summaryrefslogtreecommitdiffstats
path: root/lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
diff options
context:
space:
mode:
authorKate Stone <katherine.stone@apple.com>2016-09-06 20:57:50 +0000
committerKate Stone <katherine.stone@apple.com>2016-09-06 20:57:50 +0000
commitb9c1b51e45b845debb76d8658edabca70ca56079 (patch)
treedfcb5a13ef2b014202340f47036da383eaee74aa /lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
parentd5aa73376966339caad04013510626ec2e42c760 (diff)
downloadbcm5719-llvm-b9c1b51e45b845debb76d8658edabca70ca56079.tar.gz
bcm5719-llvm-b9c1b51e45b845debb76d8658edabca70ca56079.zip
*** This commit represents a complete reformatting of the LLDB source code
*** to conform to clang-format’s LLVM style. This kind of mass change has *** two obvious implications: Firstly, merging this particular commit into a downstream fork may be a huge effort. Alternatively, it may be worth merging all changes up to this commit, performing the same reformatting operation locally, and then discarding the merge for this particular commit. The commands used to accomplish this reformatting were as follows (with current working directory as the root of the repository): find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} + find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ; The version of clang-format used was 3.9.0, and autopep8 was 1.2.4. Secondly, “blame” style tools will generally point to this commit instead of a meaningful prior commit. There are alternatives available that will attempt to look through this change and find the appropriate prior commit. YMMV. llvm-svn: 280751
Diffstat (limited to 'lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp')
-rwxr-xr-xlldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp1958
1 files changed, 900 insertions, 1058 deletions
diff --git a/lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp b/lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
index 2080d2ede37..369a8033a62 100755
--- a/lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
+++ b/lldb/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
@@ -11,9 +11,9 @@
#include "NativeRegisterContextLinux_x86_64.h"
-#include "lldb/Core/Log.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Error.h"
+#include "lldb/Core/Log.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Host/HostInfo.h"
@@ -27,297 +27,158 @@ using namespace lldb_private::process_linux;
// Private namespace.
// ----------------------------------------------------------------------------
-namespace
-{
- // x86 32-bit general purpose registers.
- const uint32_t
- g_gpr_regnums_i386[] =
- {
- lldb_eax_i386,
- lldb_ebx_i386,
- lldb_ecx_i386,
- lldb_edx_i386,
- lldb_edi_i386,
- lldb_esi_i386,
- lldb_ebp_i386,
- lldb_esp_i386,
- lldb_eip_i386,
- lldb_eflags_i386,
- lldb_cs_i386,
- lldb_fs_i386,
- lldb_gs_i386,
- lldb_ss_i386,
- lldb_ds_i386,
- lldb_es_i386,
- lldb_ax_i386,
- lldb_bx_i386,
- lldb_cx_i386,
- lldb_dx_i386,
- lldb_di_i386,
- lldb_si_i386,
- lldb_bp_i386,
- lldb_sp_i386,
- lldb_ah_i386,
- lldb_bh_i386,
- lldb_ch_i386,
- lldb_dh_i386,
- lldb_al_i386,
- lldb_bl_i386,
- lldb_cl_i386,
- lldb_dl_i386,
- LLDB_INVALID_REGNUM // register sets need to end with this flag
- };
- static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) - 1 == k_num_gpr_registers_i386,
- "g_gpr_regnums_i386 has wrong number of register infos");
-
- // x86 32-bit floating point registers.
- const uint32_t
- g_fpu_regnums_i386[] =
- {
- lldb_fctrl_i386,
- lldb_fstat_i386,
- lldb_ftag_i386,
- lldb_fop_i386,
- lldb_fiseg_i386,
- lldb_fioff_i386,
- lldb_foseg_i386,
- lldb_fooff_i386,
- lldb_mxcsr_i386,
- lldb_mxcsrmask_i386,
- lldb_st0_i386,
- lldb_st1_i386,
- lldb_st2_i386,
- lldb_st3_i386,
- lldb_st4_i386,
- lldb_st5_i386,
- lldb_st6_i386,
- lldb_st7_i386,
- lldb_mm0_i386,
- lldb_mm1_i386,
- lldb_mm2_i386,
- lldb_mm3_i386,
- lldb_mm4_i386,
- lldb_mm5_i386,
- lldb_mm6_i386,
- lldb_mm7_i386,
- lldb_xmm0_i386,
- lldb_xmm1_i386,
- lldb_xmm2_i386,
- lldb_xmm3_i386,
- lldb_xmm4_i386,
- lldb_xmm5_i386,
- lldb_xmm6_i386,
- lldb_xmm7_i386,
- LLDB_INVALID_REGNUM // register sets need to end with this flag
- };
- static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) - 1 == k_num_fpr_registers_i386,
- "g_fpu_regnums_i386 has wrong number of register infos");
-
- // x86 32-bit AVX registers.
- const uint32_t
- g_avx_regnums_i386[] =
- {
- lldb_ymm0_i386,
- lldb_ymm1_i386,
- lldb_ymm2_i386,
- lldb_ymm3_i386,
- lldb_ymm4_i386,
- lldb_ymm5_i386,
- lldb_ymm6_i386,
- lldb_ymm7_i386,
- LLDB_INVALID_REGNUM // register sets need to end with this flag
- };
- static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) - 1 == k_num_avx_registers_i386,
- " g_avx_regnums_i386 has wrong number of register infos");
-
- // x86 64-bit general purpose registers.
- static const
- uint32_t g_gpr_regnums_x86_64[] =
- {
- lldb_rax_x86_64,
- lldb_rbx_x86_64,
- lldb_rcx_x86_64,
- lldb_rdx_x86_64,
- lldb_rdi_x86_64,
- lldb_rsi_x86_64,
- lldb_rbp_x86_64,
- lldb_rsp_x86_64,
- lldb_r8_x86_64,
- lldb_r9_x86_64,
- lldb_r10_x86_64,
- lldb_r11_x86_64,
- lldb_r12_x86_64,
- lldb_r13_x86_64,
- lldb_r14_x86_64,
- lldb_r15_x86_64,
- lldb_rip_x86_64,
- lldb_rflags_x86_64,
- lldb_cs_x86_64,
- lldb_fs_x86_64,
- lldb_gs_x86_64,
- lldb_ss_x86_64,
- lldb_ds_x86_64,
- lldb_es_x86_64,
- lldb_eax_x86_64,
- lldb_ebx_x86_64,
- lldb_ecx_x86_64,
- lldb_edx_x86_64,
- lldb_edi_x86_64,
- lldb_esi_x86_64,
- lldb_ebp_x86_64,
- lldb_esp_x86_64,
- lldb_r8d_x86_64, // Low 32 bits or r8
- lldb_r9d_x86_64, // Low 32 bits or r9
- lldb_r10d_x86_64, // Low 32 bits or r10
- lldb_r11d_x86_64, // Low 32 bits or r11
- lldb_r12d_x86_64, // Low 32 bits or r12
- lldb_r13d_x86_64, // Low 32 bits or r13
- lldb_r14d_x86_64, // Low 32 bits or r14
- lldb_r15d_x86_64, // Low 32 bits or r15
- lldb_ax_x86_64,
- lldb_bx_x86_64,
- lldb_cx_x86_64,
- lldb_dx_x86_64,
- lldb_di_x86_64,
- lldb_si_x86_64,
- lldb_bp_x86_64,
- lldb_sp_x86_64,
- lldb_r8w_x86_64, // Low 16 bits or r8
- lldb_r9w_x86_64, // Low 16 bits or r9
- lldb_r10w_x86_64, // Low 16 bits or r10
- lldb_r11w_x86_64, // Low 16 bits or r11
- lldb_r12w_x86_64, // Low 16 bits or r12
- lldb_r13w_x86_64, // Low 16 bits or r13
- lldb_r14w_x86_64, // Low 16 bits or r14
- lldb_r15w_x86_64, // Low 16 bits or r15
- lldb_ah_x86_64,
- lldb_bh_x86_64,
- lldb_ch_x86_64,
- lldb_dh_x86_64,
- lldb_al_x86_64,
- lldb_bl_x86_64,
- lldb_cl_x86_64,
- lldb_dl_x86_64,
- lldb_dil_x86_64,
- lldb_sil_x86_64,
- lldb_bpl_x86_64,
- lldb_spl_x86_64,
- lldb_r8l_x86_64, // Low 8 bits or r8
- lldb_r9l_x86_64, // Low 8 bits or r9
- lldb_r10l_x86_64, // Low 8 bits or r10
- lldb_r11l_x86_64, // Low 8 bits or r11
- lldb_r12l_x86_64, // Low 8 bits or r12
- lldb_r13l_x86_64, // Low 8 bits or r13
- lldb_r14l_x86_64, // Low 8 bits or r14
- lldb_r15l_x86_64, // Low 8 bits or r15
- LLDB_INVALID_REGNUM // register sets need to end with this flag
- };
- static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) - 1 == k_num_gpr_registers_x86_64,
- "g_gpr_regnums_x86_64 has wrong number of register infos");
-
- // x86 64-bit floating point registers.
