diff options
| author | Scott Constable <scott.d.constable@intel.com> | 2020-03-17 11:45:11 -0700 |
|---|---|---|
| committer | Tom Stellard <tstellar@redhat.com> | 2020-06-24 09:31:04 -0700 |
| commit | 34f7e00333ac26c0b2b7f34b5988f2fec7d99f03 (patch) | |
| tree | e515d16b0f75147f3bb9b3ba8c32413c1fef5d7b /llvm/include | |
| parent | f9da0a7f36f7559c9f190a5d47d6385b5d2d5790 (diff) | |
| download | bcm5719-llvm-34f7e00333ac26c0b2b7f34b5988f2fec7d99f03.tar.gz bcm5719-llvm-34f7e00333ac26c0b2b7f34b5988f2fec7d99f03.zip | |
Move RDF from Hexagon to Codegen
RDF is designed to be target agnostic. Therefore it would be useful to have it available for other targets, such as X86.
Based on a previous patch by Krzysztof Parzyszek
Differential Revision: https://reviews.llvm.org/D75932
Diffstat (limited to 'llvm/include')
| -rw-r--r-- | llvm/include/llvm/CodeGen/RDFGraph.h | 968 | ||||
| -rw-r--r-- | llvm/include/llvm/CodeGen/RDFLiveness.h | 151 | ||||
| -rw-r--r-- | llvm/include/llvm/CodeGen/RDFRegisters.h | 240 |
3 files changed, 1359 insertions, 0 deletions
diff --git a/llvm/include/llvm/CodeGen/RDFGraph.h b/llvm/include/llvm/CodeGen/RDFGraph.h new file mode 100644 index 00000000000..585f43e116f --- /dev/null +++ b/llvm/include/llvm/CodeGen/RDFGraph.h @@ -0,0 +1,968 @@ +//===- RDFGraph.h -----------------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Target-independent, SSA-based data flow graph for register data flow (RDF) +// for a non-SSA program representation (e.g. post-RA machine code). +// +// +// *** Introduction +// +// The RDF graph is a collection of nodes, each of which denotes some element +// of the program. There are two main types of such elements: code and refe- +// rences. Conceptually, "code" is something that represents the structure +// of the program, e.g. basic block or a statement, while "reference" is an +// instance of accessing a register, e.g. a definition or a use. Nodes are +// connected with each other based on the structure of the program (such as +// blocks, instructions, etc.), and based on the data flow (e.g. reaching +// definitions, reached uses, etc.). The single-reaching-definition principle +// of SSA is generally observed, although, due to the non-SSA representation +// of the program, there are some differences between the graph and a "pure" +// SSA representation. +// +// +// *** Implementation remarks +// +// Since the graph can contain a large number of nodes, memory consumption +// was one of the major design considerations. As a result, there is a single +// base class NodeBase which defines all members used by all possible derived +// classes. The members are arranged in a union, and a derived class cannot +// add any data members of its own. Each derived class only defines the +// functional interface, i.e. member functions. NodeBase must be a POD, +// which implies that all of its members must also be PODs. +// Since nodes need to be connected with other nodes, pointers have been +// replaced with 32-bit identifiers: each node has an id of type NodeId. +// There are mapping functions in the graph that translate between actual +// memory addresses and the corresponding identifiers. +// A node id of 0 is equivalent to nullptr. +// +// +// *** Structure of the graph +// +// A code node is always a collection of other nodes. For example, a code +// node corresponding to a basic block will contain code nodes corresponding +// to instructions. In turn, a code node corresponding to an instruction will +// contain a list of reference nodes that correspond to the definitions and +// uses of registers in that instruction. The members are arranged into a +// circular list, which is yet another consequence of the effort to save +// memory: for each member node it should be possible to obtain its owner, +// and it should be possible to access all other members. There are other +// ways to accomplish that, but the circular list seemed the most natural. +// +// +- CodeNode -+ +// | | <---------------------------------------------------+ +// +-+--------+-+ | +// |FirstM |LastM | +// | +-------------------------------------+ | +// | | | +// V V | +// +----------+ Next +----------+ Next Next +----------+ Next | +// | |----->| |-----> ... ----->| |----->-+ +// +- Member -+ +- Member -+ +- Member -+ +// +// The order of members is such that related reference nodes (see below) +// should be contiguous on the member list. +// +// A reference node is a node that encapsulates an access to a register, +// in other words, data flowing into or out of a register. There are two +// major kinds of reference nodes: defs and uses. A def node will contain +// the id of the first reached use, and the id of the first reached def. +// Each def and use will contain the id of the reaching def, and also the +// id of the next reached def (for def nodes) or use (for use nodes). +// The "next node sharing the same reaching def" is denoted as "sibling". +// In summary: +// - Def node contains: reaching def, sibling, first reached def, and first +// reached use. +// - Use node contains: reaching def and sibling. +// +// +-- DefNode --+ +// | R2 = ... | <---+--------------------+ +// ++---------+--+ | | +// |Reached |Reached | | +// |Def |Use | | +// | | |Reaching |Reaching +// | V |Def |Def +// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib +// | | ... = R2 |----->| ... = R2 |----> ... ----> 0 +// | +-------------+ +-------------+ +// V +// +-- DefNode --+ Sib +// | R2 = ... |----> ... +// ++---------+--+ +// | | +// | | +// ... ... +// +// To get a full picture, the circular lists connecting blocks within a +// function, instructions within a block, etc. should be superimposed with +// the def-def, def-use links shown above. +// To illustrate this, consider a small example in a pseudo-assembly: +// foo: +// add r2, r0, r1 ; r2 = r0+r1 +// addi r0, r2, 1 ; r0 = r2+1 +// ret r0 ; return value in r0 +// +// The graph (in a format used by the debugging functions) would look like: +// +// DFG dump:[ +// f1: Function foo +// b2: === %bb.0 === preds(0), succs(0): +// p3: phi [d4<r0>(,d12,u9):] +// p5: phi [d6<r1>(,,u10):] +// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):] +// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):] +// s14: ret [u15<r0>(d12):] +// ] +// +// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the +// kind of the node (i.e. f - function, b - basic block, p - phi, s - state- +// ment, d - def, u - use). +// The format of a def node is: +// dN<R>(rd,d,u):sib, +// where +// N - numeric node id, +// R - register being defined +// rd - reaching def, +// d - reached def, +// u - reached use, +// sib - sibling. +// The format of a use node is: +// uN<R>[!](rd):sib, +// where +// N - numeric node id, +// R - register being used, +// rd - reaching def, +// sib - sibling. +// Possible annotations (usually preceding the node id): +// + - preserving def, +// ~ - clobbering def, +// " - shadow ref (follows the node id), +// ! - fixed register (appears after register name). +// +// The circular lists are not explicit in the dump. +// +// +// *** Node attributes +// +// NodeBase has a member "Attrs", which is the primary way of determining +// the node's characteristics. The fields in this member decide whether +// the node is a code node or a reference node (i.e. node's "type"), then +// within each type, the "kind" determines what specifically this node +// represents. The remaining bits, "flags", contain additional information +// that is even more detailed than the "kind". +// CodeNode's kinds are: +// - Phi: Phi node, members are reference nodes. +// - Stmt: Statement, members are reference nodes. +// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt). +// - Func: The whole function. The members are basic block nodes. +// RefNode's kinds are: +// - Use. +// - Def. +// +// Meaning of flags: +// - Preserving: applies only to defs. A preserving def is one that can +// preserve some of the original bits among those that are included in +// the register associated with that def. For example, if R0 is a 32-bit +// register, but a def can only change the lower 16 bits, then it will +// be marked as preserving. +// - Shadow: a reference that has duplicates holding additional reaching +// defs (see more below). +// - Clobbering: applied only to defs, indicates that the value generated +// by this def is unspecified. A typical example would be volatile registers +// after function calls. +// - Fixed: the register in this def/use cannot be replaced with any other +// register. A typical case would be a parameter register to a call, or +// the register with the return value from a function. +// - Undef: the register in this reference the register is assumed to have +// no pre-existing value, even if it appears to be reached by some def. +// This is typically used to prevent keeping registers artificially live +// in cases when they are defined via predicated instructions. For example: +// r0 = add-if-true cond, r10, r11 (1) +// r0 = add-if-false cond, r12, r13, implicit r0 (2) +// ... = r0 (3) +// Before (1), r0 is not intended to be live, and the use of r0 in (3) is +// not meant to be reached by any def preceding (1). However, since the +// defs in (1) and (2) are both preserving, these properties alone would +// imply that the use in (3) may indeed be reached by some prior def. +// Adding Undef flag to the def in (1) prevents that. The Undef flag +// may be applied to both defs and uses. +// - Dead: applies only to defs. The value coming out of a "dead" def is +// assumed to be unused, even if the def appears to be reaching other defs +// or uses. The motivation for this flag comes from dead defs on function +// calls: there is no way to determine if such a def is dead without +// analyzing the target's ABI. Hence the graph should contain this info, +// as it is unavailable otherwise. On the other hand, a def without any +// uses on a typical instruction is not the intended target for this flag. +// +// *** Shadow references +// +// It may happen that a super-register can have two (or more) non-overlapping +// sub-registers. When both of these sub-registers are defined and followed +// by a use of the super-register, the use of the super-register will not +// have a unique reaching def: both defs of the sub-registers need to be +// accounted for. In such cases, a duplicate use of the super-register is +// added and it points to the extra reaching def. Both uses are marked with +// a flag "shadow". Example: +// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap: +// set r0, 1 ; r0 = 1 +// set r1, 1 ; r1 = 1 +// addi t1, t0, 1 ; t1 = t0+1 +// +// The DFG: +// s1: set [d2<r0>(,,u9):] +// s3: set [d4<r1>(,,u10):] +// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):] +// +// The statement s5 has two use nodes for t0: u7" and u9". The quotation +// mark " indicates that the node is a shadow. +// + +#ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H +#define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H + +#include "RDFRegisters.