diff options
author | Florian Hahn <flo@fhahn.com> | 2020-01-04 18:44:38 +0000 |
---|---|---|
committer | Florian Hahn <flo@fhahn.com> | 2020-01-04 18:44:38 +0000 |
commit | b8a3c34eee06c17ae42dc00218ba4f0c815e9a2c (patch) | |
tree | c211f02514ad6301ee0155b42e3f6fac4cc83a03 /llvm/lib/Analysis/ScalarEvolutionExpander.cpp | |
parent | 51ef53f3bd23559203fe9af82ff2facbfedc1db3 (diff) | |
download | bcm5719-llvm-b8a3c34eee06c17ae42dc00218ba4f0c815e9a2c.tar.gz bcm5719-llvm-b8a3c34eee06c17ae42dc00218ba4f0c815e9a2c.zip |
Revert "[SCEV] Move ScalarEvolutionExpander.cpp to Transforms/Utils (NFC)."
This reverts commit 51ef53f3bd23559203fe9af82ff2facbfedc1db3, as it
breaks some bots.
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolutionExpander.cpp')
-rw-r--r-- | llvm/lib/Analysis/ScalarEvolutionExpander.cpp | 2452 |
1 files changed, 2452 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp new file mode 100644 index 00000000000..dc5d02aa3a3 --- /dev/null +++ b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp @@ -0,0 +1,2452 @@ +//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the scalar evolution expander, +// which is used to generate the code corresponding to a given scalar evolution +// expression. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; +using namespace PatternMatch; + +/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, +/// reusing an existing cast if a suitable one exists, moving an existing +/// cast if a suitable one exists but isn't in the right place, or +/// creating a new one. +Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, + Instruction::CastOps Op, + BasicBlock::iterator IP) { + // This function must be called with the builder having a valid insertion + // point. It doesn't need to be the actual IP where the uses of the returned + // cast will be added, but it must dominate such IP. + // We use this precondition to produce a cast that will dominate all its + // uses. In particular, this is crucial for the case where the builder's + // insertion point *is* the point where we were asked to put the cast. + // Since we don't know the builder's insertion point is actually + // where the uses will be added (only that it dominates it), we are + // not allowed to move it. + BasicBlock::iterator BIP = Builder.GetInsertPoint(); + + Instruction *Ret = nullptr; + + // Check to see if there is already a cast! + for (User *U : V->users()) + if (U->getType() == Ty) + if (CastInst *CI = dyn_cast<CastInst>(U)) + if (CI->getOpcode() == Op) { + // If the cast isn't where we want it, create a new cast at IP. + // Likewise, do not reuse a cast at BIP because it must dominate + // instructions that might be inserted before BIP. + if (BasicBlock::iterator(CI) != IP || BIP == IP) { + // Create a new cast, and leave the old cast in place in case + // it is being used as an insert point. + Ret = CastInst::Create(Op, V, Ty, "", &*IP); + Ret->takeName(CI); + CI->replaceAllUsesWith(Ret); + break; + } + Ret = CI; + break; + } + + // Create a new cast. + if (!Ret) + Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); + + // We assert at the end of the function since IP might point to an + // instruction with different dominance properties than a cast + // (an invoke for example) and not dominate BIP (but the cast does). + assert(SE.DT.dominates(Ret, &*BIP)); + + rememberInstruction(Ret); + return Ret; +} + +static BasicBlock::iterator findInsertPointAfter(Instruction *I, + BasicBlock *MustDominate) { + BasicBlock::iterator IP = ++I->getIterator(); + if (auto *II = dyn_cast<InvokeInst>(I)) + IP = II->getNormalDest()->begin(); + + while (isa<PHINode>(IP)) + ++IP; + + if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { + ++IP; + } else if (isa<CatchSwitchInst>(IP)) { + IP = MustDominate->getFirstInsertionPt(); + } else { + assert(!IP->isEHPad() && "unexpected eh pad!"); + } + + return IP; +} + +/// InsertNoopCastOfTo - Insert a cast of V to the specified type, +/// which must be possible with a noop cast, doing what we can to share +/// the casts. +Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { + Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); + assert((Op == Instruction::BitCast || + Op == Instruction::PtrToInt || + Op == Instruction::IntToPtr) && + "InsertNoopCastOfTo cannot perform non-noop casts!"); + assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && + "InsertNoopCastOfTo cannot change sizes!"); + + // Short-circuit unnecessary bitcasts. + if (Op == Instruction::BitCast) { + if (V->getType() == Ty) + return V; + if (CastInst *CI = dyn_cast<CastInst>(V)) { + if (CI->getOperand(0)->getType() == Ty) + return CI->getOperand(0); + } + } + // Short-circuit unnecessary inttoptr<->ptrtoint casts. + if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && + SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { + if (CastInst *CI = dyn_cast<CastInst>(V)) + if ((CI->getOpcode() == Instruction::PtrToInt || + CI->getOpcode() == Instruction::IntToPtr) && + SE.getTypeSizeInBits(CI->getType()) == + SE.getTypeSizeInBits(CI->getOperand(0)->getType())) + return CI->getOperand(0); + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) + if ((CE->getOpcode() == Instruction::PtrToInt || + CE->getOpcode() == Instruction::IntToPtr) && + SE.getTypeSizeInBits(CE->getType()) == + SE.getTypeSizeInBits(CE->getOperand(0)->getType())) + return CE->getOperand(0); + } + + // Fold a cast of a constant. + if (Constant *C = dyn_cast<Constant>(V)) + return ConstantExpr::getCast(Op, C, Ty); + + // Cast the argument at the beginning of the entry block, after + // any bitcasts of other arguments. + if (Argument *A = dyn_cast<Argument>(V)) { + BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); + while ((isa<BitCastInst>(IP) && + isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && + cast<BitCastInst>(IP)->getOperand(0) != A) || + isa<DbgInfoIntrinsic>(IP)) + ++IP; + return ReuseOrCreateCast(A, Ty, Op, IP); + } + + // Cast the instruction immediately after the instruction. + Instruction *I = cast<Instruction>(V); + BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); + return ReuseOrCreateCast(I, Ty, Op, IP); +} + +/// InsertBinop - Insert the specified binary operator, doing a small amount +/// of work to avoid inserting an obviously redundant operation, and hoisting +/// to an outer loop when the opportunity is there and it is safe. +Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, + Value *LHS, Value *RHS, + SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { + // Fold a binop with constant operands. + if (Constant *CLHS = dyn_cast<Constant>(LHS)) + if (Constant *CRHS = dyn_cast<Constant>(RHS)) + return ConstantExpr::get(Opcode, CLHS, CRHS); + + // Do a quick scan to see if we have this binop nearby. If so, reuse it. + unsigned ScanLimit = 6; + BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); + // Scanning starts from the last instruction before the insertion point. + BasicBlock::iterator IP = Builder.GetInsertPoint(); + if (IP != BlockBegin) { + --IP; + for (; ScanLimit; --IP, --ScanLimit) { + // Don't count dbg.value against the ScanLimit, to avoid perturbing the + // generated code. + if (isa<DbgInfoIntrinsic>(IP)) + ScanLimit++; + + auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { + // Ensure that no-wrap flags match. + if (isa<OverflowingBinaryOperator>(I)) { + if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) + return true; + if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) + return true; + } + // Conservatively, do not use any instruction which has any of exact + // flags installed. + if (isa<PossiblyExactOperator>(I) && I->isExact()) + return true; + return false; + }; + if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && + IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) + return &*IP; + if (IP == BlockBegin) break; + } + } + + // Save the original insertion point so we can restore it when we're done. + DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); + SCEVInsertPointGuard Guard(Builder, this); + + if (IsSafeToHoist) { + // Move the insertion point out of as many loops as we can. + while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { + if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) break; + + // Ok, move up a level. + Builder.SetInsertPoint(Preheader->getTerminator()); + } + } + + // If we haven't found this binop, insert it. + Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); + BO->setDebugLoc(Loc); + if (Flags & SCEV::FlagNUW) + BO->setHasNoUnsignedWrap(); + if (Flags & SCEV::FlagNSW) + BO->setHasNoSignedWrap(); + rememberInstruction(BO); + + return BO; +} + +/// FactorOutConstant - Test if S is divisible by Factor, using signed +/// division. If so, update S with Factor divided out and return true. +/// S need not be evenly divisible if a reasonable remainder can be +/// computed. +static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, + const SCEV *Factor, ScalarEvolution &SE, + const DataLayout &DL) { + // Everything is divisible by one. + if (Factor->isOne()) + return true; + + // x/x == 1. + if (S == Factor) { + S = SE.getConstant(S->getType(), 1); + return true; + } + + // For a Constant, check for a multiple of the given factor. + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { + // 0/x == 0. + if (C->isZero()) + return true; + // Check for divisibility. + if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { + ConstantInt *CI = + ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); + // If the quotient is zero and the remainder is non-zero, reject + // the value at this scale. It will be considered for subsequent + // smaller scales. + if (!CI->isZero()) { + const SCEV *Div = SE.getConstant(CI); + S = Div; + Remainder = SE.getAddExpr( + Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); + return true; + } + } + } + + // In a Mul, check if there is a constant operand which is a multiple + // of the given factor. + if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { + // Size is known, check if there is a constant operand which is a multiple + // of the given factor. If so, we can factor it. + const SCEVConstant *FC = cast<SCEVConstant>(Factor); + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) + if (!C->getAPInt().srem(FC->getAPInt())) { + SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); + NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); + S = SE.getMulExpr(NewMulOps); + return true; + } + } + + // In an AddRec, check if both start and step are divisible. + if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { + const SCEV *Step = A->getStepRecurrence(SE); + const SCEV *StepRem = SE.getConstant(Step->getType(), 0); + if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) + return false; + if (!StepRem->isZero()) + return false; + const SCEV *Start = A->getStart(); + if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) + return false; + S = SE.getAddRecExpr(Start, Step, A->getLoop(), + A->getNoWrapFlags(SCEV::FlagNW)); + return true; + } + + return false; +} + +/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs +/// is the number of SCEVAddRecExprs present, which are kept at the end of +/// the list. +/// +static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, + Type *Ty, + ScalarEvolution &SE) { + unsigned NumAddRecs = 0; + for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) + ++NumAddRecs; + // Group Ops into non-addrecs and addrecs. + SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); + SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); + // Let ScalarEvolution sort and simplify the non-addrecs list. + const SCEV *Sum = NoAddRecs.empty() ? + SE.getConstant(Ty, 0) : + SE.getAddExpr(NoAddRecs); + // If it returned an add, use the operands. Otherwise it simplified + // the sum into a single value, so just use that. + Ops.clear(); + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) + Ops.append(Add->op_begin(), Add->op_end()); + else if (!Sum->isZero()) + Ops.push_back(Sum); + // Then append the addrecs. + Ops.append(AddRecs.begin(), AddRecs.end()); +} + +/// SplitAddRecs - Flatten a list of add operands, moving addrec start values +/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. +/// This helps expose more opportunities for folding parts of the expressions +/// into GEP indices. +/// +static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, + Type *Ty, + ScalarEvolution &SE) { + // Find the addrecs. + SmallVector<const SCEV *, 8> AddRecs; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) + while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { + const SCEV *Start = A->getStart(); + if (Start->isZero()) break; + const SCEV *Zero = SE.getConstant(Ty, 0); + AddRecs.push_back(SE.getAddRecExpr(Zero, + A->getStepRecurrence(SE), + A->getLoop(), + A->getNoWrapFlags(SCEV::FlagNW))); + if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { + Ops[i] = Zero; + Ops.append(Add->op_begin(), Add->op_end()); + e += Add->getNumOperands(); + } else { + Ops[i] = Start; + } + } + if (!AddRecs.empty()) { + // Add the addrecs onto the end of the list. + Ops.append(AddRecs.begin(), AddRecs.end()); + // Resort the operand list, moving any constants to the front. + SimplifyAddOperands(Ops, Ty, SE); + } +} + +/// expandAddToGEP - Expand an addition expression with a pointer type into +/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps +/// BasicAliasAnalysis and other passes analyze the result. See the rules +/// for getelementptr vs. inttoptr in +/// http://llvm.org/docs/LangRef.html#pointeraliasing +/// for details. +/// +/// Design note: The correctness of using getelementptr here depends on +/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as +/// they may introduce pointer arithmetic which may not be safely converted +/// into getelementptr. +/// +/// Design note: It might seem desirable for this function to be more +/// loop-aware. If some of the indices are loop-invariant while others +/// aren't, it might seem desirable to emit multiple GEPs, keeping the +/// loop-invariant portions of the overall computation outside the loop. +/// However, there are a few reasons this is not done here. Hoisting simple +/// arithmetic is a low-level optimization that often isn't very +/// important until late in the optimization process. In fact, passes +/// like InstructionCombining will combine GEPs, even if it means +/// pushing loop-invariant computation down into loops, so even if the +/// GEPs were split here, the work would quickly be undone. The +/// LoopStrengthReduction pass, which is usually run quite late (and +/// after the last InstructionCombining pass), takes care of hoisting +/// loop-invariant portions of expressions, after considering what +/// can be folded using target addressing modes. +/// +Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, + const SCEV *const *op_end, + PointerType *PTy, + Type *Ty, + Value *V) { + Type *OriginalElTy = PTy->getElementType(); + Type *ElTy = OriginalElTy; + SmallVector<Value *, 4> GepIndices; + SmallVector<const SCEV *, 8> Ops(op_begin, op_end); + bool AnyNonZeroIndices = false; + + // Split AddRecs up into parts as either of the parts may be usable + // without the other. + SplitAddRecs(Ops, Ty, SE); + + Type *IntIdxTy = DL.getIndexType(PTy); + + // Descend down the pointer's type and attempt to convert the other + // operands into GEP indices, at each level. The first index in a GEP + // indexes into the array implied by the pointer operand; the rest of + // the indices index into the element or field type selected by the + // preceding index. + for (;;) { + // If the scale size is not 0, attempt to factor out a scale for + // array indexing. + SmallVector<const SCEV *, 8> ScaledOps; + if (ElTy->isSized()) { + const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); + if (!ElSize->isZero()) { + SmallVector<const SCEV *, 8> NewOps; + for (const SCEV *Op : Ops) { + const SCEV *Remainder = SE.getConstant(Ty, 0); + if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { + // Op now has ElSize factored out. + ScaledOps.push_back(Op); + if (!Remainder->isZero()) + NewOps.push_back(Remainder); + AnyNonZeroIndices = true; + } else { + // The operand was not divisible, so add it to the list of operands + // we'll scan next iteration. + NewOps.push_back(Op); + } + } + // If we made any changes, update Ops. + if (!ScaledOps.empty()) { + Ops = NewOps; + SimplifyAddOperands(Ops, Ty, SE); + } + } + } + + // Record the scaled array index for this level of the type. If + // we didn't find any operands that could be factored, tentatively + // assume that element zero was selected (since the zero offset + // would obviously be folded away). + Value *Scaled = ScaledOps.empty() ? + Constant::getNullValue(Ty) : + expandCodeFor(SE.getAddExpr(ScaledOps), Ty); + GepIndices.push_back(Scaled); + + // Collect struct field index operands. + while (StructType *STy = dyn_cast<StructType>(ElTy)) { + bool FoundFieldNo = false; + // An empty struct has no fields. + if (STy->getNumElements() == 0) break; + // Field offsets are known. See if a constant offset falls within any of + // the struct fields. + if (Ops.empty()) + break; + if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) + if (SE.getTypeSizeInBits(C->getType()) <= 64) { + const StructLayout &SL = *DL.getStructLayout(STy); + uint64_t FullOffset = C->getValue()->getZExtValue(); + if (FullOffset < SL.getSizeInBytes()) { + unsigned ElIdx = SL.getElementContainingOffset(FullOffset); + GepIndices.push_back( + ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); + ElTy = STy->getTypeAtIndex(ElIdx); + Ops[0] = + SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); + AnyNonZeroIndices = true; + FoundFieldNo = true; + } + } + // If no struct field offsets were found, tentatively assume that + // field zero was selected (since the zero offset would obviously + // be folded away). + if (!FoundFieldNo) { + ElTy = STy->getTypeAtIndex(0u); + GepIndices.push_back( + Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); + } + } + + if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) + ElTy = ATy->getElementType(); + else + break; + } + + // If none of the operands were convertible to proper GEP indices, cast + // the base to i8* and do an ugly getelementptr with that. It's still + // better than ptrtoint+arithmetic+inttoptr at least. + if (!AnyNonZeroIndices) { + // Cast the base to i8*. + V = InsertNoopCastOfTo(V, + Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); + + assert(!isa<Instruction>(V) || + SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); + + // Expand the operands for a plain byte offset. + Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); + + // Fold a GEP with constant operands. + if (Constant *CLHS = dyn_cast<Constant>(V)) + if (Constant *CRHS = dyn_cast<Constant>(Idx)) + return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), + CLHS, CRHS); + + // Do a quick scan to see if we have this GEP nearby. If so, reuse it. + unsigned ScanLimit = 6; + BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); + // Scanning starts from the last instruction before the insertion point. + BasicBlock::iterator IP = Builder.GetInsertPoint(); + if (IP != BlockBegin) { + --IP; + for (; ScanLimit; --IP, --ScanLimit) { + // Don't count dbg.value against the ScanLimit, to avoid perturbing the + // generated code. + if (isa<DbgInfoIntrinsic>(IP)) + ScanLimit++; + if (IP->getOpcode() == Instruction::GetElementPtr && + IP->getOperand(0) == V && IP->getOperand(1) == Idx) + return &*IP; + if (IP == BlockBegin) break; + } + } + + // Save the original insertion point so we can restore it when we're done. + SCEVInsertPointGuard Guard(Builder, this); + + // Move the insertion point out of as many loops as we can. + while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { + if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) break; + + // Ok, move up a level. + Builder.SetInsertPoint(Preheader->getTerminator()); + } + + // Emit a GEP. + Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); + rememberInstruction(GEP); + + return GEP; + } + + { + SCEVInsertPointGuard Guard(Builder, this); + + // Move the insertion point out of as many loops as we can. + while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { + if (!L->isLoopInvariant(V)) break; + + bool AnyIndexNotLoopInvariant = any_of( + GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); + + if (AnyIndexNotLoopInvariant) + break; + + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) break; + + // Ok, move up a level. + Builder.SetInsertPoint(Preheader->getTerminator()); + } + + // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, + // because ScalarEvolution may have changed the address arithmetic to + // compute a value which is beyond the end of the allocated object. + Value *Casted = V; + if (V->getType() != PTy) + Casted = InsertNoopCastOfTo(Casted, PTy); + Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); + Ops.push_back(SE.getUnknown(GEP)); + rememberInstruction(GEP); + } + + return expand(SE.getAddExpr(Ops)); +} + +Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, + Value *V) { + const SCEV *const Ops[1] = {Op}; + return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); +} + +/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for +/// SCEV expansion. If they are nested, this is the most nested. If they are +/// neighboring, pick the later. +static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, + DominatorTree &DT) { + if (!A) return B; + if (!B) return A; + if (A->contains(B)) return B; + if (B->contains(A)) return A; + if (DT.dominates(A->getHeader(), B->getHeader())) return B; + if (DT.dominates(B->getHeader(), A->getHeader())) return A; + return A; // Arbitrarily break the tie. +} + +/// getRelevantLoop - Get the