- static const uint32_t
- g_fpu_regnums_x86_64[] =
- {
- lldb_fctrl_x86_64,
- lldb_fstat_x86_64,
- lldb_ftag_x86_64,
- lldb_fop_x86_64,
- lldb_fiseg_x86_64,
- lldb_fioff_x86_64,
- lldb_foseg_x86_64,
- lldb_fooff_x86_64,
- lldb_mxcsr_x86_64,
- lldb_mxcsrmask_x86_64,
- lldb_st0_x86_64,
- lldb_st1_x86_64,
- lldb_st2_x86_64,
- lldb_st3_x86_64,
- lldb_st4_x86_64,
- lldb_st5_x86_64,
- lldb_st6_x86_64,
- lldb_st7_x86_64,
- lldb_mm0_x86_64,
- lldb_mm1_x86_64,
- lldb_mm2_x86_64,
- lldb_mm3_x86_64,
- lldb_mm4_x86_64,
- lldb_mm5_x86_64,
- lldb_mm6_x86_64,
- lldb_mm7_x86_64,
- lldb_xmm0_x86_64,
- lldb_xmm1_x86_64,
- lldb_xmm2_x86_64,
- lldb_xmm3_x86_64,
- lldb_xmm4_x86_64,
- lldb_xmm5_x86_64,
- lldb_xmm6_x86_64,
- lldb_xmm7_x86_64,
- lldb_xmm8_x86_64,
- lldb_xmm9_x86_64,
- lldb_xmm10_x86_64,
- lldb_xmm11_x86_64,
- lldb_xmm12_x86_64,
- lldb_xmm13_x86_64,
- lldb_xmm14_x86_64,
- lldb_xmm15_x86_64,
- LLDB_INVALID_REGNUM // register sets need to end with this flag
- };
- static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) - 1 == k_num_fpr_registers_x86_64,
- "g_fpu_regnums_x86_64 has wrong number of register infos");
-
- // x86 64-bit AVX registers.
- static const uint32_t
- g_avx_regnums_x86_64[] =
- {
- lldb_ymm0_x86_64,
- lldb_ymm1_x86_64,
- lldb_ymm2_x86_64,
- lldb_ymm3_x86_64,
- lldb_ymm4_x86_64,
- lldb_ymm5_x86_64,
- lldb_ymm6_x86_64,
- lldb_ymm7_x86_64,
- lldb_ymm8_x86_64,
- lldb_ymm9_x86_64,
- lldb_ymm10_x86_64,
- lldb_ymm11_x86_64,
- lldb_ymm12_x86_64,
- lldb_ymm13_x86_64,
- lldb_ymm14_x86_64,
- lldb_ymm15_x86_64,
- LLDB_INVALID_REGNUM // register sets need to end with this flag
- };
- static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) - 1 == k_num_avx_registers_x86_64,
- "g_avx_regnums_x86_64 has wrong number of register infos");
-
- // Number of register sets provided by this context.
- enum
- {
- k_num_extended_register_sets = 1,
- k_num_register_sets = 3
- };
-
- // Register sets for x86 32-bit.
- static const RegisterSet
- g_reg_sets_i386[k_num_register_sets] =
- {
- { "General Purpose Registers", "gpr", k_num_gpr_registers_i386, g_gpr_regnums_i386 },
- { "Floating Point Registers", "fpu", k_num_fpr_registers_i386, g_fpu_regnums_i386 },
- { "Advanced Vector Extensions", "avx", k_num_avx_registers_i386, g_avx_regnums_i386 }
- };
-
- // Register sets for x86 64-bit.
- static const RegisterSet
- g_reg_sets_x86_64[k_num_register_sets] =
- {
- { "General Purpose Registers", "gpr", k_num_gpr_registers_x86_64, g_gpr_regnums_x86_64 },
- { "Floating Point Registers", "fpu", k_num_fpr_registers_x86_64, g_fpu_regnums_x86_64 },
- { "Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64, g_avx_regnums_x86_64 }
- };
+namespace {
+// x86 32-bit general purpose registers.
+const uint32_t g_gpr_regnums_i386[] = {
+ lldb_eax_i386, lldb_ebx_i386, lldb_ecx_i386, lldb_edx_i386,
+ lldb_edi_i386, lldb_esi_i386, lldb_ebp_i386, lldb_esp_i386,
+ lldb_eip_i386, lldb_eflags_i386, lldb_cs_i386, lldb_fs_i386,
+ lldb_gs_i386, lldb_ss_i386, lldb_ds_i386, lldb_es_i386,
+ lldb_ax_i386, lldb_bx_i386, lldb_cx_i386, lldb_dx_i386,
+ lldb_di_i386, lldb_si_i386, lldb_bp_i386, lldb_sp_i386,
+ lldb_ah_i386, lldb_bh_i386, lldb_ch_i386, lldb_dh_i386,
+ lldb_al_i386, lldb_bl_i386, lldb_cl_i386, lldb_dl_i386,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+};
+static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) -
+ 1 ==
+ k_num_gpr_registers_i386,
+ "g_gpr_regnums_i386 has wrong number of register infos");
+
+// x86 32-bit floating point registers.
+const uint32_t g_fpu_regnums_i386[] = {
+ lldb_fctrl_i386, lldb_fstat_i386, lldb_ftag_i386, lldb_fop_i386,
+ lldb_fiseg_i386, lldb_fioff_i386, lldb_foseg_i386, lldb_fooff_i386,
+ lldb_mxcsr_i386, lldb_mxcsrmask_i386, lldb_st0_i386, lldb_st1_i386,
+ lldb_st2_i386, lldb_st3_i386, lldb_st4_i386, lldb_st5_i386,
+ lldb_st6_i386, lldb_st7_i386, lldb_mm0_i386, lldb_mm1_i386,
+ lldb_mm2_i386, lldb_mm3_i386, lldb_mm4_i386, lldb_mm5_i386,
+ lldb_mm6_i386, lldb_mm7_i386, lldb_xmm0_i386, lldb_xmm1_i386,
+ lldb_xmm2_i386, lldb_xmm3_i386, lldb_xmm4_i386, lldb_xmm5_i386,
+ lldb_xmm6_i386, lldb_xmm7_i386,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+};
+static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) -
+ 1 ==
+ k_num_fpr_registers_i386,
+ "g_fpu_regnums_i386 has wrong number of register infos");
+
+// x86 32-bit AVX registers.
