diff options
| author | Jeff Cohen <jeffc@jolt-lang.org> | 2005-07-27 06:12:32 +0000 | 
|---|---|---|
| committer | Jeff Cohen <jeffc@jolt-lang.org> | 2005-07-27 06:12:32 +0000 | 
| commit | 5f4ef3c5a88f058ad98611c24617f41bc6a45d50 (patch) | |
| tree | 3c31e3e2214e6adfa39e09862f9a26865f575847 /llvm/examples | |
| parent | 8e2411334cd0d7f6be54dd2b5d5cc012b6e604a1 (diff) | |
| download | bcm5719-llvm-5f4ef3c5a88f058ad98611c24617f41bc6a45d50.tar.gz bcm5719-llvm-5f4ef3c5a88f058ad98611c24617f41bc6a45d50.zip  | |
Eliminate all remaining tabs and trailing spaces.
llvm-svn: 22523
Diffstat (limited to 'llvm/examples')
| -rw-r--r-- | llvm/examples/ParallelJIT/ParallelJIT.cpp | 110 | 
1 files changed, 55 insertions, 55 deletions
diff --git a/llvm/examples/ParallelJIT/ParallelJIT.cpp b/llvm/examples/ParallelJIT/ParallelJIT.cpp index d27683e9071..5c605c002ea 100644 --- a/llvm/examples/ParallelJIT/ParallelJIT.cpp +++ b/llvm/examples/ParallelJIT/ParallelJIT.cpp @@ -9,7 +9,7 @@  //  // Parallel JIT  // -// This test program creates two LLVM functions then calls them from three  +// This test program creates two LLVM functions then calls them from three  // separate threads.  It requires the pthreads library.  // The three threads are created and then block waiting on a condition variable.  // Once all threads are blocked on the conditional variable, the main thread @@ -28,32 +28,32 @@  #include <iostream>  using namespace llvm; -static Function* createAdd1( Module* M ) +static Function* createAdd1(Module* M)  {    // Create the add1 function entry and insert this entry into module M.  The    // function will have a return type of "int" and take an argument of "int".    // The '0' terminates the list of argument types.    Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 0); -   +    // Add a basic block to the function. As before, it automatically inserts    // because of the last argument.    BasicBlock *BB = new BasicBlock("EntryBlock", Add1F); -   +    // Get pointers to the constant `1'.    Value *One = ConstantSInt::get(Type::IntTy, 1); -   +    // Get pointers to the integer argument of the add1 function...    assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg    Argument *ArgX = Add1F->arg_begin();  // Get the arg    ArgX->setName("AnArg");            // Give it a nice symbolic name for fun. -   +    // Create the add instruction, inserting it into the end of BB.    Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB); -   +    // Create the return instruction and add it to the basic block    new ReturnInst(Add, BB); -   -  // Now, function add1 is ready.	 + +  // Now, function add1 is ready.    return Add1F;  } @@ -62,45 +62,45 @@ static Function *CreateFibFunction(Module *M)    // Create the fib function and insert it into module M.  This function is said    // to return an int and take an int parameter.    Function *FibF = M->getOrInsertFunction("fib", Type::IntTy, Type::IntTy, 0); -   +    // Add a basic block to the function.    BasicBlock *BB = new BasicBlock("EntryBlock", FibF); -   +    // Get pointers to the constants.    Value *One = ConstantSInt::get(Type::IntTy, 1);    Value *Two = ConstantSInt::get(Type::IntTy, 2); -   +    // Get pointer to the integer argument of the add1 function...    Argument *ArgX = FibF->arg_begin();   // Get the arg.    ArgX->setName("AnArg");            // Give it a nice symbolic name for fun. -   +    // Create the true_block.    BasicBlock *RetBB = new BasicBlock("return", FibF);    // Create an exit block.    BasicBlock* RecurseBB = new BasicBlock("recurse", FibF); -   +    // Create the "if (arg < 2) goto exitbb"    Value *CondInst = BinaryOperator::createSetLE(ArgX, Two, "cond", BB);    new BranchInst(RetBB, RecurseBB, CondInst, BB); -   +    // Create: ret int 1    new ReturnInst(One, RetBB); -   +    // create fib(x-1)    Value *Sub = BinaryOperator::createSub(ArgX, One, "arg", RecurseBB);    Value *CallFibX1 = new CallInst(FibF, Sub, "fibx1", RecurseBB); -   +    // create fib(x-2)    Sub = BinaryOperator::createSub(ArgX, Two, "arg", RecurseBB);    Value *CallFibX2 = new CallInst(FibF, Sub, "fibx2", RecurseBB); -   +    // fib(x-1)+fib(x-2) -  Value *Sum =  +  Value *Sum =      BinaryOperator::createAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); -   +    // Create the return instruction and add it to the basic block    new ReturnInst(Sum, RecurseBB); -   +    return FibF;  } @@ -120,23 +120,23 @@ public:    {      n = 0;      waitFor = 0; -     +      int result = pthread_cond_init( &condition, NULL );      assert( result == 0 ); -     +      result = pthread_mutex_init( &mutex, NULL );      assert( result == 0 );    } -   +    ~WaitForThreads()    {      int result = pthread_cond_destroy( &condition );      assert( result == 0 ); -     +      result = pthread_mutex_destroy( &mutex );      assert( result == 0 );    } -   +    // All threads will stop here until another thread calls releaseThreads    void block()    { @@ -144,26 +144,26 @@ public:      assert( result == 0 );      n ++;      //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; -     +      assert( waitFor == 0 || n <= waitFor ); -    if ( waitFor > 0 && n == waitFor )  +    if ( waitFor > 0 && n == waitFor )      {        // There are enough threads blocked that we can release all of them        std::cout << "Unblocking threads from block()" << std::endl;        unblockThreads(); -    }  -    else  +    } +    else      {        // We just need to wait until someone unblocks us        result = pthread_cond_wait( &condition, &mutex );        assert( result == 0 );      } -     +      // unlock the mutex before returning      result = pthread_mutex_unlock( &mutex );      assert( result == 0 );    } -   +    // If there are num or more threads blocked, it will signal them all    // Otherwise, this thread blocks until there are enough OTHER threads    // blocked @@ -171,22 +171,22 @@ public:    {      int result = pthread_mutex_lock( &mutex );      assert( result == 0 ); -     +      if ( n >= num ) {        std::cout << "Unblocking threads from releaseThreads()" << std::endl;        unblockThreads(); -    }  -    else  +    } +    else      {        waitFor = num;        pthread_cond_wait( &condition, &mutex );      } -     +      // unlock the mutex before returning      result = pthread_mutex_unlock( &mutex );      assert( result == 0 );    } -   +  private:    void unblockThreads()    { @@ -194,7 +194,7 @@ private:      // enter while threads are exiting, they will block instead      // of triggering a new release of threads      n = 0; -     +      // Reset waitFor to zero: this way, if waitFor threads enter      // while threads are exiting, they will block instead of      // triggering a new release of threads @@ -203,7 +203,7 @@ private:      int result = pthread_cond_broadcast( &condition );      assert( result == 0 );    } -   +    size_t n;    size_t waitFor;    pthread_cond_t condition; @@ -215,60 +215,60 @@ static WaitForThreads synchronize;  void* callFunc( void* param )  {    struct threadParams* p = (struct threadParams*) param; -   +    // Call the `foo' function with no arguments:    std::vector<GenericValue> Args(1);    Args[0].IntVal = p->value; -   +    synchronize.block(); // wait until other threads are at this point    GenericValue gv = p->EE->runFunction(p->F, Args); -           +    return (void*) intptr_t(gv.IntVal);  } -int main()  +int main()  {    // Create some module to put our function into it.    Module *M = new Module("test"); -   +    Function* add1F = createAdd1( M );    Function* fibF = CreateFibFunction( M ); -   +    // Now we create the JIT.    ExistingModuleProvider* MP = new ExistingModuleProvider(M);    ExecutionEngine* EE = ExecutionEngine::create(MP, false); -   +    //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;    //~ std::cout << "\n\nRunning foo: " << std::flush; -   +    // Create one thread for add1 and two threads for fib    struct threadParams add1 = { EE, add1F, 1000 };    struct threadParams fib1 = { EE, fibF, 39 };    struct threadParams fib2 = { EE, fibF, 42 }; -   +    pthread_t add1Thread;    int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );    if ( result != 0 ) {            std::cerr << "Could not create thread" << std::endl;            return 1;    } -   +    pthread_t fibThread1;    result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );    if ( result != 0 ) {            std::cerr << "Could not create thread" << std::endl;            return 1;    } -   +    pthread_t fibThread2;    result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );    if ( result != 0 ) {            std::cerr << "Could not create thread" << std::endl;            return 1;    } -   +    synchronize.releaseThreads(3); // wait until other threads are at this point -   +    void* returnValue;    result = pthread_join( add1Thread, &returnValue );    if ( result != 0 ) { @@ -276,20 +276,20 @@ int main()            return 1;    }    std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; -   +    result = pthread_join( fibThread1, &returnValue );    if ( result != 0 ) {            std::cerr << "Could not join thread" << std::endl;            return 1;    }    std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; -   +    result = pthread_join( fibThread2, &returnValue );    if ( result != 0 ) {            std::cerr << "Could not join thread" << std::endl;            return 1;    }    std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; -   +    return 0;  }  | 