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/MathExtras.h" +#include <cassert> +#include <cstdint> +#include <cstring> +#include <map> +#include <set> +#include <unordered_map> +#include <utility> +#include <vector> + +// RDF uses uint32_t to refer to registers. This is to ensure that the type +// size remains specific. In other places, registers are often stored using +// unsigned. +static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal"); + +namespace llvm { + +class MachineBasicBlock; +class MachineDominanceFrontier; +class MachineDominatorTree; +class MachineFunction; +class MachineInstr; +class MachineOperand; +class raw_ostream; +class TargetInstrInfo; +class TargetRegisterInfo; + +namespace rdf { + + using NodeId = uint32_t; + + struct DataFlowGraph; + + struct NodeAttrs { + enum : uint16_t { + None = 0x0000, // Nothing + + // Types: 2 bits + TypeMask = 0x0003, + Code = 0x0001, // 01, Container + Ref = 0x0002, // 10, Reference + + // Kind: 3 bits + KindMask = 0x0007 << 2, + Def = 0x0001 << 2, // 001 + Use = 0x0002 << 2, // 010 + Phi = 0x0003 << 2, // 011 + Stmt = 0x0004 << 2, // 100 + Block = 0x0005 << 2, // 101 + Func = 0x0006 << 2, // 110 + + // Flags: 7 bits for now + FlagMask = 0x007F << 5, + Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs. + Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values. + PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode. + Preserving = 0x0008 << 5, // 0001000, Def can keep original bits. + Fixed = 0x0010 << 5, // 0010000, Fixed register. + Undef = 0x0020 << 5, // 0100000, Has no pre-existing value. + Dead = 0x0040 << 5, // 1000000, Does not define a value. + }; + + static uint16_t type(uint16_t T) { return T & TypeMask; } + static uint16_t kind(uint16_t T) { return T & KindMask; } + static uint16_t flags(uint16_t T) { return T & FlagMask; } + + static uint16_t set_type(uint16_t A, uint16_t T) { + return (A & ~TypeMask) | T; + } + + static uint16_t set_kind(uint16_t A, uint16_t K) { + return (A & ~KindMask) | K; + } + + static uint16_t set_flags(uint16_t A, uint16_t F) { + return (A & ~FlagMask) | F; + } + + // Test if A contains B. + static bool contains(uint16_t A, uint16_t B) { + if (type(A) != Code) + return false; + uint16_t KB = kind(B); + switch (kind(A)) { + case Func: + return KB == Block; + case Block: + return KB == Phi || KB == Stmt; + case Phi: + case Stmt: + return type(B) == Ref; + } + return false; + } + }; + + struct BuildOptions { + enum : unsigned { + None = 0x00, + KeepDeadPhis = 0x01, // Do not remove dead phis during build. + }; + }; + + template <typename T> struct NodeAddr { + NodeAddr() = default; + NodeAddr(T A, NodeId I) : Addr(A), Id(I) {} + + // Type cast (casting constructor). The reason for having this class + // instead of std::pair. + template <typename S> NodeAddr(const NodeAddr<S> &NA) + : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {} + + bool operator== (const NodeAddr<T> &NA) const { + assert((Addr == NA.Addr) == (Id == NA.Id)); + return Addr == NA.Addr; + } + bool operator!= (const NodeAddr<T> &NA) const { + return !operator==(NA); + } + + T Addr = nullptr; + NodeId Id = 0; + }; + + struct NodeBase; + + // Fast memory allocation and translation between node id and node address. + // This is really the same idea as the one underlying the "bump pointer + // allocator", the difference being in the translation. A node id is + // composed of two components: the index of the block in which it was + // allocated, and the index within the block. With the default settings, + // where the number of nodes per block is 4096, the node id (minus 1) is: + // + // bit position: 11 0 + // +----------------------------+--------------+ + // | Index of the block |Index in block| + // +----------------------------+--------------+ + // + // The actual node id is the above plus 1, to avoid creating a node id of 0. + // + // This method significantly improved the build time, compared to using maps + // (std::unordered_map or DenseMap) to translate between pointers and ids. + struct NodeAllocator { + // Amount of storage for a single node. + enum { NodeMemSize = 32 }; + + NodeAllocator(uint32_t NPB = 4096) + : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)), + IndexMask((1 << BitsPerIndex)-1) { + assert(isPowerOf2_32(NPB)); + } + + NodeBase *ptr(NodeId N) const { + uint32_t N1 = N-1; + uint32_t BlockN = N1 >> BitsPerIndex; + uint32_t Offset = (N1 & IndexMask) * NodeMemSize; + return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset); + } + + NodeId id(const NodeBase *P) const; + NodeAddr<NodeBase*> New(); + void clear(); + + private: + void startNewBlock(); + bool needNewBlock(); + + uint32_t makeId(uint32_t Block, uint32_t Index) const { + // Add 1 to the id, to avoid the id of 0, which is treated as "null". + return ((Block << BitsPerIndex) | Index) + 1; + } + + const uint32_t NodesPerBlock; + const uint32_t BitsPerIndex; + const uint32_t IndexMask; + char *ActiveEnd = nullptr; + std::vector<char*> Blocks; + using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>; + AllocatorTy MemPool; + }; + + using RegisterSet = std::set<RegisterRef>; + + struct TargetOperandInfo { + TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {} + virtual ~TargetOperandInfo() = default; + + virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const; + virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const; + virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const; + + const TargetInstrInfo &TII; + }; + + // Packed register reference. Only used for storage. + struct PackedRegisterRef { + RegisterId Reg; + uint32_t MaskId; + }; + + struct LaneMaskIndex : private IndexedSet<LaneBitmask> { + LaneMaskIndex() = default; + + LaneBitmask getLaneMaskForIndex(uint32_t K) const { + return K == 0 ? LaneBitmask::getAll() : get(K); + } + + uint32_t getIndexForLaneMask(LaneBitmask LM) { + assert(LM.any()); + return LM.all() ? 