+const uint32_t g_avx_regnums_i386[] = {
+ lldb_ymm0_i386, lldb_ymm1_i386, lldb_ymm2_i386, lldb_ymm3_i386,
+ lldb_ymm4_i386, lldb_ymm5_i386, lldb_ymm6_i386, lldb_ymm7_i386,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+};
+static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) -
+ 1 ==
+ k_num_avx_registers_i386,
+ " g_avx_regnums_i386 has wrong number of register infos");
+
+// x86 64-bit general purpose registers.
+static const uint32_t g_gpr_regnums_x86_64[] = {
+ lldb_rax_x86_64, lldb_rbx_x86_64, lldb_rcx_x86_64, lldb_rdx_x86_64,
+ lldb_rdi_x86_64, lldb_rsi_x86_64, lldb_rbp_x86_64, lldb_rsp_x86_64,
+ lldb_r8_x86_64, lldb_r9_x86_64, lldb_r10_x86_64, lldb_r11_x86_64,
+ lldb_r12_x86_64, lldb_r13_x86_64, lldb_r14_x86_64, lldb_r15_x86_64,
+ lldb_rip_x86_64, lldb_rflags_x86_64, lldb_cs_x86_64, lldb_fs_x86_64,
+ lldb_gs_x86_64, lldb_ss_x86_64, lldb_ds_x86_64, lldb_es_x86_64,
+ lldb_eax_x86_64, lldb_ebx_x86_64, lldb_ecx_x86_64, lldb_edx_x86_64,
+ lldb_edi_x86_64, lldb_esi_x86_64, lldb_ebp_x86_64, lldb_esp_x86_64,
+ lldb_r8d_x86_64, // Low 32 bits or r8
+ lldb_r9d_x86_64, // Low 32 bits or r9
+ lldb_r10d_x86_64, // Low 32 bits or r10
+ lldb_r11d_x86_64, // Low 32 bits or r11
+ lldb_r12d_x86_64, // Low 32 bits or r12
+ lldb_r13d_x86_64, // Low 32 bits or r13
+ lldb_r14d_x86_64, // Low 32 bits or r14
+ lldb_r15d_x86_64, // Low 32 bits or r15
+ lldb_ax_x86_64, lldb_bx_x86_64, lldb_cx_x86_64, lldb_dx_x86_64,
+ lldb_di_x86_64, lldb_si_x86_64, lldb_bp_x86_64, lldb_sp_x86_64,
+ lldb_r8w_x86_64, // Low 16 bits or r8
+ lldb_r9w_x86_64, // Low 16 bits or r9
+ lldb_r10w_x86_64, // Low 16 bits or r10
+ lldb_r11w_x86_64, // Low 16 bits or r11
+ lldb_r12w_x86_64, // Low 16 bits or r12
+ lldb_r13w_x86_64, // Low 16 bits or r13
+ lldb_r14w_x86_64, // Low 16 bits or r14
+ lldb_r15w_x86_64, // Low 16 bits or r15
+ lldb_ah_x86_64, lldb_bh_x86_64, lldb_ch_x86_64, lldb_dh_x86_64,
+ lldb_al_x86_64, lldb_bl_x86_64, lldb_cl_x86_64, lldb_dl_x86_64,
+ lldb_dil_x86_64, lldb_sil_x86_64, lldb_bpl_x86_64, lldb_spl_x86_64,
+ lldb_r8l_x86_64, // Low 8 bits or r8
+ lldb_r9l_x86_64, // Low 8 bits or r9
+ lldb_r10l_x86_64, // Low 8 bits or r10
+ lldb_r11l_x86_64, // Low 8 bits or r11
+ lldb_r12l_x86_64, // Low 8 bits or r12
+ lldb_r13l_x86_64, // Low 8 bits or r13
+ lldb_r14l_x86_64, // Low 8 bits or r14
+ lldb_r15l_x86_64, // Low 8 bits or r15
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+};
+static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) -
+ 1 ==
+ k_num_gpr_registers_x86_64,
+ "g_gpr_regnums_x86_64 has wrong number of register infos");
+
+// x86 64-bit floating point registers.
+static const uint32_t g_fpu_regnums_x86_64[] = {
+ lldb_fctrl_x86_64, lldb_fstat_x86_64, lldb_ftag_x86_64,
+ lldb_fop_x86_64, lldb_fiseg_x86_64, lldb_fioff_x86_64,
+ lldb_foseg_x86_64, lldb_fooff_x86_64, lldb_mxcsr_x86_64,
+ lldb_mxcsrmask_x86_64, lldb_st0_x86_64, lldb_st1_x86_64,
+ lldb_st2_x86_64, lldb_st3_x86_64, lldb_st4_x86_64,
+ lldb_st5_x86_64, lldb_st6_x86_64, lldb_st7_x86_64,
+ lldb_mm0_x86_64, lldb_mm1_x86_64, lldb_mm2_x86_64,
+ lldb_mm3_x86_64, lldb_mm4_x86_64, lldb_mm5_x86_64,
+ lldb_mm6_x86_64, lldb_mm7_x86_64, lldb_xmm0_x86_64,
+ lldb_xmm1_x86_64, lldb_xmm2_x86_64, lldb_xmm3_x86_64,
+ lldb_xmm4_x86_64, lldb_xmm5_x86_64, lldb_xmm6_x86_64,
+ lldb_xmm7_x86_64, lldb_xmm8_x86_64, lldb_xmm9_x86_64,
+ lldb_xmm10_x86_64, lldb_xmm11_x86_64, lldb_xmm12_x86_64,
+ lldb_xmm13_x86_64, lldb_xmm14_x86_64, lldb_xmm15_x86_64,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+};
+static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) -
+ 1 ==
+ k_num_fpr_registers_x86_64,
+ "g_fpu_regnums_x86_64 has wrong number of register infos");
+
+// x86 64-bit AVX registers.
+static const uint32_t g_avx_regnums_x86_64[] = {
+ lldb_ymm0_x86_64, lldb_ymm1_x86_64, lldb_ymm2_x86_64, lldb_ymm3_x86_64,
+ lldb_ymm4_x86_64, lldb_ymm5_x86_64, lldb_ymm6_x86_64, lldb_ymm7_x86_64,
+ lldb_ymm8_x86_64, lldb_ymm9_x86_64, lldb_ymm10_x86_64, lldb_ymm11_x86_64,
+ lldb_ymm12_x86_64, lldb_ymm13_x86_64, lldb_ymm14_x86_64, lldb_ymm15_x86_64,
+ LLDB_INVALID_REGNUM // register sets need to end with this flag
+};
+static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) -
+ 1 ==
+ k_num_avx_registers_x86_64,
+ "g_avx_regnums_x86_64 has wrong number of register infos");
+
+// Number of register sets provided by this context.
+enum { k_num_extended_register_sets = 1, k_num_register_sets = 3 };
+
+// Register sets for x86 32-bit.
+static const RegisterSet g_reg_sets_i386[k_num_register_sets] = {
+ {"General Purpose Registers", "gpr", k_num_gpr_registers_i386,
+ g_gpr_regnums_i386},
+ {"Floating Point Registers", "fpu", k_num_fpr_registers_i386,
+ g_fpu_regnums_i386},
+ {"Advanced Vector Extensions", "avx", k_num_avx_registers_i386,
+ g_avx_regnums_i386}};
+
+// Register sets for x86 64-bit.
+static const RegisterSet g_reg_sets_x86_64[k_num_register_sets] = {
+ {"General Purpose Registers", "gpr", k_num_gpr_registers_x86_64,
+ g_gpr_regnums_x86_64},
+ {"Floating Point Registers", "fpu", k_num_fpr_registers_x86_64,
+ g_fpu_regnums_x86_64},
+ {"Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64,
+ g_avx_regnums_x86_64}};
}
-#define REG_CONTEXT_SIZE (GetRegisterInfoInterface ().GetGPRSize () + sizeof(FPR))
+#define REG_CONTEXT_SIZE (GetRegisterInfoInterface().GetGPRSize() + sizeof(FPR))
// ----------------------------------------------------------------------------
// Required ptrace defines.