most relevant loop associated with the given +/// expression, according to PickMostRelevantLoop. +const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { + // Test whether we've already computed the most relevant loop for this SCEV. + auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); + if (!Pair.second) + return Pair.first->second; + + if (isa<SCEVConstant>(S)) + // A constant has no relevant loops. + return nullptr; + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { + if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) + return Pair.first->second = SE.LI.getLoopFor(I->getParent()); + // A non-instruction has no relevant loops. + return nullptr; + } + if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { + const Loop *L = nullptr; + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) + L = AR->getLoop(); + for (const SCEV *Op : N->operands()) + L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); + return RelevantLoops[N] = L; + } + if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { + const Loop *Result = getRelevantLoop(C->getOperand()); + return RelevantLoops[C] = Result; + } + if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { + const Loop *Result = PickMostRelevantLoop( + getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); + return RelevantLoops[D] = Result; + } + llvm_unreachable("Unexpected SCEV type!"); +} + +namespace { + +/// LoopCompare - Compare loops by PickMostRelevantLoop. +class LoopCompare { + DominatorTree &DT; +public: + explicit LoopCompare(DominatorTree &dt) : DT(dt) {} + + bool operator()(std::pair<const Loop *, const SCEV *> LHS, + std::pair<const Loop *, const SCEV *> RHS) const { + // Keep pointer operands sorted at the end. + if (LHS.second->getType()->isPointerTy() != + RHS.second->getType()->isPointerTy()) + return LHS.second->getType()->isPointerTy(); + + // Compare loops with PickMostRelevantLoop. + if (LHS.first != RHS.first) + return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; + + // If one operand is a non-constant negative and the other is not, + // put the non-constant negative on the right so that a sub can + // be used instead of a negate and add. + if (LHS.second->isNonConstantNegative()) { + if (!RHS.second->isNonConstantNegative()) + return false; + } else if (RHS.second->isNonConstantNegative()) + return true; + + // Otherwise they are equivalent according to this comparison. + return false; + } +}; + +} + +Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + + // Collect all the add operands in a loop, along with their associated loops. + // Iterate in reverse so that constants are emitted last, all else equal, and + // so that pointer operands are inserted first, which the code below relies on + // to form more involved GEPs. + SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; + for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), + E(S->op_begin()); I != E; ++I) + OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); + + // Sort by loop. Use a stable sort so that constants follow non-constants and + // pointer operands precede non-pointer operands. + llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); + + // Emit instructions to add all the operands. Hoist as much as possible + // out of loops, and form meaningful getelementptrs where possible. + Value *Sum = nullptr; + for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { + const Loop *CurLoop = I->first; + const SCEV *Op = I->second; + if (!Sum) { + // This is the first operand. Just expand it. + Sum = expand(Op); + ++I; + } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { + // The running sum expression is a pointer. Try to form a getelementptr + // at this level with that as the base. + SmallVector<const SCEV *, 4> NewOps; + for (; I != E && I->first == CurLoop; ++I) { + // If the operand is SCEVUnknown and not instructions, peek through + // it, to enable more of it to be folded into the GEP. + const SCEV *X = I->second; + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) + if (!isa<Instruction>(U->getValue())) + X = SE.getSCEV(U->getValue()); + NewOps.push_back(X); + } + Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); + } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { + // The running sum is an integer, and there's a pointer at this level. + // Try to form a getelementptr. If the running sum is instructions, + // use a SCEVUnknown to avoid re-analyzing them. + SmallVector<const SCEV *, 4> NewOps; + NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : + SE.getSCEV(Sum)); + for (++I; I != E && I->first == CurLoop; ++I) + NewOps.push_back(I->second); + Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); + } else if (Op->isNonConstantNegative()) { + // Instead of doing a negate and add, just do a subtract. + Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); + Sum = InsertNoopCastOfTo(Sum, Ty); + Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, + /*IsSafeToHoist*/ true); + ++I; + } else { + // A simple add. + Value *W = expandCodeFor(Op, Ty); + Sum = InsertNoopCastOfTo(Sum, Ty); + // Canonicalize a constant to the RHS. + if (isa<Constant>(Sum)) std::swap(Sum, W); + Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), + /*IsSafeToHoist*/ true); + ++I; + } + } + + return Sum; +} + +Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + + // Collect all the mul operands in a loop, along with their associated loops. + // Iterate in reverse so that constants are emitted last, all else equal. + SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; + for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), + E(S->op_begin()); I != E; ++I) + OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); + + // Sort by loop. Use a stable sort so that constants follow non-constants. + llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); + + // Emit instructions to mul all the operands. Hoist as much as possible + // out of loops. + Value *Prod = nullptr; + auto I = OpsAndLoops.begin(); + + // Expand the calculation of X pow N in the following manner: + // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: + // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). + const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { + auto E = I; + // Calculate how many times the same operand from the same loop is included + // into this power. + uint64_t Exponent = 0; + const uint64_t MaxExponent = UINT64_MAX >> 1; + // No one sane will ever try to calculate such huge exponents, but if we + // need this, we stop on UINT64_MAX / 2 because we need to exit the loop + // below when the power of 2 exceeds our Exponent, and we want it to be + // 1u << 31 at most to not deal with unsigned overflow. + while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { + ++Exponent; + ++E; + } + assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); + + // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them + // that are needed into the result. + Value *P = expandCodeFor(I->second, Ty); + Value *Result = nullptr; + if (Exponent & 1) + Result = P; + for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { + P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, + /*IsSafeToHoist*/ true); + if (Exponent & BinExp) + Result = Result ? InsertBinop(Instruction::Mul, Result, P, + SCEV::FlagAnyWrap, + /*IsSafeToHoist*/ true) + : P; + } + + I = E; + assert(Result && "Nothing was expanded?"); + return Result; + }; + + while (I != OpsAndLoops.end()) { + if (!Prod) { + // This is the first operand. Just expand it. + Prod = ExpandOpBinPowN(); + } else if (I->second->isAllOnesValue()) { + // Instead of doing a multiply by negative one, just do a negate. + Prod = InsertNoopCastOfTo(Prod, Ty); + Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, + SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); + ++I; + } else { + // A simple mul. + Value *W = ExpandOpBinPowN(); + Prod = InsertNoopCastOfTo(Prod, Ty); + // Canonicalize a constant to the RHS. + if (isa<Constant>(Prod)) std::swap(Prod, W); + const APInt *RHS; + if (match(W, m_Power2(RHS))) { + // Canonicalize Prod*(1<<C) to Prod<<C. + assert(!Ty->isVectorTy() && "vector types are not SCEVable"); + auto NWFlags = S->getNoWrapFlags(); + // clear nsw flag if shl will produce poison value. + if (RHS->logBase2() == RHS->getBitWidth() - 1) + NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); + Prod = InsertBinop(Instruction::Shl, Prod, + ConstantInt::get(Ty, RHS->logBase2()), NWFlags, + /*IsSafeToHoist*/ true); + } else { + Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), + /*IsSafeToHoist*/ true); + } + } + } + + return Prod; +} + +Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + + Value *LHS = expandCodeFor(S->getLHS(), Ty); + if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { + const APInt &RHS = SC->getAPInt(); + if (RHS.isPowerOf2()) + return InsertBinop(Instruction::LShr, LHS, + ConstantInt::get(Ty, RHS.logBase2()), + SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); + } + + Value *RHS = expandCodeFor(S->getRHS(), Ty); + return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, + /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); +} + +/// Move parts of Base into Rest to leave Base with the minimal +/// expression that provides a pointer operand suitable for a +/// GEP expansion. +static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, + ScalarEvolution &SE) { + while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { + Base = A->getStart(); + Rest = SE.getAddExpr(Rest, + SE.getAddRecExpr(SE.getConstant(A->getType(), 0), + A->getStepRecurrence(SE), + A->getLoop(), + A->getNoWrapFlags(SCEV::FlagNW))); + } + if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { + Base = A->getOperand(A->getNumOperands()-1); + SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); + NewAddOps.back() = Rest; + Rest = SE.getAddExpr(NewAddOps); + ExposePointerBase(Base, Rest, SE); + } +} + +/// Determine if this is a well-behaved chain of instructions leading back to +/// the PHI. If so, it may be reused by expanded expressions. +bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, + const Loop *L) { + if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || + (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) + return false; + // If any of the operands don't dominate the insert position, bail. + // Addrec operands are always loop-invariant, so this can only happen + // if there are instructions which haven't been hoisted. + if (L == IVIncInsertLoop) { + for (User::op_iterator OI = IncV->op_begin()+1, + OE = IncV->op_end(); OI != OE; ++OI) + if (Instruction *OInst = dyn_cast<Instruction>(OI)) + if (!SE.DT.dominates(OInst, IVIncInsertPos)) + return false; + } + // Advance to the next instruction. + IncV = dyn_cast<Instruction>(IncV->getOperand(0)); + if (!IncV) + return false; + + if (IncV->mayHaveSideEffects()) + return false; + + if (IncV == PN) + return true; + + return isNormalAddRecExprPHI(PN, IncV, L); +} + +/// getIVIncOperand returns an induction variable increment's induction +/// variable operand. +/// +/// If allowScale is set, any type of GEP is allowed as long as the nonIV +/// operands dominate InsertPos. +/// +/// If allowScale is not set, ensure that a GEP increment conforms to one of the +/// simple patterns generated by getAddRecExprPHILiterally and +/// expandAddtoGEP. If the pattern isn't recognized, return NULL. +Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, + Instruction *InsertPos, + bool allowScale) { + if (IncV == InsertPos) + return nullptr; + + switch (IncV->getOpcode()) { + default: + return nullptr; + // Check for a simple Add/Sub or GEP of a loop invariant step. + case Instruction::Add: + case Instruction::Sub: { + Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); + if (!OInst || SE.DT.dominates(OInst, InsertPos)) + return dyn_cast<Instruction>(IncV->getOperand(0)); + return nullptr; + } + case Instruction::BitCast: + return dyn_cast<Instruction>(IncV->getOperand(0)); + case Instruction::GetElementPtr: + for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { + if (isa<Constant>(*I)) + continue; + if (Instruction *OInst = dyn_cast<Instruction>(*I)) { + if (!SE.DT.dominates(OInst, InsertPos)) + return nullptr; + } + if (allowScale) { + // allow any kind of GEP as long as it can be hoisted. + continue; + } + // This must be a pointer addition of constants (pretty), which is already + // handled, or some number of address-size elements (ugly). Ugly geps + // have 2 operands. i1* is used by the expander to represent an + // address-size element. + if (IncV->getNumOperands() != 2) + return nullptr; + unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); + if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) + && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) + return nullptr; + break; + } + return dyn_cast<Instruction>(IncV->getOperand(0)); + } +} + +/// If the insert point of the current builder or any of the builders on the +/// stack of saved builders has 'I' as its insert point, update it to point to +/// the instruction after 'I'. This is intended to be used when the instruction +/// 'I' is being moved. If this fixup is not done and 'I' is moved to a +/// different block, the inconsistent insert point (with a mismatched +/// Instruction and Block) can lead to an instruction being inserted in a block +/// other than its parent. +void SCEVExpander::fixupInsertPoints(Instruction *I) { + BasicBlock::iterator It(*I); + BasicBlock::iterator NewInsertPt = std::next(It); + if (Builder.GetInsertPoint() == It) + Builder.SetInsertPoint(&*NewInsertPt); + for (auto *InsertPtGuard : InsertPointGuards) + if (InsertPtGuard->GetInsertPoint() == It) + InsertPtGuard->SetInsertPoint(NewInsertPt); +} + +/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make +/// it available to other uses in this loop. Recursively hoist any operands, +/// until we reach a value that dominates InsertPos. +bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { + if (SE.DT.dominates(IncV, InsertPos)) + return true; + + // InsertPos must itself dominate IncV so that IncV's new position satisfies + // its existing users. + if (isa<PHINode>(InsertPos) || + !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) + return false; + + if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) + return false; + + // Check that the chain of IV operands leading back to Phi can be hoisted. + SmallVector<Instruction*, 4> IVIncs; + for(;;) { + Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); + if (!Oper) + return false; + // IncV is safe to hoist. + IVIncs.push_back(IncV); + IncV = Oper; + if (SE.DT.dominates(IncV, InsertPos)) + break; + } + for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { + fixupInsertPoints(*I); + (*I)->moveBefore(InsertPos); + } + return true; +} + +/// Determine if this cyclic phi is in a form that would have been generated by +/// LSR. We don't care if the phi was actually expanded in this pass, as long +/// as it is in a low-cost form, for example, no implied multiplication. This +/// should match any patterns generated by getAddRecExprPHILiterally and +/// expandAddtoGEP. +bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, + const Loop *L) { + for(Instruction *IVOper = IncV; + (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), + /*allowScale=*/false));) { + if (IVOper == PN) + return true; + } + return false; +} + +/// expandIVInc - Expand an IV increment at Builder's current InsertPos. +/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may +/// need to materialize IV increments elsewhere to handle difficult situations. +Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, + Type *ExpandTy, Type *IntTy, + bool useSubtract) { + Value *IncV; + // If the PHI is a pointer, use a GEP, otherwise use an add or sub. + if (ExpandTy->isPointerTy()) { + PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); + // If the step isn't constant, don't use an implicitly scaled GEP, because + // that would require a multiply inside the loop. + if (!isa<ConstantInt>(StepV)) + GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), + GEPPtrTy->getAddressSpace()); + IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); + if (IncV->getType() != PN->getType()) { + IncV = Builder.CreateBitCast(IncV, PN->getType()); + rememberInstruction(IncV); + } + } else { + IncV = useSubtract ? + Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : + Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); + rememberInstruction(IncV); + } + return IncV; +} + +/// Hoist the addrec instruction chain rooted in the loop phi above the +/// position. This routine assumes that this is possible (has been checked). +void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, + Instruction *Pos, PHINode *LoopPhi) { + do { + if (DT->dominates(InstToHoist, Pos)) + break; + // Make sure the increment is where we want it. But don't move it + // down past a potential existing post-inc user. + fixupInsertPoints(InstToHoist); + InstToHoist->moveBefore(Pos); + Pos = InstToHoist; + InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); + } while (InstToHoist != LoopPhi); +} + +/// Check whether we can cheaply express the requested SCEV in terms of +/// the available PHI SCEV by truncation and/or inversion of the step. +static bool canBeCheaplyTransformed(ScalarEvolution &SE, + const SCEVAddRecExpr *Phi, + const SCEVAddRecExpr *Requested, + bool &InvertStep) { + Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); + Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); + + if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) + return false; + + // Try truncate it if necessary. + Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); + if (!Phi) + return false; + + // Check whether truncation will help. + if (Phi == Requested) { + InvertStep = false; + return true; + } + + // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. + if (SE.getAddExpr(Requested->getStart(), + SE.getNegativeSCEV(Requested)) == Phi) { + InvertStep = true; + return true; + } + + return false; +} + +static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { + if (!isa<IntegerType>(AR->getType())) + return false; + + unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); + Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); + const SCEV *Step = AR->getStepRecurrence(SE); + const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), + SE.getSignExtendExpr(AR, WideTy)); + const SCEV *ExtendAfterOp = + SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); + return ExtendAfterOp == OpAfterExtend; +} + +static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { + if (!isa<IntegerType>(AR->getType())) + return false; + + unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); + Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); + const SCEV *Step = AR->getStepRecurrence(SE); + const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), + SE.getZeroExtendExpr(AR, WideTy)); + const SCEV *ExtendAfterOp = + SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); + return ExtendAfterOp == OpAfterExtend; +} + +/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand +/// the base addrec, which is the addrec without any non-loop-dominating +/// values, and return the PHI. +PHINode * +SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, + const Loop *L, + Type *ExpandTy, + Type *IntTy, + Type *&TruncTy, + bool &InvertStep) { + assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); + + // Reuse a previously-inserted PHI, if present. + BasicBlock *LatchBlock = L->getLoopLatch(); + if (LatchBlock) { + PHINode *AddRecPhiMatch = nullptr; + Instruction *IncV = nullptr; + TruncTy = nullptr; + InvertStep = false; + + // Only try partially matching scevs that need truncation and/or + // step-inversion if we know this loop is outside the current loop. + bool TryNonMatchingSCEV = + IVIncInsertLoop && + SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); + + for (PHINode &PN : L->getHeader()->phis()) { + if (!SE.isSCEVable(PN.getType())) + continue; + + const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); + if (!PhiSCEV) + continue; + + bool IsMatchingSCEV = PhiSCEV == Normalized; + // We only handle truncation and inversion of phi recurrences for the + // expanded expression if the expanded expression's loop dominates the + // loop we insert to. Check now, so we can bail out early. + if (!IsMatchingSCEV && !TryNonMatchingSCEV) + continue; + + // TODO: this possibly can be reworked to avoid this cast at all. + Instruction *TempIncV = + dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); + if (!TempIncV) + continue; + + // Check whether we can reuse this PHI node. + if (LSRMode) { + if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) + continue; + if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) + continue; + } else { + if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) + continue; + } + + // Stop if we have found an exact match SCEV. + if (IsMatchingSCEV) { + IncV = TempIncV; + TruncTy = nullptr; + InvertStep = false; + AddRecPhiMatch = &PN; + break; + } + + // Try whether the phi can be translated into the requested form + // (truncated and/or offset by a constant). + if ((!TruncTy || InvertStep) && + canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { + // Record the phi node. But don't stop we might find an exact match + // later. + AddRecPhiMatch = &PN; + IncV = TempIncV; + TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); + } + } + + if (AddRecPhiMatch) { + // Potentially, move the increment. We have made sure in + // isExpandedAddRecExprPHI or hoistIVInc that this is possible. + if (L == IVIncInsertLoop) + hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); + + // Ok, the add recurrence looks