0 : insert(LM); + } + + uint32_t getIndexForLaneMask(LaneBitmask LM) const { + assert(LM.any()); + return LM.all() ? 0 : find(LM); + } + }; + + struct NodeBase { + public: + // Make sure this is a POD. + NodeBase() = default; + + uint16_t getType() const { return NodeAttrs::type(Attrs); } + uint16_t getKind() const { return NodeAttrs::kind(Attrs); } + uint16_t getFlags() const { return NodeAttrs::flags(Attrs); } + NodeId getNext() const { return Next; } + + uint16_t getAttrs() const { return Attrs; } + void setAttrs(uint16_t A) { Attrs = A; } + void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); } + + // Insert node NA after "this" in the circular chain. + void append(NodeAddr<NodeBase*> NA); + + // Initialize all members to 0. + void init() { memset(this, 0, sizeof *this); } + + void setNext(NodeId N) { Next = N; } + + protected: + uint16_t Attrs; + uint16_t Reserved; + NodeId Next; // Id of the next node in the circular chain. + // Definitions of nested types. Using anonymous nested structs would make + // this class definition clearer, but unnamed structs are not a part of + // the standard. + struct Def_struct { + NodeId DD, DU; // Ids of the first reached def and use. + }; + struct PhiU_struct { + NodeId PredB; // Id of the predecessor block for a phi use. + }; + struct Code_struct { + void *CP; // Pointer to the actual code. + NodeId FirstM, LastM; // Id of the first member and last. + }; + struct Ref_struct { + NodeId RD, Sib; // Ids of the reaching def and the sibling. + union { + Def_struct Def; + PhiU_struct PhiU; + }; + union { + MachineOperand *Op; // Non-phi refs point to a machine operand. + PackedRegisterRef PR; // Phi refs store register info directly. + }; + }; + + // The actual payload. + union { + Ref_struct Ref; + Code_struct Code; + }; + }; + // The allocator allocates chunks of 32 bytes for each node. The fact that + // each node takes 32 bytes in memory is used for fast translation between + // the node id and the node address. + static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize, + "NodeBase must be at most NodeAllocator::NodeMemSize bytes"); + + using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>; + using NodeSet = std::set<NodeId>; + + struct RefNode : public NodeBase { + RefNode() = default; + + RegisterRef getRegRef(const DataFlowGraph &G) const; + + MachineOperand &getOp() { + assert(!(getFlags() & NodeAttrs::PhiRef)); + return *Ref.Op; + } + + void setRegRef(RegisterRef RR, DataFlowGraph &G); + void setRegRef(MachineOperand *Op, DataFlowGraph &G); + + NodeId getReachingDef() const { + return Ref.RD; + } + void setReachingDef(NodeId RD) { + Ref.RD = RD; + } + + NodeId getSibling() const { + return Ref.Sib; + } + void setSibling(NodeId Sib) { + Ref.Sib = Sib; + } + + bool isUse() const { + assert(getType() == NodeAttrs::Ref); + return getKind() == NodeAttrs::Use; + } + + bool isDef() const { + assert(getType() == NodeAttrs::Ref); + return getKind() == NodeAttrs::Def; + } + + template <typename Predicate> + NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly, + const DataFlowGraph &G); + NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G); + }; + + struct DefNode : public RefNode { + NodeId getReachedDef() const { + return Ref.Def.DD; + } + void setReachedDef(NodeId D) { + Ref.Def.DD = D; + } + NodeId getReachedUse() const { + return Ref.Def.DU; + } + void setReachedUse(NodeId U) { + Ref.Def.DU = U; + } + + void linkToDef(NodeId Self, NodeAddr<DefNode*> DA); + }; + + struct UseNode : public RefNode { + void linkToDef(NodeId Self, NodeAddr<DefNode*> DA); + }; + + struct PhiUseNode : public UseNode { + NodeId getPredecessor() const { + assert(getFlags() & NodeAttrs::PhiRef); + return Ref.PhiU.PredB; + } + void setPredecessor(NodeId B) { + assert(getFlags() & NodeAttrs::PhiRef); + Ref.PhiU.PredB = B; + } + }; + + struct CodeNode : public NodeBase { + template <typename T> T getCode() const { + return static_cast<T>(Code.CP); + } + void setCode(void *C) { + Code.CP = C; + } + + NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const; + NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const; + void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G); + void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, + const DataFlowGraph &G); + void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G); + + NodeList members(const DataFlowGraph &G) const; + template <typename Predicate> + NodeList members_if(Predicate P, const DataFlowGraph &G) const; + }; + + struct InstrNode : public CodeNode { + NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G); + }; + + struct