@@ -331,909 +192,890 @@ namespace
#define NT_PRXFPREG 0x46e62b7f
#endif
-NativeRegisterContextLinux*
-NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(const ArchSpec& target_arch,
- NativeThreadProtocol &native_thread,
- uint32_t concrete_frame_idx)
-{
- return new NativeRegisterContextLinux_x86_64(target_arch, native_thread, concrete_frame_idx);
+NativeRegisterContextLinux *
+NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
+ const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
+ uint32_t concrete_frame_idx) {
+ return new NativeRegisterContextLinux_x86_64(target_arch, native_thread,
+ concrete_frame_idx);
}
// ----------------------------------------------------------------------------
// NativeRegisterContextLinux_x86_64 members.
// ----------------------------------------------------------------------------
-static RegisterInfoInterface*
-CreateRegisterInfoInterface(const ArchSpec& target_arch)
-{
- if (HostInfo::GetArchitecture().GetAddressByteSize() == 4)
- {
- // 32-bit hosts run with a RegisterContextLinux_i386 context.
- return new RegisterContextLinux_i386(target_arch);
- }
- else
- {
- assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) &&
- "Register setting path assumes this is a 64-bit host");
- // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the x86_64 register context.
- return new RegisterContextLinux_x86_64 (target_arch);
- }
+static RegisterInfoInterface *
+CreateRegisterInfoInterface(const ArchSpec &target_arch) {
+ if (HostInfo::GetArchitecture().GetAddressByteSize() == 4) {
+ // 32-bit hosts run with a RegisterContextLinux_i386 context.
+ return new RegisterContextLinux_i386(target_arch);
+ } else {
+ assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) &&
+ "Register setting path assumes this is a 64-bit host");
+ // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the
+ // x86_64 register context.
+ return new RegisterContextLinux_x86_64(target_arch);
+ }
}
-NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64 (const ArchSpec& target_arch,
- NativeThreadProtocol &native_thread,
- uint32_t concrete_frame_idx) :
- NativeRegisterContextLinux (native_thread, concrete_frame_idx, CreateRegisterInfoInterface(target_arch)),
- m_fpr_type (eFPRTypeNotValid),
- m_fpr (),
- m_iovec (),
- m_ymm_set (),
- m_reg_info (),
- m_gpr_x86_64 ()
-{
- // Set up data about ranges of valid registers.
- switch (target_arch.GetMachine ())
- {
- case llvm::Triple::x86:
- m_reg_info.num_registers = k_num_registers_i386;
- m_reg_info.num_gpr_registers = k_num_gpr_registers_i386;
- m_reg_info.num_fpr_registers = k_num_fpr_registers_i386;
- m_reg_info.num_avx_registers = k_num_avx_registers_i386;
- m_reg_info.last_gpr = k_last_gpr_i386;
- m_reg_info.first_fpr = k_first_fpr_i386;
- m_reg_info.last_fpr = k_last_fpr_i386;
- m_reg_info.first_st = lldb_st0_i386;
- m_reg_info.last_st = lldb_st7_i386;
- m_reg_info.first_mm = lldb_mm0_i386;
- m_reg_info.last_mm = lldb_mm7_i386;
- m_reg_info.first_xmm = lldb_xmm0_i386;
- m_reg_info.last_xmm = lldb_xmm7_i386;
- m_reg_info.first_ymm = lldb_ymm0_i386;
- m_reg_info.last_ymm = lldb_ymm7_i386;
- m_reg_info.first_dr = lldb_dr0_i386;
- m_reg_info.gpr_flags = lldb_eflags_i386;
- break;
- case llvm::Triple::x86_64:
- m_reg_info.num_registers = k_num_registers_x86_64;
- m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64;
- m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64;
- m_reg_info.num_avx_registers = k_num_avx_registers_x86_64;
- m_reg_info.last_gpr = k_last_gpr_x86_64;
- m_reg_info.first_fpr = k_first_fpr_x86_64;
- m_reg_info.last_fpr = k_last_fpr_x86_64;
- m_reg_info.first_st = lldb_st0_x86_64;
- m_reg_info.last_st = lldb_st7_x86_64;
- m_reg_info.first_mm = lldb_mm0_x86_64;
- m_reg_info.last_mm = lldb_mm7_x86_64;
- m_reg_info.first_xmm = lldb_xmm0_x86_64;
- m_reg_info.last_xmm = lldb_xmm15_x86_64;
- m_reg_info.first_ymm = lldb_ymm0_x86_64;
- m_reg_info.last_ymm = lldb_ymm15_x86_64;
- m_reg_info.first_dr = lldb_dr0_x86_64;
- m_reg_info.gpr_flags = lldb_rflags_x86_64;
- break;
- default:
- assert(false && "Unhandled target architecture.");
- break;
- }
-
- // Initialize m_iovec to point to the buffer and buffer size
- // using the conventions of Berkeley style UIO structures, as required
- // by PTRACE extensions.
- m_iovec.iov_base = &m_fpr.xstate.xsave;
- m_iovec.iov_len = sizeof(m_fpr.xstate.xsave);
-
- // Clear out the FPR state.
- ::memset(&m_fpr, 0, sizeof(FPR));
-
- // Store byte offset of fctrl (i.e. first register of FPR)
- const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
- m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;
+NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64(
+ const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
+ uint32_t concrete_frame_idx)
+ : NativeRegisterContextLinux(native_thread, concrete_frame_idx,
+ CreateRegisterInfoInterface(target_arch)),
+ m_fpr_type(eFPRTypeNotValid), m_fpr(), m_iovec(), m_ymm_set(),
+ m_reg_info(), m_gpr_x86_64() {
+ // Set up data about ranges of valid registers.
+ switch (target_arch.GetMachine()) {
+ case llvm::Triple::x86:
+ m_reg_info.num_registers = k_num_registers_i386;
+ m_reg_info.num_gpr_registers = k_num_gpr_registers_i386;
+ m_reg_info.num_fpr_registers = k_num_fpr_registers_i386;
+ m_reg_info.num_avx_registers = k_num_avx_registers_i386;
+ m_reg_info.last_gpr = k_last_gpr_i386;
+ m_reg_info.first_fpr = k_first_fpr_i386;
+ m_reg_info.last_fpr = k_last_fpr_i386;
+ m_reg_info.first_st = lldb_st0_i386;
+ m_reg_info.last_st = lldb_st7_i386;
+ m_reg_info.first_mm = lldb_mm0_i386;
+ m_reg_info.last_mm = lldb_mm7_i386;
+ m_reg_info.first_xmm = lldb_xmm0_i386;
+ m_reg_info.last_xmm = lldb_xmm7_i386;
+ m_reg_info.first_ymm = lldb_ymm0_i386;
+ m_reg_info.last_ymm = lldb_ymm7_i386;
+ m_reg_info.first_dr = lldb_dr0_i386;
+ m_reg_info.gpr_flags = lldb_eflags_i386;
+ break;
+ case llvm::Triple::x86_64:
+ m_reg_info.num_registers = k_num_registers_x86_64;
+ m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64;
+ m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64;
+ m_reg_info.num_avx_registers = k_num_avx_registers_x86_64;
+ m_reg_info.last_gpr = k_last_gpr_x86_64;
+ m_reg_info.first_fpr = k_first_fpr_x86_64;
+ m_reg_info.last_fpr = k_last_fpr_x86_64;
+ m_reg_info.first_st = lldb_st0_x86_64;
+ m_reg_info.last_st = lldb_st7_x86_64;
+ m_reg_info.first_mm = lldb_mm0_x86_64;
+ m_reg_info.last_mm = lldb_mm7_x86_64;
+ m_reg_info.first_xmm = lldb_xmm0_x86_64;
+ m_reg_info.last_xmm = lldb_xmm15_x86_64;
+ m_reg_info.first_ymm = lldb_ymm0_x86_64;
+ m_reg_info.last_ymm = lldb_ymm15_x86_64;
+ m_reg_info.first_dr = lldb_dr0_x86_64;
+ m_reg_info.gpr_flags = lldb_rflags_x86_64;
+ break;
+ default:
+ assert(false && "Unhandled target architecture.");
+ break;
+ }
+
+ // Initialize m_iovec to point to the buffer and buffer size
+ // using the conventions of Berkeley style UIO structures, as required
+ // by PTRACE extensions.