usable. + // Remember this PHI, even in post-inc mode. + InsertedValues.insert(AddRecPhiMatch); + // Remember the increment. + rememberInstruction(IncV); + return AddRecPhiMatch; + } + } + + // Save the original insertion point so we can restore it when we're done. + SCEVInsertPointGuard Guard(Builder, this); + + // Another AddRec may need to be recursively expanded below. For example, if + // this AddRec is quadratic, the StepV may itself be an AddRec in this + // loop. Remove this loop from the PostIncLoops set before expanding such + // AddRecs. Otherwise, we cannot find a valid position for the step + // (i.e. StepV can never dominate its loop header). Ideally, we could do + // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, + // so it's not worth implementing SmallPtrSet::swap. + PostIncLoopSet SavedPostIncLoops = PostIncLoops; + PostIncLoops.clear(); + + // Expand code for the start value into the loop preheader. + assert(L->getLoopPreheader() && + "Can't expand add recurrences without a loop preheader!"); + Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, + L->getLoopPreheader()->getTerminator()); + + // StartV must have been be inserted into L's preheader to dominate the new + // phi. + assert(!isa<Instruction>(StartV) || + SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), + L->getHeader())); + + // Expand code for the step value. Do this before creating the PHI so that PHI + // reuse code doesn't see an incomplete PHI. + const SCEV *Step = Normalized->getStepRecurrence(SE); + // If the stride is negative, insert a sub instead of an add for the increment + // (unless it's a constant, because subtracts of constants are canonicalized + // to adds). + bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); + if (useSubtract) + Step = SE.getNegativeSCEV(Step); + // Expand the step somewhere that dominates the loop header. + Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); + + // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if + // we actually do emit an addition. It does not apply if we emit a + // subtraction. + bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); + bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); + + // Create the PHI. + BasicBlock *Header = L->getHeader(); + Builder.SetInsertPoint(Header, Header->begin()); + pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); + PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), + Twine(IVName) + ".iv"); + rememberInstruction(PN); + + // Create the step instructions and populate the PHI. + for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { + BasicBlock *Pred = *HPI; + + // Add a start value. + if (!L->contains(Pred)) { + PN->addIncoming(StartV, Pred); + continue; + } + + // Create a step value and add it to the PHI. + // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the + // instructions at IVIncInsertPos. + Instruction *InsertPos = L == IVIncInsertLoop ? + IVIncInsertPos : Pred->getTerminator(); + Builder.SetInsertPoint(InsertPos); + Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); + + if (isa<OverflowingBinaryOperator>(IncV)) { + if (IncrementIsNUW) + cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); + if (IncrementIsNSW) + cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); + } + PN->addIncoming(IncV, Pred); + } + + // After expanding subexpressions, restore the PostIncLoops set so the caller + // can ensure that IVIncrement dominates the current uses. + PostIncLoops = SavedPostIncLoops; + + // Remember this PHI, even in post-inc mode. + InsertedValues.insert(PN); + + return PN; +} + +Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { + Type *STy = S->getType(); + Type *IntTy = SE.getEffectiveSCEVType(STy); + const Loop *L = S->getLoop(); + + // Determine a normalized form of this expression, which is the expression + // before any post-inc adjustment is made. + const SCEVAddRecExpr *Normalized = S; + if (PostIncLoops.count(L)) { + PostIncLoopSet Loops; + Loops.insert(L); + Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); + } + + // Strip off any non-loop-dominating component from the addrec start. + const SCEV *Start = Normalized->getStart(); + const SCEV *PostLoopOffset = nullptr; + if (!SE.properlyDominates(Start, L->getHeader())) { + PostLoopOffset = Start; + Start = SE.getConstant(Normalized->getType(), 0); + Normalized = cast<SCEVAddRecExpr>( + SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), + Normalized->getLoop(), + Normalized->getNoWrapFlags(SCEV::FlagNW))); + } + + // Strip off any non-loop-dominating component from the addrec step. + const SCEV *Step = Normalized->getStepRecurrence(SE); + const SCEV *PostLoopScale = nullptr; + if (!SE.dominates(Step, L->getHeader())) { + PostLoopScale = Step; + Step = SE.getConstant(Normalized->getType(), 1); + if (!Start->isZero()) { + // The normalization below assumes that Start is constant zero, so if + // it isn't re-associate Start to PostLoopOffset. + assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); + PostLoopOffset = Start; + Start = SE.getConstant(Normalized->getType(), 0); + } + Normalized = + cast<SCEVAddRecExpr>(SE.getAddRecExpr( + Start, Step, Normalized->getLoop(), + Normalized->getNoWrapFlags(SCEV::FlagNW))); + } + + // Expand the core addrec. If we need post-loop scaling, force it to + // expand to an integer type to avoid the need for additional casting. + Type *ExpandTy = PostLoopScale ? IntTy : STy; + // We can't use a pointer type for the addrec if the pointer type is + // non-integral. + Type *AddRecPHIExpandTy = + DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; + + // In some cases, we decide to reuse an existing phi node but need to truncate + // it and/or invert the step. + Type *TruncTy = nullptr; + bool InvertStep = false; + PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, + IntTy, TruncTy, InvertStep); + + // Accommodate post-inc mode, if necessary. + Value *Result; + if (!PostIncLoops.count(L)) + Result = PN; + else { + // In PostInc mode, use the post-incremented value. + BasicBlock *LatchBlock = L->getLoopLatch(); + assert(LatchBlock && "PostInc mode requires a unique loop latch!"); + Result = PN->getIncomingValueForBlock(LatchBlock); + + // For an expansion to use the postinc form, the client must call + // expandCodeFor with an InsertPoint that is either outside the PostIncLoop + // or dominated by IVIncInsertPos. + if (isa<Instruction>(Result) && + !SE.DT.dominates(cast<Instruction>(Result), + &*Builder.GetInsertPoint())) { + // The induction variable's postinc expansion does not dominate this use. + // IVUsers tries to prevent this case, so it is rare. However, it can + // happen when an IVUser outside the loop is not dominated by the latch + // block. Adjusting IVIncInsertPos before expansion begins cannot handle + // all cases. Consider a phi outside whose operand is replaced during + // expansion with the value of the postinc user. Without fundamentally + // changing the way postinc users are tracked, the only remedy is + // inserting an extra IV increment. StepV might fold into PostLoopOffset, + // but hopefully expandCodeFor handles that. + bool useSubtract = + !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); + if (useSubtract) + Step = SE.getNegativeSCEV(Step); + Value *StepV; + { + // Expand the step somewhere that dominates the loop header. + SCEVInsertPointGuard Guard(Builder, this); + StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); + } + Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); + } + } + + // We have decided to reuse an induction variable of a dominating loop. Apply + // truncation and/or inversion of the step. + if (TruncTy) { + Type *ResTy = Result->getType(); + // Normalize the result type. + if (ResTy != SE.getEffectiveSCEVType(ResTy)) + Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); + // Truncate the result. + if (TruncTy != Result->getType()) { + Result = Builder.CreateTrunc(Result, TruncTy); + rememberInstruction(Result); + } + // Invert the result. + if (InvertStep) { + Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), + Result); + rememberInstruction(Result); + } + } + + // Re-apply any non-loop-dominating scale. + if (PostLoopScale) { + assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); + Result = InsertNoopCastOfTo(Result, IntTy); + Result = Builder.CreateMul(Result, + expandCodeFor(PostLoopScale, IntTy)); + rememberInstruction(Result); + } + + // Re-apply any non-loop-dominating offset. + if (PostLoopOffset) { + if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { + if (Result->getType()->isIntegerTy()) { + Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); + Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); + } else { + Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); + } + } else { + Result = InsertNoopCastOfTo(Result, IntTy); + Result = Builder.CreateAdd(Result, + expandCodeFor(PostLoopOffset, IntTy)); + rememberInstruction(Result); + } + } + + return Result; +} + +Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { + // In canonical mode we compute the addrec as an expression of a canonical IV + // using evaluateAtIteration and expand the resulting SCEV expression. This + // way we avoid introducing new IVs to carry on the comutation of the addrec + // throughout the loop. + // + // For nested addrecs evaluateAtIteration might need a canonical IV of a + // type wider than the addrec itself. Emitting a canonical IV of the + // proper type might produce non-legal types, for example expanding an i64 + // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall + // back to non-canonical mode for nested addrecs. + if (!CanonicalMode || (S->getNumOperands() > 2)) + return expandAddRecExprLiterally(S); + + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + const Loop *L = S->getLoop(); + + // First check for an existing canonical IV in a suitable type. + PHINode *CanonicalIV = nullptr; + if (PHINode *PN = L->getCanonicalInductionVariable()) + if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) + CanonicalIV = PN; + + // Rewrite an AddRec in terms of the canonical induction variable, if + // its type is more narrow. + if (CanonicalIV && + SE.getTypeSizeInBits(CanonicalIV->getType()) > + SE.getTypeSizeInBits(Ty)) { + SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); + for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) + NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); + Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), + S->getNoWrapFlags(SCEV::FlagNW))); + BasicBlock::iterator NewInsertPt = + findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); + V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, + &*NewInsertPt); + return V; + } + + // {X,+,F} --> X + {0,+,F} + if (!S->getStart()->isZero()) { + SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); + NewOps[0] = SE.getConstant(Ty, 0); + const SCEV *Rest = SE.getAddRecExpr(NewOps, L, + S->getNoWrapFlags(SCEV::FlagNW)); + + // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the + // comments on expandAddToGEP for details. + const SCEV *Base = S->getStart(); + // Dig into the expression to find the pointer base for a GEP. + const SCEV *ExposedRest = Rest; + ExposePointerBase(Base, ExposedRest, SE); + // If we found a pointer, expand the AddRec with a GEP. + if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { + // Make sure the Base isn't something exotic, such as a multiplied + // or divided pointer value. In those cases, the result type isn't + // actually a pointer type. + if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { + Value *StartV = expand(Base); + assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); + return expandAddToGEP(ExposedRest, PTy, Ty, StartV); + } + } + + // Just do a normal add. Pre-expand the operands to suppress folding. + // + // The LHS and RHS values are factored out of the expand call to make the + // output independent of the argument evaluation order. + const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); + const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); + return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); + } + + // If we don't yet have a canonical IV, create one. + if (!CanonicalIV) { + // Create and insert the PHI node for the induction variable in the + // specified loop. + BasicBlock *Header = L->getHeader(); + pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); + CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", + &Header->front()); + rememberInstruction(CanonicalIV); + + SmallSet<BasicBlock *, 4> PredSeen; + Constant *One = ConstantInt::get(Ty, 1); + for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { + BasicBlock *HP = *HPI; + if (!PredSeen.insert(HP).second) { + // There must be an incoming value for each predecessor, even the + // duplicates! + CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); + continue; + } + + if (L->contains(HP)) { + // Insert a unit add instruction right before the terminator + // corresponding to the back-edge. + Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, + "indvar.next", + HP->getTerminator()); + Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); + rememberInstruction(Add); + CanonicalIV->addIncoming(Add, HP); + } else { + CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); + } + } + } + + // {0,+,1} --> Insert a canonical induction variable into the loop! + if (S->isAffine() && S->getOperand(1)->isOne()) { + assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && + "IVs with types different from the canonical IV should " + "already have been handled!"); + return CanonicalIV; + } + + // {0,+,F} --> {0,+,1} * F + + // If this is a simple linear addrec, emit it now as a special case. + if (S->isAffine()) // {0,+,F} --> i*F + return + expand(SE.getTruncateOrNoop( + SE.getMulExpr(SE.getUnknown(CanonicalIV), + SE.getNoopOrAnyExtend(S->getOperand(1), + CanonicalIV->getType())), + Ty)); + + // If this is a chain of recurrences, turn it into a closed form, using the + // folders, then expandCodeFor the closed form. This allows the folders to + // simplify the expression without having to build a bunch of special code + // into this folder. + const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. + + // Promote S up to the canonical IV type, if the cast is foldable. + const SCEV *NewS = S; + const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); + if (isa<SCEVAddRecExpr>(Ext)) + NewS = Ext; + + const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); + //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; + + // Truncate the result down to the original type, if needed. + const SCEV *T = SE.getTruncateOrNoop(V, Ty); + return expand(T); +} + +Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expandCodeFor(S->getOperand(), + SE.getEffectiveSCEVType(S->getOperand()->getType())); + Value *I = Builder.CreateTrunc(V, Ty); + rememberInstruction(I); + return I; +} + +Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expandCodeFor(S->getOperand(), + SE.getEffectiveSCEVType(S->getOperand()->getType())); + Value *I = Builder.CreateZExt(V, Ty); + rememberInstruction(I); + return I; +} + +Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { + Type *Ty = SE.getEffectiveSCEVType(S->getType()); + Value *V = expandCodeFor(S->getOperand(), + SE.getEffectiveSCEVType(S->getOperand()->getType())); + Value *I = Builder.CreateSExt(V, Ty); + rememberInstruction(I); + return I; +} + +Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { + Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); + Type *Ty = LHS->getType(); + for (int i = S->getNumOperands()-2; i >= 0; --i) { + // In the case of mixed integer and pointer types, do the + // rest of the comparisons as integer. + Type *OpTy = S->getOperand(i)->getType(); + if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { + Ty = SE.getEffectiveSCEVType(Ty); + LHS = InsertNoopCastOfTo(LHS, Ty); + } + Value *RHS = expandCodeFor(S->getOperand(i), Ty); + Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); + rememberInstruction(ICmp); + Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); + rememberInstruction(Sel); + LHS = Sel; + } + // In the case of mixed integer and pointer types, cast the + // final result back to the pointer type. + if (LHS->getType() != S->getType()) + LHS = InsertNoopCastOfTo(LHS, S->getType()); + return LHS; +} + +Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { + Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); + Type *Ty = LHS->getType(); + for (int i = S->getNumOperands()-2; i >= 0; --i) { + // In the case of mixed integer and pointer types, do the + // rest of the comparisons as integer. + Type *OpTy = S->getOperand(i)->getType(); + if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { + Ty = SE.getEffectiveSCEVType(Ty); + LHS = InsertNoopCastOfTo(LHS, Ty); + } + Value *RHS = expandCodeFor(S->getOperand(i), Ty); + Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); + rememberInstruction(ICmp); + Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); + rememberInstruction(Sel); + LHS = Sel; + } + // In the case of mixed integer and pointer types, cast the + // final result back to the pointer type. + if (LHS->getType() != S->getType()) + LHS = InsertNoopCastOfTo(LHS, S->getType()); + return LHS; +} + +Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { + Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); + Type *Ty = LHS->getType(); + for (int i = S->getNumOperands() - 2; i >= 0; --i) { + // In the case of mixed integer and pointer types, do the + // rest of the comparisons as integer. + Type *OpTy = S->getOperand(i)->getType(); + if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { + Ty = SE.getEffectiveSCEVType(Ty); + LHS = InsertNoopCastOfTo(LHS, Ty); + } + Value *RHS = expandCodeFor(S->getOperand(i), Ty); + Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); + rememberInstruction(ICmp); + Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); + rememberInstruction(Sel); + LHS = Sel; + } + // In the case of mixed integer and pointer types, cast the + // final result back to the pointer type. + if (LHS->getType() != S->getType()) + LHS = InsertNoopCastOfTo(LHS, S->getType()); + return LHS; +} + +Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { + Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); + Type *Ty = LHS->getType(); + for (int i = S->getNumOperands() - 2; i >= 0; --i) { + // In the case of mixed integer and pointer types, do the + // rest of the comparisons as integer. + Type *OpTy = S->getOperand(i)->getType(); + if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { + Ty = SE.getEffectiveSCEVType(Ty); + LHS = InsertNoopCastOfTo(LHS, Ty); + } + Value *RHS = expandCodeFor(S->getOperand(i), Ty); + Value *ICmp = Builder.CreateICmpULT(LHS, RHS); + rememberInstruction(ICmp); + Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); + rememberInstruction(Sel); + LHS = Sel; + } + // In the case of mixed integer and pointer types, cast the + // final result back to the pointer type. + if (LHS->getType() != S->getType()) + LHS = InsertNoopCastOfTo(LHS, S->getType()); + return LHS; +} + +Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, + Instruction *IP) { + setInsertPoint(IP); + return expandCodeFor(SH, Ty); +} + +Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { + // Expand the code for this SCEV. + Value *V = expand(SH); + if (Ty) { + assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && + "non-trivial casts should be done with the SCEVs directly!"); + V = InsertNoopCastOfTo(V, Ty); + } + return V; +} + +ScalarEvolution::ValueOffsetPair +SCEVExpander::FindValueInExprValueMap(const SCEV *S, + const Instruction *InsertPt) { + SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); + // If the expansion is not in CanonicalMode, and the SCEV contains any + // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. + if (CanonicalMode || !SE.containsAddRecurrence(S)) { + // If S is scConstant, it may be worse to reuse an existing Value. + if (S->getSCEVType() != scConstant && Set) { + // Choose a Value from the set which dominates the insertPt. + // insertPt should be inside the Value's parent loop so as not to break + // the LCSSA form. + for (auto const &VOPair : *Set) { + Value *V = VOPair.first; + ConstantInt *Offset = VOPair.second; + Instruction *EntInst = nullptr; + if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && + S->getType() == V->getType() && + EntInst->getFunction() == InsertPt->getFunction() && + SE.DT.dominates(EntInst, InsertPt) && + (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || + SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) + return {V, Offset}; + } + } + } + return {nullptr, nullptr}; +} + +// The expansion of SCEV will either reuse a previous Value in ExprValueMap, +// or expand the SCEV literally. Specifically, if the expansion is in LSRMode, +// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded +// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, +// the expansion will try to reuse Value from ExprValueMap, and only when it +// fails, expand the SCEV literally. +Value *SCEVExpander::expand(const SCEV *S) { + // Compute an insertion point for this SCEV object. Hoist the instructions + // as far out in the loop nest as possible. + Instruction *InsertPt = &*Builder.GetInsertPoint(); + + // We can move insertion point only if there is no div or rem operations + // otherwise we are risky to move it over the check for zero denominator. + auto SafeToHoist = [](const SCEV *S) { + return !SCEVExprContains(S, [](const SCEV *S) { + if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { + if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) + // Division by non-zero constants can be hoisted. + return SC->getValue()->isZero(); + // All other divisions should