PhiNode : public InstrNode { + MachineInstr *getCode() const { + return nullptr; + } + }; + + struct StmtNode : public InstrNode { + MachineInstr *getCode() const { + return CodeNode::getCode<MachineInstr*>(); + } + }; + + struct BlockNode : public CodeNode { + MachineBasicBlock *getCode() const { + return CodeNode::getCode<MachineBasicBlock*>(); + } + + void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G); + }; + + struct FuncNode : public CodeNode { + MachineFunction *getCode() const { + return CodeNode::getCode<MachineFunction*>(); + } + + NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB, + const DataFlowGraph &G) const; + NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G); + }; + + struct DataFlowGraph { + DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, + const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, + const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi); + + NodeBase *ptr(NodeId N) const; + template <typename T> T ptr(NodeId N) const { + return static_cast<T>(ptr(N)); + } + + NodeId id(const NodeBase *P) const; + + template <typename T> NodeAddr<T> addr(NodeId N) const { + return { ptr<T>(N), N }; + } + + NodeAddr<FuncNode*> getFunc() const { return Func; } + MachineFunction &getMF() const { return MF; } + const TargetInstrInfo &getTII() const { return TII; } + const TargetRegisterInfo &getTRI() const { return TRI; } + const PhysicalRegisterInfo &getPRI() const { return PRI; } + const MachineDominatorTree &getDT() const { return MDT; } + const MachineDominanceFrontier &getDF() const { return MDF; } + const RegisterAggr &getLiveIns() const { return LiveIns; } + + struct DefStack { + DefStack() = default; + + bool empty() const { return Stack.empty() || top() == bottom(); } + + private: + using value_type = NodeAddr<DefNode *>; + struct Iterator { + using value_type = DefStack::value_type; + + Iterator &up() { Pos = DS.nextUp(Pos); return *this; } + Iterator &down() { Pos = DS.nextDown(Pos); return *this; } + + value_type operator*() const { + assert(Pos >= 1); + return DS.Stack[Pos-1]; + } + const value_type *operator->() const { + assert(Pos >= 1); + return &DS.Stack[Pos-1]; + } + bool operator==(const Iterator &It) const { return Pos == It.Pos; } + bool operator!=(const Iterator &It) const { return Pos != It.Pos; } + + private: + friend struct DefStack; + + Iterator(const DefStack &S, bool Top); + + // Pos-1 is the index in the StorageType object that corresponds to + // the top of the DefStack. + const DefStack &DS; + unsigned Pos; + }; + + public: + using iterator = Iterator; + + iterator top() const { return Iterator(*this, true); } + iterator bottom() const { return Iterator(*this, false); } + unsigned size() const; + + void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); } + void pop(); + void start_block(NodeId N); + void clear_block(NodeId N); + + private: + friend struct Iterator; + + using StorageType = std::vector<value_type>; + + bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const { + return (P.Addr == nullptr) && (N == 0 || P.Id == N); + } + + unsigned nextUp(unsigned P) const; + unsigned nextDown(unsigned P) const; + + StorageType Stack; + }; + + // Make this std::unordered_map for speed of accessing elements. + // Map: Register (physical or virtual) -> DefStack + using DefStackMap = std::unordered_map<RegisterId, DefStack>; + + void build(unsigned Options = BuildOptions::None); + void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM); + void markBlock(NodeId B, DefStackMap &DefM); + void releaseBlock(NodeId B, DefStackMap &DefM); + + PackedRegisterRef pack(RegisterRef RR) { + return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) }; + } + PackedRegisterRef pack(RegisterRef RR) const { + return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) }; + } + RegisterRef unpack(PackedRegisterRef PR) const { + return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId)); + } + + RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const; + RegisterRef makeRegRef(const MachineOperand &Op) const; + RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const; + + NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const; + NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA, bool Create); + NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const; + NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA, bool Create); + NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const; + + NodeList getRelatedRefs(NodeAddr<InstrNode*> IA, + NodeAddr<RefNode*> RA) const; + + NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const { + return BlockNodes.at(BB); + } + + void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) { + unlinkUseDF(UA); + if (RemoveFromOwner) + removeFromOwner(UA); + } + + void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) { + unlinkDefDF(DA); + if (RemoveFromOwner) + removeFromOwner(DA); + } + + // Some useful filters. + template <uint16_t Kind> + static bool IsRef(const NodeAddr<NodeBase*> BA) { + return BA.Addr->getType() == NodeAttrs::Ref && + BA.Addr->getKind() == Kind; + } + + template <uint16_t Kind> + static bool IsCode(const NodeAddr<NodeBase*> BA) { + return BA.Addr->getType() == NodeAttrs::Code && + BA.Addr->getKind() == Kind; + } + + static bool IsDef(const NodeAddr<NodeBase*> BA) { + return BA.Addr->getType() == NodeAttrs::Ref && + BA.Addr->getKind() == NodeAttrs::Def; + } + + static bool IsUse(const NodeAddr<NodeBase*> BA) { + return BA.Addr->getType() == NodeAttrs::Ref && + BA.Addr->getKind() == NodeAttrs::Use; + } + + static bool IsPhi(const NodeAddr<NodeBase*> BA) { + return BA.Addr->getType() == NodeAttrs::Code && + BA.Addr->getKind() == NodeAttrs::Phi; + } + + static bool IsPreservingDef(const NodeAddr<DefNode*> DA) { + uint16_t Flags = DA.Addr->getFlags(); + return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef); + } + + private: + void reset(); + + RegisterSet getLandingPadLiveIns() const; + + NodeAddr<NodeBase*> newNode(uint16_t Attrs); + NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B); + NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner, + MachineOperand &Op, uint16_t Flags = NodeAttrs::None); + NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner, + RegisterRef RR, NodeAddr<BlockNode*> PredB, + uint16_t Flags = NodeAttrs::PhiRef); + NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner, + MachineOperand &Op, uint16_t Flags = NodeAttrs::None); + NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner, + RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef); + NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner); + NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner, + MachineInstr *MI); + NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner, + MachineBasicBlock *BB); + NodeAddr<FuncNode*> newFunc(MachineFunction *MF); + + template <typename Predicate> + std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> + locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, + Predicate P) const; + + using BlockRefsMap = std::map<NodeId, RegisterSet>; + + void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In); + void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA); + void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, + NodeAddr<BlockNode*> BA); + void removeUnusedPhis(); + + void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM); + void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM); + template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA, + NodeAddr<T> TA, DefStack &DS); + template <typename Predicate> void linkStmtRefs(DefStackMap &DefM, + NodeAddr<StmtNode*> SA, Predicate P); + void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA); + + void unlinkUseDF(NodeAddr<UseNode*> UA); + void unlinkDefDF(NodeAddr<DefNode*> DA); + + void removeFromOwner(NodeAddr<RefNode*> RA) { + NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this); + IA.Addr->removeMember(RA, *this); + } + + MachineFunction &MF; + const TargetInstrInfo &TII; + const TargetRegisterInfo &TRI; + const PhysicalRegisterInfo PRI; + const MachineDominatorTree &MDT; + const MachineDominanceFrontier &MDF; + const TargetOperandInfo &TOI; + + RegisterAggr LiveIns; + NodeAddr<FuncNode*> Func; + NodeAllocator Memory; + // Local map: MachineBasicBlock -> NodeAddr<BlockNode*> + std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes; + // Lane mask map. + LaneMaskIndex LMI; + }; // struct DataFlowGraph + + template <typename Predicate> + NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P, + bool NextOnly, const DataFlowGraph &G) { + // Get the "Next" reference in the circular list that references RR and + // satisfies predicate "Pred". + auto NA = G.addr<NodeBase*>(getNext()); + + while (NA.Addr != this) { + if (NA.Addr->getType() == NodeAttrs::Ref) { + NodeAddr<RefNode*> RA = NA; + if (RA.Addr->getRegRef(G) == RR && P(NA)) + return NA; + if (NextOnly) + break; + NA = G.addr<NodeBase*>(NA.Addr->getNext()); + } else { + // We've hit the beginning of the chain. + assert(NA.Addr->getType() == NodeAttrs::Code); + NodeAddr<CodeNode*> CA = NA; + NA = CA.Addr->getFirstMember(G); + } + } + // Return the equivalent of "nullptr" if such a node was not found. + return NodeAddr<RefNode*>(); + } + + template <typename Predicate> + NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const { + NodeList MM; + auto M = getFirstMember(G); + if (M.Id == 0) + return MM; + + while (M.Addr != this) { + if (P(M)) + MM.push_back(M); + M = G.addr<NodeBase*>(M.Addr->getNext()); + } + return MM; + } + + template <typename T> + struct Print { + Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {} + + const T &Obj; + const DataFlowGraph &G; + }; + + template <typename T> + struct PrintNode : Print<NodeAddr<T>> { + PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g) + : Print<NodeAddr<T>>(x, g) {} + }; + + raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, + const Print<NodeAddr<PhiUseNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, + const Print<NodeAddr<StmtNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, + const Print<NodeAddr<InstrNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, + const Print<NodeAddr<BlockNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, + const Print<NodeAddr<FuncNode *>> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P); + raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P); + raw_ostream &operator<<(raw_ostream &OS, + const Print<DataFlowGraph::DefStack> &P); + +} // end namespace rdf + +} // end namespace llvm + +#endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H diff --git a/llvm/include/llvm/CodeGen/RDFLiveness.h b/llvm/include/llvm/CodeGen/RDFLiveness.h new file mode 100644 index 00000000000..ea489027172 --- /dev/null +++ b/llvm/include/llvm/CodeGen/RDFLiveness.h @@ -0,0 +1,151 @@ +//===- RDFLiveness.h --------------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Recalculate the liveness information given a data flow graph. +// This includes block live-ins and kill flags. + +#ifndef LLVM_LIB_TARGET_HEXAGON_RDFLIVENESS_H +#define LLVM_LIB_TARGET_HEXAGON_RDFLIVENESS_H + +#include "RDFGraph.h" +#include "RDFRegisters.