+ m_iovec.iov_base = &m_fpr.xstate.xsave;
+ m_iovec.iov_len = sizeof(m_fpr.xstate.xsave);
+
+ // Clear out the FPR state.
+ ::memset(&m_fpr, 0, sizeof(FPR));
+
+ // Store byte offset of fctrl (i.e. first register of FPR)
+ const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
+ m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;
}
// CONSIDER after local and llgs debugging are merged, register set support can
// be moved into a base x86-64 class with IsRegisterSetAvailable made virtual.
-uint32_t
-NativeRegisterContextLinux_x86_64::GetRegisterSetCount () const
-{
- uint32_t sets = 0;
- for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
- {
- if (IsRegisterSetAvailable (set_index))
- ++sets;
- }
-
- return sets;
+uint32_t NativeRegisterContextLinux_x86_64::GetRegisterSetCount() const {
+ uint32_t sets = 0;
+ for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) {
+ if (IsRegisterSetAvailable(set_index))
+ ++sets;
+ }
+
+ return sets;
}
-uint32_t
-NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const
-{
- uint32_t count = 0;
- for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
- {
- const RegisterSet* set = GetRegisterSet(set_index);
- if (set)
- count += set->num_registers;
- }
- return count;
+uint32_t NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const {
+ uint32_t count = 0;
+ for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) {
+ const RegisterSet *set = GetRegisterSet(set_index);
+ if (set)
+ count += set->num_registers;
+ }
+ return count;
}
const RegisterSet *
-NativeRegisterContextLinux_x86_64::GetRegisterSet (uint32_t set_index) const
-{
- if (!IsRegisterSetAvailable (set_index))
- return nullptr;
-
- switch (GetRegisterInfoInterface ().GetTargetArchitecture ().GetMachine ())
- {
- case llvm::Triple::x86:
- return &g_reg_sets_i386[set_index];
- case llvm::Triple::x86_64:
- return &g_reg_sets_x86_64[set_index];
- default:
- assert (false && "Unhandled target architecture.");
- return nullptr;
- }
+NativeRegisterContextLinux_x86_64::GetRegisterSet(uint32_t set_index) const {
+ if (!IsRegisterSetAvailable(set_index))
+ return nullptr;
+ switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) {
+ case llvm::Triple::x86:
+ return &g_reg_sets_i386[set_index];
+ case llvm::Triple::x86_64:
+ return &g_reg_sets_x86_64[set_index];
+ default:
+ assert(false && "Unhandled target architecture.");
return nullptr;
-}
+ }
-Error
-NativeRegisterContextLinux_x86_64::ReadRegister (const RegisterInfo *reg_info, RegisterValue &reg_value)
-{
- Error error;
+ return nullptr;
+}
- if (!reg_info)
- {
- error.SetErrorString ("reg_info NULL");
- return error;
- }
+Error NativeRegisterContextLinux_x86_64::ReadRegister(
+ const RegisterInfo *reg_info, RegisterValue &reg_value) {
+ Error error;
- const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
- if (reg == LLDB_INVALID_REGNUM)
- {
- // This is likely an internal register for lldb use only and should not be directly queried.
- error.SetErrorStringWithFormat ("register \"%s\" is an internal-only lldb register, cannot read directly", reg_info->name);
- return error;
- }
+ if (!reg_info) {
+ error.SetErrorString("reg_info NULL");
+ return error;
+ }
+
+ const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
+ if (reg == LLDB_INVALID_REGNUM) {
+ // This is likely an internal register for lldb use only and should not be
+ // directly queried.
+ error.SetErrorStringWithFormat("register \"%s\" is an internal-only lldb "
+ "register, cannot read directly",
+ reg_info->name);
+ return error;
+ }
- if (IsFPR(reg, GetFPRType()))
- {
- error = ReadFPR();
- if (error.Fail())
- return error;
+ if (IsFPR(reg, GetFPRType())) {
+ error = ReadFPR();
+ if (error.Fail())
+ return error;
+ } else {
+ uint32_t full_reg = reg;
+ bool is_subreg = reg_info->invalidate_regs &&
+ (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
+
+ if (is_subreg) {
+ // Read the full aligned 64-bit register.
+ full_reg = reg_info->invalidate_regs[0];
}
- else
- {
- uint32_t full_reg = reg;
- bool is_subreg = reg_info->invalidate_regs && (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
-
- if (is_subreg)
- {
- // Read the full aligned 64-bit register.
- full_reg = reg_info->invalidate_regs[0];
- }
- error = ReadRegisterRaw(full_reg, reg_value);
+ error = ReadRegisterRaw(full_reg, reg_value);
- if (error.Success ())
- {
- // If our read was not aligned (for ah,bh,ch,dh), shift our returned value one byte to the right.
- if (is_subreg && (reg_info->byte_offset & 0x1))
- reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
+ if (error.Success()) {
+ // If our read was not aligned (for ah,bh,ch,dh), shift our returned value
+ // one byte to the right.
+ if (is_subreg && (reg_info->byte_offset & 0x1))
+ reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
- // If our return byte size was greater than the return value reg size, then
- // use the type specified by reg_info rather than the uint64_t default
- if (reg_value.GetByteSize() > reg_info->byte_size)
- reg_value.SetType(reg_info);
- }
- return error;
+ // If our return byte size was greater than the return value reg size,
+ // then
+ // use the type specified by reg_info rather than the uint64_t default
+ if (reg_value.GetByteSize() > reg_info->byte_size)
+ reg_value.SetType(reg_info);
}
-
- if (reg_info->encoding == lldb::eEncodingVector)
- {
- lldb::ByteOrder byte_order = GetByteOrder();
-
- if (byte_order != lldb::eByteOrderInvalid)
- {
- if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
- reg_value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_st].bytes, reg_info->byte_size, byte_order);
- if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
- reg_value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_mm].bytes, reg_info->byte_size, byte_order);
- if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
- reg_value.SetBytes(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_xmm].bytes, reg_info->byte_size, byte_order);
- if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm)
- {
- // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes
- if (GetFPRType() == eFPRTypeXSAVE && CopyXSTATEtoYMM(reg, byte_order))
- reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, reg_info->byte_size, byte_order);
- else
- {
- error.SetErrorString ("failed to copy ymm register value");
- return error;
- }
- }
-
- if (reg_value.GetType() != RegisterValue::eTypeBytes)
- error.SetErrorString ("write failed - type was expected to be RegisterValue::eTypeBytes");
-
- return error;
+ return error;
+ }
+
+ if (reg_info->encoding == lldb::eEncodingVector) {
+ lldb::ByteOrder byte_order = GetByteOrder();
+
+ if (byte_order != lldb::eByteOrderInvalid) {
+ if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
+ reg_value.SetBytes(
+ m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_st].bytes,
+ reg_info->byte_size, byte_order);
+ if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
+ reg_value.SetBytes(
+ m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_mm].bytes,
+ reg_info->byte_size, byte_order);
+ if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
+ reg_value.SetBytes(
+ m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
+ reg_info->byte_size, byte_order);
+ if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
+ // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes
+ if (GetFPRType() == eFPRTypeXSAVE && CopyXSTATEtoYMM(reg, byte_order))
+ reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
+ reg_info->byte_size, byte_order);
+ else {
+ error.SetErrorString("failed to copy ymm register value");
+ return error;
}
+ }
- error.SetErrorString ("byte order is invalid");
- return error;
- }
+ if (reg_value.GetType() != RegisterValue::eTypeBytes)
+ error.SetErrorString(
+ "write failed - type was expected to be RegisterValue::eTypeBytes");
- // Get pointer to m_fpr.xstate.fxsave variable and set the data from it.
