, Start + |Step| * Backedge > Start
+ // and |Step| * Backedge doesn't unsigned overflow.
+
+ IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
+ Builder.SetInsertPoint(Loc);
+ Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
+
+ IntegerType *Ty =
+ IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
+ Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
+
+ Value *StepValue = expandCodeFor(Step, Ty, Loc);
+ Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
+ Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
+
+ ConstantInt *Zero =
+ ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
+
+ Builder.SetInsertPoint(Loc);
+ // Compute |Step|
+ Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
+ Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
+
+ // Get the backedge taken count and truncate or extended to the AR type.
+ Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
+ auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
+ Intrinsic::umul_with_overflow, Ty);
+
+ // Compute |Step| * Backedge
+ CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
+ Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
+ Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
+
+ // Compute:
+ // Start + |Step| * Backedge < Start
+ // Start - |Step| * Backedge > Start
+ Value *Add = nullptr, *Sub = nullptr;
+ if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
+ const SCEV *MulS = SE.getSCEV(MulV);
+ const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
+ Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
+ ARPtrTy);
+ Sub = Builder.CreateBitCast(
+ expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
+ } else {
+ Add = Builder.CreateAdd(StartValue, MulV);
+ Sub = Builder.CreateSub(StartValue, MulV);
+ }
+
+ Value *EndCompareGT = Builder.CreateICmp(
+ Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
+
+ Value *EndCompareLT = Builder.CreateICmp(
+ Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
+
+ // Select the answer based on the sign of Step.
+ Value *EndCheck =
+ Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
+
+ // If the backedge taken count type is larger than the AR type,
+ // check that we don't drop any bits by truncating it. If we are
+ // dropping bits, then we have overflow (unless the step is zero).
+ if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
+ auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
+ auto *BackedgeCheck =
+ Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
+ ConstantInt::get(Loc->getContext(), MaxVal));
+ BackedgeCheck = Builder.CreateAnd(
+ BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
+
+ EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
+ }
+
+ EndCheck = Builder.CreateOr(EndCheck, OfMul);
+ return EndCheck;
+}
+
+Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
+ Instruction *IP) {
+ const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
+ Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
+
+ // Add a check for NUSW
+ if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
+ NUSWCheck = generateOverflowCheck(A, IP, false);
+
+ // Add a check for NSSW
+ if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
+ NSSWCheck = generateOverflowCheck(A, IP, true);
+
+ if (NUSWCheck && NSSWCheck)
+ return Builder.CreateOr(NUSWCheck, NSSWCheck);
+
+ if (NUSWCheck)
+ return NUSWCheck;
+
+ if (NSSWCheck)
+ return NSSWCheck;
+
+ return ConstantInt::getFalse(IP->getContext());
+}
+
+Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
+ Instruction *IP) {
+ auto *BoolType = IntegerType::get(IP->getContext(), 1);
+ Value *Check = ConstantInt::getNullValue(BoolType);
+
+ // Loop over all checks in this set.
+ for (auto Pred : Union->getPredicates()) {
+ auto *NextCheck = expandCodeForPredicate(Pred, IP);
+ Builder.SetInsertPoint(IP);
+ Check = Builder.CreateOr(Check, NextCheck);
+ }
+
+ return Check;
+}
+
+namespace {
+// Search for a SCEV subexpression that is not safe to expand. Any expression
+// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
+// UDiv expressions. We don't know if the UDiv is derived from an IR divide
+// instruction, but the important thing is that we prove the denominator is
+// nonzero before expansion.
+//
+// IVUsers already checks that IV-derived expressions are safe. So this check is
+// only needed when the expression includes some subexpression that is not IV
+// derived.
+//
+// Currently, we only allow division by a nonzero constant here. If this is
+// inadequate, we could easily allow division by SCEVUnknown by using
+// ValueTracking to check isKnownNonZero().
+//
+// We cannot generally expand recurrences unless the step dominates the loop
+// header. The expander handles the special case of affine recurrences by
+// scaling the recurrence outside the loop, but this technique isn't generally
+// applicable. Expanding a nested recurrence outside a loop requires computing
+// binomial coefficients. This could be done, but the recurrence has to be in a
+// perfectly reduced form, which can't be guaranteed.
+struct SCEVFindUnsafe {
+ ScalarEvolution &SE;
+ bool IsUnsafe;
+
+ SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
+
+ bool follow(const SCEV *S) {
+ if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
+ const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
+ if (!SC || SC->getValue()->isZero()) {
+ IsUnsafe = true;
+ return false;
+ }
+ }
+ if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
+ IsUnsafe = true;
+ return false;
+ }
+ }
+ return true;
+ }
+ bool isDone() const { return IsUnsafe; }
+};
+}
+
+namespace llvm {
+bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
+ SCEVFindUnsafe Search(SE);
+ visitAll(S, Search);
+ return !Search.IsUnsafe;
+}
+
+bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
+ ScalarEvolution &SE) {
+ if (!isSafeToExpand(S, SE))
+ return false;
+ // We have to prove that the expanded site of S dominates InsertionPoint.
+ // This is easy when not in the same block, but hard when S is an instruction
+ // to be expanded somewhere inside the same block as our insertion point.
+ // What we really need here is something analogous to an OrderedBasicBlock,
+ // but for the moment, we paper over the problem by handling two common and
+ // cheap to check cases.
+ if (SE.properlyDominates(S, InsertionPoint->getParent()))
+ return true;
+ if (SE.dominates(S, InsertionPoint->getParent())) {
+ if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
+ return true;
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
+ for (const Value *V : InsertionPoint->operand_values())
+ if (V == U->getValue())
+ return true;
+ }
+ return false;
+}
+}
OpenPOWER on IntegriCloud