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/MC/LaneBitmask.h" +#include <map> +#include <set> +#include <utility> + +namespace llvm { + +class MachineBasicBlock; +class MachineDominanceFrontier; +class MachineDominatorTree; +class MachineRegisterInfo; +class TargetRegisterInfo; + +namespace rdf { + + struct Liveness { + public: + // This is really a std::map, except that it provides a non-trivial + // default constructor to the element accessed via []. + struct LiveMapType { + LiveMapType(const PhysicalRegisterInfo &pri) : Empty(pri) {} + + RegisterAggr &operator[] (MachineBasicBlock *B) { + return Map.emplace(B, Empty).first->second; + } + + private: + RegisterAggr Empty; + std::map<MachineBasicBlock*,RegisterAggr> Map; + }; + + using NodeRef = std::pair<NodeId, LaneBitmask>; + using NodeRefSet = std::set<NodeRef>; + // RegisterId in RefMap must be normalized. + using RefMap = std::map<RegisterId, NodeRefSet>; + + Liveness(MachineRegisterInfo &mri, const DataFlowGraph &g) + : DFG(g), TRI(g.getTRI()), PRI(g.getPRI()), MDT(g.getDT()), + MDF(g.getDF()), LiveMap(g.getPRI()), Empty(), NoRegs(g.getPRI()) {} + + NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA, + bool TopShadows, bool FullChain, const RegisterAggr &DefRRs); + + NodeList getAllReachingDefs(NodeAddr<RefNode*> RefA) { + return getAllReachingDefs(RefA.Addr->getRegRef(DFG), RefA, false, + false, NoRegs); + } + + NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA) { + return getAllReachingDefs(RefRR, RefA, false, false, NoRegs); + } + + NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode*> DefA, + const RegisterAggr &DefRRs); + + NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode*> DefA) { + return getAllReachedUses(RefRR, DefA, NoRegs); + } + + std::pair<NodeSet,bool> getAllReachingDefsRec(RegisterRef RefRR, + NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs); + + NodeAddr<RefNode*> getNearestAliasedRef(RegisterRef RefRR, + NodeAddr<InstrNode*> IA); + + LiveMapType &getLiveMap() { return LiveMap; } + const LiveMapType &getLiveMap() const { return LiveMap; } + + const RefMap &getRealUses(NodeId P) const { + auto F = RealUseMap.find(P); + return F == RealUseMap.end() ? Empty : F->second; + } + + void computePhiInfo(); + void computeLiveIns(); + void resetLiveIns(); + void resetKills(); + void resetKills(MachineBasicBlock *B); + + void trace(bool T) { Trace = T; } + + private: + const DataFlowGraph &DFG; + const TargetRegisterInfo &TRI; + const PhysicalRegisterInfo &PRI; + const MachineDominatorTree &MDT; + const MachineDominanceFrontier &MDF; + LiveMapType LiveMap; + const RefMap Empty; + const RegisterAggr NoRegs; + bool Trace = false; + + // Cache of mapping from node ids (for RefNodes) to the containing + // basic blocks. Not computing it each time for each node reduces + // the liveness calculation time by a large fraction. + using NodeBlockMap = DenseMap<NodeId, MachineBasicBlock *>; + NodeBlockMap NBMap; + + // Phi information: + // + // RealUseMap + // map: NodeId -> (map: RegisterId -> NodeRefSet) + // phi id -> (map: register -> set of reached non-phi uses) + std::map<NodeId, RefMap> RealUseMap; + + // Inverse iterated dominance frontier. + std::map<MachineBasicBlock*,std::set<MachineBasicBlock*>> IIDF; + + // Live on entry. + std::map<MachineBasicBlock*,RefMap> PhiLON; + + // Phi uses are considered to be located at the end of the block that + // they are associated with. The reaching def of a phi use dominates the + // block that the use corresponds to, but not the block that contains + // the phi itself. To include these uses in the liveness propagation (up + // the dominator tree), create a map: block -> set of uses live on exit. + std::map<MachineBasicBlock*,RefMap> PhiLOX; + + MachineBasicBlock *getBlockWithRef(NodeId RN) const; + void traverse(MachineBasicBlock *B, RefMap &LiveIn); + void emptify(RefMap &M); + + std::pair<NodeSet,bool> getAllReachingDefsRecImpl(RegisterRef RefRR, + NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs, + unsigned Nest, unsigned MaxNest); + }; + + raw_ostream &operator<<(raw_ostream &OS, const Print<Liveness::RefMap> &P); + +} // end namespace rdf + +} // end namespace llvm + +#endif // LLVM_LIB_TARGET_HEXAGON_RDFLIVENESS_H diff --git a/llvm/include/llvm/CodeGen/RDFRegisters.h b/llvm/include/llvm/CodeGen/RDFRegisters.h new file mode 100644 index 00000000000..4afaf80e465 --- /dev/null +++ b/llvm/include/llvm/CodeGen/RDFRegisters.h @@ -0,0 +1,240 @@ +//===- RDFRegisters.h -------------------------------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TARGET_HEXAGON_RDFREGISTERS_H +#define LLVM_LIB_TARGET_HEXAGON_RDFREGISTERS_H + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/MC/LaneBitmask.h" +#include <cassert> +#include <cstdint> +#include <map> +#include <set> +#include <vector> + +namespace llvm { + +class MachineFunction; +class raw_ostream; + +namespace rdf { + + using RegisterId = uint32_t; + + // Template class for a map translating