-
- // Byte offsets of all registers are calculated wrt 'UserArea' structure.
- // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)}
- // and stores them in 'm_fpr' (of type FPR structure). To extract values of fpu
- // registers, m_fpr should be read at byte offsets calculated wrt to FPR structure.
-
- // Since, FPR structure is also one of the member of UserArea structure.
- // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - byte_offset(fctrl wrt UserArea)
- assert ( (reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
- uint8_t *src = (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
- switch (reg_info->byte_size)
- {
- case 1:
- reg_value.SetUInt8(*(uint8_t *)src);
- break;
- case 2:
- reg_value.SetUInt16(*(uint16_t *)src);
- break;
- case 4:
- reg_value.SetUInt32(*(uint32_t *)src);
- break;
- case 8:
- reg_value.SetUInt64(*(uint64_t *)src);
- break;
- default:
- assert(false && "Unhandled data size.");
- error.SetErrorStringWithFormat ("unhandled byte size: %" PRIu32, reg_info->byte_size);
- break;
+ return error;
}
+ error.SetErrorString("byte order is invalid");
return error;
+ }
+
+ // Get pointer to m_fpr.xstate.fxsave variable and set the data from it.
+
+ // Byte offsets of all registers are calculated wrt 'UserArea' structure.
+ // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)}
+ // and stores them in 'm_fpr' (of type FPR structure). To extract values of
+ // fpu
+ // registers, m_fpr should be read at byte offsets calculated wrt to FPR
+ // structure.
+
+ // Since, FPR structure is also one of the member of UserArea structure.
+ // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
+ // byte_offset(fctrl wrt UserArea)
+ assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
+ uint8_t *src =
+ (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
+ switch (reg_info->byte_size) {
+ case 1:
+ reg_value.SetUInt8(*(uint8_t *)src);
+ break;
+ case 2:
+ reg_value.SetUInt16(*(uint16_t *)src);
+ break;
+ case 4:
+ reg_value.SetUInt32(*(uint32_t *)src);
+ break;
+ case 8:
+ reg_value.SetUInt64(*(uint64_t *)src);
+ break;
+ default:
+ assert(false && "Unhandled data size.");
+ error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
+ reg_info->byte_size);
+ break;
+ }
+
+ return error;
}
-Error
-NativeRegisterContextLinux_x86_64::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &reg_value)
-{
- assert (reg_info && "reg_info is null");
-
- const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
- if (reg_index == LLDB_INVALID_REGNUM)
- return Error ("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : "<unknown register>");
-
- if (IsGPR(reg_index))
- return WriteRegisterRaw(reg_index, reg_value);
-
- if (IsFPR(reg_index, GetFPRType()))
- {
- if (reg_info->encoding == lldb::eEncodingVector)
- {
- if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st)
- ::memcpy (m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_st].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
-
- if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm)
- ::memcpy (m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
-
- if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm)
- ::memcpy (m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
-
- if (reg_index >= m_reg_info.first_ymm && reg_index <= m_reg_info.last_ymm)
- {
- if (GetFPRType() != eFPRTypeXSAVE)
- return Error ("target processor does not support AVX");
-
- // Store ymm register content, and split into the register halves in xmm.bytes and ymmh.bytes
- ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, reg_value.GetBytes(), reg_value.GetByteSize());
- if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
- return Error ("CopyYMMtoXSTATE() failed");
- }
- }
- else
- {
- // Get pointer to m_fpr.xstate.fxsave variable and set the data to it.
-
- // Byte offsets of all registers are calculated wrt 'UserArea' structure.
- // However, WriteFPR() takes m_fpr (of type FPR structure) and writes only fpu
- // registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu registers should
- // be written in m_fpr at byte offsets calculated wrt FPR structure.
-
- // Since, FPR structure is also one of the member of UserArea structure.
- // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - byte_offset(fctrl wrt UserArea)
- assert ( (reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
- uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
- switch (reg_info->byte_size)
- {
- case 1:
- *(uint8_t *)dst = reg_value.GetAsUInt8();
- break;
- case 2:
- *(uint16_t *)dst = reg_value.GetAsUInt16();
- break;
- case 4:
- *(uint32_t *)dst = reg_value.GetAsUInt32();
- break;
- case 8:
- *(uint64_t *)dst = reg_value.GetAsUInt64();
- break;
- default:
- assert(false && "Unhandled data size.");
- return Error ("unhandled register data size %" PRIu32, reg_info->byte_size);
- }
- }
+Error NativeRegisterContextLinux_x86_64::WriteRegister(
+ const RegisterInfo *reg_info, const RegisterValue &reg_value) {
+ assert(reg_info && "reg_info is null");
+
+ const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
+ if (reg_index == LLDB_INVALID_REGNUM)
+ return Error("no lldb regnum for %s", reg_info && reg_info->name
+ ? reg_info->name
+ : "<unknown register>");
+
+ if (IsGPR(reg_index))
+ return WriteRegisterRaw(reg_index, reg_value);
+
+ if (IsFPR(reg_index, GetFPRType())) {
+ if (reg_info->encoding == lldb::eEncodingVector) {
+ if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st)
+ ::memcpy(
+ m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_st].bytes,
+ reg_value.GetBytes(), reg_value.GetByteSize());
+
+ if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm)
+ ::memcpy(
+ m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes,
+ reg_value.GetBytes(), reg_value.GetByteSize());
+
+ if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm)
+ ::memcpy(
+ m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes,
+ reg_value.GetBytes(), reg_value.GetByteSize());
+
+ if (reg_index >= m_reg_info.first_ymm &&
+ reg_index <= m_reg_info.last_ymm) {
+ if (GetFPRType() != eFPRTypeXSAVE)
+ return Error("target processor does not support AVX");
+
+ // Store ymm register content, and split into the register halves in
+ // xmm.bytes and ymmh.bytes
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
+ reg_value.GetBytes(), reg_value.GetByteSize());
+ if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
+ return Error("CopyYMMtoXSTATE() failed");
+ }
+ } else {
+ // Get pointer to m_fpr.xstate.fxsave variable and set the data to it.
+
+ // Byte offsets of all registers are calculated wrt 'UserArea' structure.
+ // However, WriteFPR() takes m_fpr (of type FPR structure) and writes only
+ // fpu
+ // registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu registers
+ // should
+ // be written in m_fpr at byte offsets calculated wrt FPR structure.
+
+ // Since, FPR structure is also one of the member of UserArea structure.
+ // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
+ // byte_offset(fctrl wrt UserArea)
+ assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) <
+ sizeof(m_fpr));
+ uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset -
+ m_fctrl_offset_in_userarea;
+ switch (reg_info->byte_size) {
+ case 1:
+ *(uint8_t *)dst = reg_value.GetAsUInt8();
+ break;
+ case 2:
+ *(uint16_t *)dst = reg_value.GetAsUInt16();
+ break;
+ case 4:
+ *(uint32_t *)dst = reg_value.GetAsUInt32();
+ break;
+ case 8:
+ *(uint64_t *)dst = reg_value.GetAsUInt64();
+ break;
+ default:
+ assert(false && "Unhandled data size.");
+ return Error("unhandled register data size %" PRIu32,
+ reg_info->byte_size);
+ }
+ }
- Error error = WriteFPR();
- if (error.Fail())
- return error;
+ Error error = WriteFPR();
+ if (error.Fail())
+ return error;
- if (IsAVX(reg_index))
- {
- if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
- return Error ("CopyYMMtoXSTATE() failed");
- }
- return Error ();
+ if (IsAVX(reg_index)) {
+ if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
+ return Error("CopyYMMtoXSTATE() failed");
}
- return Error ("failed - register wasn't recognized to be a GPR or an FPR, write strategy unknown");
+ return Error();
+ }
+ return Error("failed - register wasn't recognized to be a GPR or an FPR, "
+ "write strategy unknown");
}
-Error
-NativeRegisterContextLinux_x86_64::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
-{
- Error error;
+Error NativeRegisterContextLinux_x86_64::ReadAllRegisterValues(
+ lldb::DataBufferSP &data_sp) {
+ Error error;
- data_sp.reset (new DataBufferHeap (REG_CONTEXT_SIZE, 0));
- if (!data_sp)
- {
- error.SetErrorStringWithFormat ("failed to allocate DataBufferHeap instance of size %" PRIu64, REG_CONTEXT_SIZE);
- return error;
- }
+ data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
+ if (!data_sp) {
+ error.SetErrorStringWithFormat(
+ "failed to allocate DataBufferHeap instance of size %" PRIu64,
+ REG_CONTEXT_SIZE);
+ return error;
+ }
- error = ReadGPR();
- if (error.Fail())
- return error;
+ error = ReadGPR();
+ if (error.Fail())
+ return error;
- error = ReadFPR();
- if (error.Fail())
- return error;
+ error = ReadFPR();
+ if (error.Fail())
+ return error;
- uint8_t *dst = data_sp->GetBytes ();
- if (dst == nullptr)
- {
- error.SetErrorStringWithFormat ("DataBufferHeap instance of size %" PRIu64 " returned a null pointer", REG_CONTEXT_SIZE);
+ uint8_t *dst = data_sp->GetBytes();
+ if (dst == nullptr) {
+ error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
+ " returned a null pointer",
+ REG_CONTEXT_SIZE);
+ return error;
+ }
+
+ ::memcpy(dst, &m_gpr_x86_64, GetRegisterInfoInterface().GetGPRSize());
+ dst += GetRegisterInfoInterface().GetGPRSize();
+ if (GetFPRType() == eFPRTypeFXSAVE)
+ ::memcpy(dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave));
+ else if (GetFPRType() == eFPRTypeXSAVE) {
+ lldb::ByteOrder byte_order = GetByteOrder();
+
+ // Assemble the YMM register content from the register halves.
+ for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm;
+ ++reg) {
+ if (!CopyXSTATEtoYMM(reg, byte_order)) {
+ error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
+ "CopyXSTATEtoYMM() failed for reg num "
+ "%" PRIu32,
+ __FUNCTION__, reg);
return error;
+ }
}
- ::memcpy (dst, &m_gpr_x86_64, GetRegisterInfoInterface ().GetGPRSize ());
- dst += GetRegisterInfoInterface ().GetGPRSize ();
- if (GetFPRType () == eFPRTypeFXSAVE)
- ::memcpy (dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave));
- else if (GetFPRType () == eFPRTypeXSAVE)
- {
- lldb::ByteOrder byte_order = GetByteOrder ();
-
- // Assemble the YMM register content from the register halves.
- for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; ++reg)
- {
- if (!CopyXSTATEtoYMM (reg, byte_order))
- {
- error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s CopyXSTATEtoYMM() failed for reg num %" PRIu32, __FUNCTION__, reg);
- return error;
- }
- }
-
- // Copy the extended register state including the assembled ymm registers.
- ::memcpy (dst, &m_fpr, sizeof (m_fpr));
- }
- else
- {
- assert (false && "how do we save the floating point registers?");
- error.SetErrorString ("unsure how to save the floating point registers");
- }
- /** The following code is specific to Linux x86 based architectures,
- * where the register orig_eax (32 bit)/orig_rax (64 bit) is set to
- * -1 to solve the bug 23659, such a setting prevents the automatic
- * decrement of the instruction pointer which was causing the SIGILL
- * exception.
- * **/
-
- RegisterValue value((uint64_t) -1);
- const RegisterInfo *reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax");
- if (reg_info == nullptr)
- reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax");
-
- if (reg_info != nullptr)
- return DoWriteRegisterValue(reg_info->byte_offset,reg_info->name,value);
-
- return error;
+ // Copy the extended register state including the assembled ymm registers.
+ ::memcpy(dst, &m_fpr, sizeof(m_fpr));
+ } else {
+ assert(false && "how do we save the floating point registers?");
+ error.SetErrorString("unsure how to save the floating point registers");
+ }
+ /** The following code is specific to Linux x86 based architectures,
+ * where the register orig_eax (32 bit)/orig_rax (64 bit) is set to
+ * -1 to solve the bug 23659, such a setting prevents the automatic
+ * decrement of the instruction pointer which was causing the SIGILL
+ * exception.
+ * **/
+
+ RegisterValue value((uint64_t)-1);
+ const RegisterInfo *reg_info =
+ GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax");
+ if (reg_info == nullptr)
+ reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax");
+
+ if (reg_info != nullptr)
+ return DoWriteRegisterValue(reg_info->byte_offset, reg_info->name, value);
+
+ return error;
}
-Error
-NativeRegisterContextLinux_x86_64::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
-{
- Error error;
-
- if (!data_sp)
- {
- error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", __FUNCTION__);
- return error;
- }
+Error NativeRegisterContextLinux_x86_64::WriteAllRegisterValues(
+ const lldb::DataBufferSP &data_sp) {
+ Error error;
- if (data_sp->GetByteSize () != REG_CONTEXT_SIZE)
- {
- error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched data size, expected %" PRIu64 ", actual %" PRIu64, __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize ());
- return error;
- }
+ if (!data_sp) {
+ error.SetErrorStringWithFormat(
+ "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
+ __FUNCTION__);
+ return error;
+ }
+ if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
+ error.SetErrorStringWithFormat(
+ "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
+ "data size, expected %" PRIu64 ", actual %" PRIu64,
+ __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
+ return error;
+ }
+
+ uint8_t *src = data_sp->GetBytes();
+ if (src == nullptr) {
+ error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
+ "DataBuffer::GetBytes() returned a null "
+ "pointer",
+ __FUNCTION__);
+ return error;
+ }
+ ::memcpy(&m_gpr_x86_64, src, GetRegisterInfoInterface().GetGPRSize());
- uint8_t *src = data_sp->GetBytes ();
- if (src == nullptr)
- {
- error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s DataBuffer::GetBytes() returned a null pointer", __FUNCTION__);
- return error;
- }
- ::memcpy (&m_gpr_x86_64, src, GetRegisterInfoInterface ().GetGPRSize ());
+ error = WriteGPR();
+ if (error.Fail())
+ return error;
- error = WriteGPR();
- if (error.Fail())
- return error;
+ src += GetRegisterInfoInterface().GetGPRSize();
+ if (GetFPRType() == eFPRTypeFXSAVE)
+ ::memcpy(&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave));
+ else if (GetFPRType() == eFPRTypeXSAVE)
+ ::memcpy(&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave));
- src += GetRegisterInfoInterface ().GetGPRSize ();
- if (GetFPRType () == eFPRTypeFXSAVE)
- ::memcpy (&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave));
- else if (GetFPRType () == eFPRTypeXSAVE)
- ::memcpy (&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave));
+ error = WriteFPR();
+ if (error.Fail())
+ return error;
- error = WriteFPR();
- if (error.Fail())
+ if (GetFPRType() == eFPRTypeXSAVE) {
+ lldb::ByteOrder byte_order = GetByteOrder();
+
+ // Parse the YMM register content from the register halves.