not be moved as they may be + // divisions by zero and should be kept within the + // conditions of the surrounding loops that guard their + // execution (see PR35406). + return true; + } + return false; + }); + }; + if (SafeToHoist(S)) { + for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; + L = L->getParentLoop()) { + if (SE.isLoopInvariant(S, L)) { + if (!L) break; + if (BasicBlock *Preheader = L->getLoopPreheader()) + InsertPt = Preheader->getTerminator(); + else + // LSR sets the insertion point for AddRec start/step values to the + // block start to simplify value reuse, even though it's an invalid + // position. SCEVExpander must correct for this in all cases. + InsertPt = &*L->getHeader()->getFirstInsertionPt(); + } else { + // If the SCEV is computable at this level, insert it into the header + // after the PHIs (and after any other instructions that we've inserted + // there) so that it is guaranteed to dominate any user inside the loop. + if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) + InsertPt = &*L->getHeader()->getFirstInsertionPt(); + while (InsertPt->getIterator() != Builder.GetInsertPoint() && + (isInsertedInstruction(InsertPt) || + isa<DbgInfoIntrinsic>(InsertPt))) + InsertPt = &*std::next(InsertPt->getIterator()); + break; + } + } + } + + // IndVarSimplify sometimes sets the insertion point at the block start, even + // when there are PHIs at that point. We must correct for this. + if (isa<PHINode>(*InsertPt)) + InsertPt = &*InsertPt->getParent()->getFirstInsertionPt(); + + // Check to see if we already expanded this here. + auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); + if (I != InsertedExpressions.end()) + return I->second; + + SCEVInsertPointGuard Guard(Builder, this); + Builder.SetInsertPoint(InsertPt); + + // Expand the expression into instructions. + ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); + Value *V = VO.first; + + if (!V) + V = visit(S); + else if (VO.second) { + if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { + Type *Ety = Vty->getPointerElementType(); + int64_t Offset = VO.second->getSExtValue(); + int64_t ESize = SE.getTypeSizeInBits(Ety); + if ((Offset * 8) % ESize == 0) { + ConstantInt *Idx = + ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); + V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); + } else { + ConstantInt *Idx = + ConstantInt::getSigned(VO.second->getType(), -Offset); + unsigned AS = Vty->getAddressSpace(); + V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); + V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, + "uglygep"); + V = Builder.CreateBitCast(V, Vty); + } + } else { + V = Builder.CreateSub(V, VO.second); + } + } + // Remember the expanded value for this SCEV at this location. + // + // This is independent of PostIncLoops. The mapped value simply materializes + // the expression at this insertion point. If the mapped value happened to be + // a postinc expansion, it could be reused by a non-postinc user, but only if + // its insertion point was already at the head of the loop. + InsertedExpressions[std::make_pair(S, InsertPt)] = V; + return V; +} + +void SCEVExpander::rememberInstruction(Value *I) { + if (!PostIncLoops.empty()) + InsertedPostIncValues.insert(I); + else + InsertedValues.insert(I); +} + +/// getOrInsertCanonicalInductionVariable - This method returns the +/// canonical induction variable of the specified type for the specified +/// loop (inserting one if there is none). A canonical induction variable +/// starts at zero and steps by one on each iteration. +PHINode * +SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, + Type *Ty) { + assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); + + // Build a SCEV for {0,+,1}<L>. + // Conservatively use FlagAnyWrap for now. + const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), + SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); + + // Emit code for it. + SCEVInsertPointGuard Guard(Builder, this); + PHINode *V = + cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); + + return V; +} + +/// replaceCongruentIVs - Check for congruent phis in this loop header and +/// replace them with their most canonical representative. Return the number of +/// phis eliminated. +/// +/// This does not depend on any SCEVExpander state but should be used in +/// the same context that SCEVExpander is used. +unsigned +SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, + SmallVectorImpl<WeakTrackingVH> &DeadInsts, + const TargetTransformInfo *TTI) { + // Find integer phis in order of increasing width. + SmallVector<PHINode*, 8> Phis; + for (PHINode &PN : L->getHeader()->phis()) + Phis.push_back(&PN); + + if (TTI) + llvm::sort(Phis, [](Value *LHS, Value *RHS) { + // Put pointers at the back and make sure pointer < pointer = false. + if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) + return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); + return RHS->getType()->getPrimitiveSizeInBits() < + LHS->getType()->getPrimitiveSizeInBits(); + }); + + unsigned NumElim = 0; + DenseMap<const SCEV *, PHINode *> ExprToIVMap; + // Process phis from wide to narrow. Map wide phis to their truncation + // so narrow phis can reuse them. + for (PHINode *Phi : Phis) { + auto SimplifyPHINode = [&](PHINode *PN) -> Value * { + if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) + return V; + if (!SE.isSCEVable(PN->getType())) + return nullptr; + auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); + if (!Const) + return nullptr; + return Const->getValue(); + }; + + // Fold constant phis. They may be congruent to other constant phis and + // would confuse the logic below that expects proper IVs. + if (Value *V = SimplifyPHINode(Phi)) { + if (V->getType() != Phi->getType()) + continue; + Phi->replaceAllUsesWith(V); + DeadInsts.emplace_back(Phi); + ++NumElim; + DEBUG_WITH_TYPE(DebugType, dbgs() + << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); + continue; + } + + if (!SE.isSCEVable(Phi->getType())) + continue; + + PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; + if (!OrigPhiRef) { + OrigPhiRef = Phi; + if (Phi->getType()->isIntegerTy() && TTI && + TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { + // This phi can be freely truncated to the narrowest phi type. Map the + // truncated expression to it so it will be reused for narrow types. + const SCEV *TruncExpr = + SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); + ExprToIVMap[TruncExpr] = Phi; + } + continue; + } + + // Replacing a pointer phi with an integer phi or vice-versa doesn't make + // sense. + if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) + continue; + + if (BasicBlock *LatchBlock = L->getLoopLatch()) { + Instruction *OrigInc = dyn_cast<Instruction>( + OrigPhiRef->getIncomingValueForBlock(LatchBlock)); + Instruction *IsomorphicInc = + dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); + + if (OrigInc && IsomorphicInc) { + // If this phi has the same width but is more canonical, replace the + // original with it. As part of the "more canonical" determination, + // respect a prior decision to use an IV chain. + if (OrigPhiRef->getType() == Phi->getType() && + !(ChainedPhis.count(Phi) || + isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && + (ChainedPhis.count(Phi) || + isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { + std::swap(OrigPhiRef, Phi); + std::swap(OrigInc, IsomorphicInc); + } + // Replacing the congruent phi is sufficient because acyclic + // redundancy elimination, CSE/GVN, should handle the + // rest. However, once SCEV proves that a phi is congruent, + // it's often the head of an IV user cycle that is isomorphic + // with the original phi. It's worth eagerly cleaning up the + // common case of a single IV increment so that DeleteDeadPHIs + // can remove cycles that had postinc uses. + const SCEV *TruncExpr = + SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); + if (OrigInc != IsomorphicInc && + TruncExpr == SE.getSCEV(IsomorphicInc) && + SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && + hoistIVInc(OrigInc, IsomorphicInc)) { + DEBUG_WITH_TYPE(DebugType, + dbgs() << "INDVARS: Eliminated congruent iv.inc: " + << *IsomorphicInc << '\n'); + Value *NewInc = OrigInc; + if (OrigInc->getType() != IsomorphicInc->getType()) { + Instruction *IP = nullptr; + if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) + IP = &*PN->getParent()->getFirstInsertionPt(); + else + IP = OrigInc->getNextNode(); + + IRBuilder<> Builder(IP); + Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); + NewInc = Builder.CreateTruncOrBitCast( + OrigInc, IsomorphicInc->getType(), IVName); + } + IsomorphicInc->replaceAllUsesWith(NewInc); + DeadInsts.emplace_back(IsomorphicInc); + } + } + } + DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " + << *Phi << '\n'); + ++NumElim; + Value *NewIV = OrigPhiRef; + if (OrigPhiRef->getType() != Phi->getType()) { + IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); + Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); + NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); + } + Phi->replaceAllUsesWith(NewIV); + DeadInsts.emplace_back(Phi); + } + return NumElim; +} + +Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, + const Instruction *At, Loop *L) { + Optional<ScalarEvolution::ValueOffsetPair> VO = + getRelatedExistingExpansion(S, At, L); + if (VO && VO.getValue().second == nullptr) + return VO.getValue().first; + return nullptr; +} + +Optional<ScalarEvolution::ValueOffsetPair> +SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, + Loop *L) { + using namespace llvm::PatternMatch; + + SmallVector<BasicBlock *, 4> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + + // Look for suitable value in simple conditions at the loop exits. + for (BasicBlock *BB : ExitingBlocks) { + ICmpInst::Predicate Pred; + Instruction *LHS, *RHS; + + if (!match(BB->getTerminator(), + m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), + m_BasicBlock(), m_BasicBlock()))) + continue; + + if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) + return ScalarEvolution::ValueOffsetPair(LHS, nullptr); + + if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) + return ScalarEvolution::ValueOffsetPair(RHS, nullptr); + } + + // Use expand's logic which is used for reusing a previous Value in + // ExprValueMap. + ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); + if (VO.first) + return VO; + + // There is potential to make this significantly smarter, but this simple + // heuristic already gets some interesting cases. + + // Can not find suitable value. + return None; +} + +bool SCEVExpander::isHighCostExpansionHelper( + const SCEV *S, Loop *L, const Instruction *At, + SmallPtrSetImpl<const SCEV *> &Processed) { + + // If we can find an existing value for this scev available at the point "At" + // then consider the expression cheap. + if (At && getRelatedExistingExpansion(S, At, L)) + return false; + + // Zero/One operand expressions + switch (S->getSCEVType()) { + case scUnknown: + case scConstant: + return false; + case scTruncate: + return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), + L, At, Processed); + case scZeroExtend: + return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(), + L, At, Processed); + case scSignExtend: + return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(), + L, At, Processed); + } + + if (!Processed.insert(S).second) + return false; + + if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { + // If the divisor is a power of two and the SCEV type fits in a native + // integer (and the LHS not expensive), consider the division cheap + // irrespective of whether it occurs in the user code since it can be + // lowered into a right shift. + if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) + if (SC->getAPInt().isPowerOf2()) { + if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed)) + return true; + const DataLayout &DL = + L->getHeader()->getParent()->getParent()->getDataLayout(); + unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth(); + return DL.isIllegalInteger(Width); + } + + // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or + // HowManyLessThans produced to compute a precise expression, rather than a + // UDiv from the user's code. If we can't find a UDiv in the code with some + // simple searching, assume the former consider UDivExpr expensive to + // compute. + BasicBlock *ExitingBB = L->getExitingBlock(); + if (!ExitingBB) + return true; + + // At the beginning of this function we already tried to find existing value + // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern + // involving division. This is just a simple search heuristic. + if (!At) + At = &ExitingBB->back(); + if (!getRelatedExistingExpansion( + SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L)) + return true; + } + + // HowManyLessThans uses a Max expression whenever the loop is not guarded by + // the exit condition. + if (isa<SCEVMinMaxExpr>(S)) + return true; + + // Recurse past nary expressions, which commonly occur in the + // BackedgeTakenCount. They may already exist in program code, and if not, + // they are not too expensive rematerialize. + if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { + for (auto *Op : NAry->operands()) + if (isHighCostExpansionHelper(Op, L, At, Processed)) + return true; + } + + // If we haven't recognized an expensive SCEV pattern, assume it's an + // expression produced by program code. + return false; +} + +Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, + Instruction *IP) { + assert(IP); + switch (Pred->getKind()) { + case SCEVPredicate::P_Union: + return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); + case SCEVPredicate::P_Equal: + return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); + case SCEVPredicate::P_Wrap: { + auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); + return expandWrapPredicate(AddRecPred, IP); + } + } + llvm_unreachable("Unknown SCEV predicate type"); +} + +Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, + Instruction *IP) { + Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); + Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); + + Builder.SetInsertPoint(IP); + auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); + return I; +} + +Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, + Instruction *Loc, bool Signed) { + assert(AR->isAffine() && "Cannot generate RT check for " + "non-affine expression"); + + SCEVUnionPredicate Pred; + const SCEV *ExitCount = + SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); + + assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); + + const SCEV *Step = AR->getStepRecurrence(SE); + const SCEV *Start = AR->getStart(); + + Type *ARTy = AR->getType(); + unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); + unsigned DstBits = SE.getTypeSizeInBits(ARTy); + + // The expression {Start,+,Step} has nusw/nssw if + // Step < 0, Start - |Step| * Backedge <= Start + // Step >= 0, Start + |Step| * Backedge > Start + // and |Step| * Backedge doesn't unsigned overflow. + + IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); + Builder.SetInsertPoint(Loc); + Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); + + IntegerType *Ty = + IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); + Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; + + Value *StepValue = expandCodeFor(Step, Ty, Loc); + Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); + Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc); + + ConstantInt *Zero = + ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); + + Builder.SetInsertPoint(Loc); + // Compute |Step| + Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); + Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); + + // Get the backedge taken count and truncate or extended to the AR type. + Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); + auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), + Intrinsic::umul_with_overflow, Ty); + + // Compute |Step| * Backedge + CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); + Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); + Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); + + // Compute: + // Start + |Step| * Backedge < Start + // Start - |Step| * Backedge > Start + Value *Add = nullptr, *Sub = nullptr; + if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { + const SCEV *MulS = SE.getSCEV(MulV); + const SCEV *NegMulS = SE.getNegativeSCEV(MulS); + Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), + ARPtrTy); + Sub = Builder.CreateBitCast( + expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); + } else { + Add = Builder.CreateAdd(StartValue, MulV); + Sub = Builder.CreateSub(StartValue, MulV); + } + + Value *EndCompareGT = Builder.CreateICmp( + Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); + + Value *EndCompareLT = Builder.CreateICmp( + Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); + + // Select the answer based on the sign of Step. + Value *EndCheck = + Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); + + // If the backedge taken count type is larger than the AR type, + // check that we don't drop any bits by truncating it. If we are + // dropping bits, then we have overflow (unless the step is zero). + if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { + auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); + auto *BackedgeCheck = + Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, + ConstantInt::get(Loc->getContext(), MaxVal)); + BackedgeCheck = Builder.CreateAnd( + BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); + + EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); + } + + EndCheck = Builder.CreateOr(EndCheck, OfMul); + return EndCheck; +} + +Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, + Instruction *IP) { + const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); + Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; + + // Add a check for NUSW + if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) + NUSWCheck = generateOverflowCheck(A, IP, false); + + // Add a check for NSSW + if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) + NSSWCheck = generateOverflowCheck(A, IP, true); + + if (NUSWCheck && NSSWCheck) + return Builder.CreateOr(NUSWCheck, NSSWCheck); + + if (NUSWCheck) + return NUSWCheck; + + if (NSSWCheck) + return NSSWCheck; + + return ConstantInt::getFalse(IP->getContext()); +} + +Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, + Instruction *IP) { + auto *BoolType = IntegerType::get(IP->getContext(), 1); + Value *Check = ConstantInt::getNullValue(BoolType); + + // Loop over all checks in this set. + for (auto Pred : Union->getPredicates()) { + auto *NextCheck = expandCodeForPredicate(Pred, IP); + Builder.SetInsertPoint(IP); + Check = Builder.CreateOr(Check, NextCheck); + } + + return Check; +} + +namespace { +// Search for a SCEV subexpression that is not safe to expand. Any expression +// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely +// UDiv expressions. We don't know if the UDiv is derived from an IR divide +// instruction, but the important thing is that we prove the denominator is +// nonzero before expansion. +// +// IVUsers already checks that IV-derived expressions are safe. So this check is +// only needed when the expression includes some subexpression that is not IV +// derived. +// +// Currently, we only allow division by a nonzero constant here. If this is +// inadequate, we could easily allow division by SCEVUnknown by using +// ValueTracking to check isKnownNonZero(). +// +// We cannot generally expand recurrences unless the step dominates the loop +// header. The expander handles the special case of affine recurrences by +// scaling the recurrence outside the loop, but this technique isn't generally +// applicable. Expanding a nested recurrence outside a loop requires computing +// binomial coefficients. This could be done, but the recurrence has to be in a +// perfectly reduced form, which can't be guaranteed. +struct SCEVFindUnsafe { + ScalarEvolution &SE; + bool IsUnsafe; + + SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} + + bool follow(const SCEV *S) { + if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { + const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); + if (!SC || SC->getValue()->isZero()) { + IsUnsafe = true; + return false; + } + } + if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { + const SCEV *Step = AR->getStepRecurrence(SE); + if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { + IsUnsafe = true; + return false; + } + } + return true; + } + bool isDone() const { return IsUnsafe; } +}; +} + +namespace llvm { +bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { + SCEVFindUnsafe Search(SE); + visitAll(S, Search); + return !Search.IsUnsafe; +} + +bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, + ScalarEvolution &SE) { + if (!isSafeToExpand(S, SE)) + return false; + // We have to prove that the expanded site of S dominates InsertionPoint. + // This is easy when not in the same block, but hard when S is an instruction + // to be expanded somewhere inside the same block as our insertion point. + // What we really need here is something analogous to an OrderedBasicBlock, + // but for the moment, we paper over the problem by handling two common and + // cheap to check cases. + if (SE.properlyDominates(S, InsertionPoint->getParent())) + return true; + if (SE.dominates(S, InsertionPoint->getParent())) { + if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) + return true; + if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) + for (const Value *V : InsertionPoint->operand_values()) + if (V == U->getValue()) + return true; + } + return false; +} +} |