uint32_t into arbitrary types. + // The map will act like an indexed set: upon insertion of a new object, + // it will automatically assign a new index to it. Index of 0 is treated + // as invalid and is never allocated. + template <typename T, unsigned N = 32> + struct IndexedSet { + IndexedSet() { Map.reserve(N); } + + T get(uint32_t Idx) const { + // Index Idx corresponds to Map[Idx-1]. + assert(Idx != 0 && !Map.empty() && Idx-1 < Map.size()); + return Map[Idx-1]; + } + + uint32_t insert(T Val) { + // Linear search. + auto F = llvm::find(Map, Val); + if (F != Map.end()) + return F - Map.begin() + 1; + Map.push_back(Val); + return Map.size(); // Return actual_index + 1. + } + + uint32_t find(T Val) const { + auto F = llvm::find(Map, Val); + assert(F != Map.end()); + return F - Map.begin() + 1; + } + + uint32_t size() const { return Map.size(); } + + using const_iterator = typename std::vector<T>::const_iterator; + + const_iterator begin() const { return Map.begin(); } + const_iterator end() const { return Map.end(); } + + private: + std::vector<T> Map; + }; + + struct RegisterRef { + RegisterId Reg = 0; + LaneBitmask Mask = LaneBitmask::getNone(); + + RegisterRef() = default; + explicit RegisterRef(RegisterId R, LaneBitmask M = LaneBitmask::getAll()) + : Reg(R), Mask(R != 0 ? M : LaneBitmask::getNone()) {} + + operator bool() const { + return Reg != 0 && Mask.any(); + } + + bool operator== (const RegisterRef &RR) const { + return Reg == RR.Reg && Mask == RR.Mask; + } + + bool operator!= (const RegisterRef &RR) const { + return !operator==(RR); + } + + bool operator< (const RegisterRef &RR) const { + return Reg < RR.Reg || (Reg == RR.Reg && Mask < RR.Mask); + } + }; + + + struct PhysicalRegisterInfo { + PhysicalRegisterInfo(const TargetRegisterInfo &tri, + const MachineFunction &mf); + + static bool isRegMaskId(RegisterId R) { + return Register::isStackSlot(R); + } + + RegisterId getRegMaskId(const uint32_t *RM) const { + return Register::index2StackSlot(RegMasks.find(RM)); + } + + const uint32_t *getRegMaskBits(RegisterId R) const { + return RegMasks.get(Register::stackSlot2Index(R)); + } + + RegisterRef normalize(RegisterRef RR) const; + + bool alias(RegisterRef RA, RegisterRef RB) const { + if (!isRegMaskId(RA.Reg)) + return !isRegMaskId(RB.Reg) ? aliasRR(RA, RB) : aliasRM(RA, RB); + return !isRegMaskId(RB.Reg) ? aliasRM(RB, RA) : aliasMM(RA, RB); + } + + std::set<RegisterId> getAliasSet(RegisterId Reg) const; + + RegisterRef getRefForUnit(uint32_t U) const { + return RegisterRef(UnitInfos[U].Reg, UnitInfos[U].Mask); + } + + const BitVector &getMaskUnits(RegisterId MaskId) const { + return MaskInfos[Register::stackSlot2Index(MaskId)].Units; + } + + RegisterRef mapTo(RegisterRef RR, unsigned R) const; + const TargetRegisterInfo &getTRI() const { return TRI; } + + private: + struct RegInfo { + const TargetRegisterClass *RegClass = nullptr; + }; + struct UnitInfo { + RegisterId Reg = 0; + LaneBitmask Mask; + }; + struct MaskInfo { + BitVector Units; + }; + + const TargetRegisterInfo &TRI; + IndexedSet<const uint32_t*> RegMasks; + std::vector<RegInfo> RegInfos; + std::vector<UnitInfo> UnitInfos; + std::vector<MaskInfo> MaskInfos; + + bool aliasRR(RegisterRef RA, RegisterRef RB) const; + bool aliasRM(RegisterRef RR, RegisterRef RM) const; + bool aliasMM(RegisterRef RM, RegisterRef RN) const; + }; + + struct RegisterAggr { + RegisterAggr(const PhysicalRegisterInfo &pri) + : Units(pri.getTRI().getNumRegUnits()), PRI(pri) {} + RegisterAggr(const RegisterAggr &RG) = default; + + bool empty() const { return Units.none(); } + bool hasAliasOf(RegisterRef RR) const; + bool hasCoverOf(RegisterRef RR) const; + + static bool isCoverOf(RegisterRef RA, RegisterRef RB, + const PhysicalRegisterInfo &PRI) { + return RegisterAggr(PRI).insert(RA).hasCoverOf(RB); + } + + RegisterAggr &insert(RegisterRef RR); + RegisterAggr &insert(const RegisterAggr &RG); + RegisterAggr &intersect(RegisterRef RR); + RegisterAggr &intersect(const RegisterAggr &RG); + RegisterAggr &clear(RegisterRef RR); + RegisterAggr &clear(const RegisterAggr &RG); + + RegisterRef intersectWith(RegisterRef RR) const; + RegisterRef clearIn(RegisterRef RR) const; + RegisterRef makeRegRef() const; + + void print(raw_ostream &OS) const; + + struct rr_iterator { + using MapType = std::map<RegisterId, LaneBitmask>; + + private: + MapType Masks; + MapType::iterator Pos; + unsigned Index; + const RegisterAggr *Owner; + + public: + rr_iterator(const RegisterAggr &RG, bool End); + + RegisterRef operator*() const { + return RegisterRef(Pos->first, Pos->second); + } + + rr_iterator &operator++() { + ++Pos; + ++Index; + return *this; + } + + bool operator==(const rr_iterator &I) const { + assert(Owner == I.Owner); + (void)Owner; + return Index == I.Index; + } + + bool operator!=(const rr_iterator &I) const { + return !(*this == I); + } + }; + + rr_iterator rr_begin() const { + return rr_iterator(*this, false); + } + rr_iterator rr_end() const { + return rr_iterator(*this, true); + } + + private: + BitVector Units; + const PhysicalRegisterInfo &PRI; + }; + + // Optionally print the lane mask, if it is not ~0. + struct PrintLaneMaskOpt { + PrintLaneMaskOpt(LaneBitmask M) : Mask(M) {} + LaneBitmask Mask; + }; + raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P); + +} // end namespace rdf + +} // end namespace llvm + +#endif // LLVM_LIB_TARGET_HEXAGON_RDFREGISTERS_H |