+ for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm;
+ ++reg) {
+ if (!CopyYMMtoXSTATE(reg, byte_order)) {
+ error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
+ "CopyYMMtoXSTATE() failed for reg num "
+ "%" PRIu32,
+ __FUNCTION__, reg);
return error;
-
- if (GetFPRType() == eFPRTypeXSAVE)
- {
- lldb::ByteOrder byte_order = GetByteOrder();
-
- // Parse the YMM register content from the register halves.
- for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; ++reg)
- {
- if (!CopyYMMtoXSTATE (reg, byte_order))
- {
- error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s CopyYMMtoXSTATE() failed for reg num %" PRIu32, __FUNCTION__, reg);
- return error;
- }
- }
+ }
}
+ }
- return error;
+ return error;
}
-bool
-NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable (uint32_t set_index) const
-{
- // Note: Extended register sets are assumed to be at the end of g_reg_sets.
- uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets;
+bool NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable(
+ uint32_t set_index) const {
+ // Note: Extended register sets are assumed to be at the end of g_reg_sets.
+ uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets;
- if (GetFPRType () == eFPRTypeXSAVE)
- {
- // AVX is the first extended register set.
- ++num_sets;
- }
- return (set_index < num_sets);
+ if (GetFPRType() == eFPRTypeXSAVE) {
+ // AVX is the first extended register set.
+ ++num_sets;
+ }
+ return (set_index < num_sets);
}
-bool
-NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const
-{
- // GPRs come first.
- return reg_index <= m_reg_info.last_gpr;
+bool NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const {
+ // GPRs come first.
+ return reg_index <= m_reg_info.last_gpr;
}
NativeRegisterContextLinux_x86_64::FPRType
-NativeRegisterContextLinux_x86_64::GetFPRType () const
-{
- Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
- if (m_fpr_type == eFPRTypeNotValid)
- {
- // TODO: Use assembly to call cpuid on the inferior and query ebx or ecx.
-
- // Try and see if AVX register retrieval works.
- m_fpr_type = eFPRTypeXSAVE;
- if (const_cast<NativeRegisterContextLinux_x86_64*>(this)->ReadFPR().Fail())
- {
- // Fall back to general floating point with no AVX support.
- m_fpr_type = eFPRTypeFXSAVE;
-
- // Check if FXSAVE area can be read.
- if (const_cast<NativeRegisterContextLinux_x86_64*>(this)->ReadFPR().Fail())
- {
- if (log)
- log->Printf("NativeRegisterContextLinux_x86_64::%s ptrace APIs failed to read XSAVE/FXSAVE area", __FUNCTION__);
- }
- }
+NativeRegisterContextLinux_x86_64::GetFPRType() const {
+ Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
+ if (m_fpr_type == eFPRTypeNotValid) {
+ // TODO: Use assembly to call cpuid on the inferior and query ebx or ecx.
+
+ // Try and see if AVX register retrieval works.
+ m_fpr_type = eFPRTypeXSAVE;
+ if (const_cast<NativeRegisterContextLinux_x86_64 *>(this)
+ ->ReadFPR()
+ .Fail()) {
+ // Fall back to general floating point with no AVX support.
+ m_fpr_type = eFPRTypeFXSAVE;
+
+ // Check if FXSAVE area can be read.
+ if (const_cast<NativeRegisterContextLinux_x86_64 *>(this)
+ ->ReadFPR()
+ .Fail()) {
+ if (log)
+ log->Printf("NativeRegisterContextLinux_x86_64::%s ptrace APIs "
+ "failed to read XSAVE/FXSAVE area",
+ __FUNCTION__);
+ }
}
- return m_fpr_type;
+ }
+ return m_fpr_type;
}
-bool
-NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const
-{
- return (m_reg_info.first_fpr <= reg_index && reg_index <= m_reg_info.last_fpr);
+bool NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const {
+ return (m_reg_info.first_fpr <= reg_index &&
+ reg_index <= m_reg_info.last_fpr);
}
-bool
-NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index, FPRType fpr_type) const
-{
- bool generic_fpr = IsFPR(reg_index);
+bool NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index,
+ FPRType fpr_type) const {
+ bool generic_fpr = IsFPR(reg_index);
- if (fpr_type == eFPRTypeXSAVE)
- return generic_fpr || IsAVX(reg_index);
- return generic_fpr;
+ if (fpr_type == eFPRTypeXSAVE)
+ return generic_fpr || IsAVX(reg_index);
+ return generic_fpr;
}
-Error
-NativeRegisterContextLinux_x86_64::WriteFPR()
-{
- const FPRType fpr_type = GetFPRType ();
- const lldb_private::ArchSpec& target_arch = GetRegisterInfoInterface().GetTargetArchitecture();
- switch (fpr_type)
- {
- case FPRType::eFPRTypeFXSAVE:
- // For 32-bit inferiors on x86_32/x86_64 architectures,
- // FXSAVE area can be written using PTRACE_SETREGSET ptrace api
- // For 64-bit inferiors on x86_64 architectures,
- // FXSAVE area can be written using PTRACE_SETFPREGS ptrace api
- switch (target_arch.GetMachine ())
- {
- case llvm::Triple::x86:
- return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_PRXFPREG);
- case llvm::Triple::x86_64:
- return NativeRegisterContextLinux::WriteFPR();
- default:
- assert(false && "Unhandled target architecture.");
- break;
- }
- case FPRType::eFPRTypeXSAVE:
- return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
+Error NativeRegisterContextLinux_x86_64::WriteFPR() {
+ const FPRType fpr_type = GetFPRType();
+ const lldb_private::ArchSpec &target_arch =
+ GetRegisterInfoInterface().GetTargetArchitecture();
+ switch (fpr_type) {
+ case FPRType::eFPRTypeFXSAVE:
+ // For 32-bit inferiors on x86_32/x86_64 architectures,
+ // FXSAVE area can be written using PTRACE_SETREGSET ptrace api
+ // For 64-bit inferiors on x86_64 architectures,
+ // FXSAVE area can be written using PTRACE_SETFPREGS ptrace api
+ switch (target_arch.GetMachine()) {
+ case llvm::Triple::x86:
+ return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave),
+ NT_PRXFPREG);
+ case llvm::Triple::x86_64:
+ return NativeRegisterContextLinux::WriteFPR();
default:
- return Error("Unrecognized FPR type");
+ assert(false && "Unhandled target architecture.");
+ break;
}
+ case FPRType::eFPRTypeXSAVE:
+ return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave),
+ NT_X86_XSTATE);
+ default:
+ return Error("Unrecognized FPR type");
+ }
}
-bool
-NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const
-{
- return (m_reg_info.first_ymm <= reg_index && reg_index <= m_reg_info.last_ymm);
+bool NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const {
+ return (m_reg_info.first_ymm <= reg_index &&
+ reg_index <= m_reg_info.last_ymm);
}
-bool
-NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM (uint32_t reg_index, lldb::ByteOrder byte_order)
-{
- if (!IsAVX (reg_index))
- return false;
-
- if (byte_order == lldb::eByteOrderLittle)
- {
- ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
- m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
- sizeof (XMMReg));
- ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + sizeof (XMMReg),
- m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
- sizeof (YMMHReg));
- return true;
- }
-
- if (byte_order == lldb::eByteOrderBig)
- {
- ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + sizeof (XMMReg),
- m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
- sizeof (XMMReg));
- ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
- m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
- sizeof (YMMHReg));
- return true;
- }
- return false; // unsupported or invalid byte order
-
+bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM(
+ uint32_t reg_index, lldb::ByteOrder byte_order) {
+ if (!IsAVX(reg_index))
+ return false;
+
+ if (byte_order == lldb::eByteOrderLittle) {
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
+ m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof(XMMReg));
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes +
+ sizeof(XMMReg),
+ m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof(YMMHReg));
+ return true;
+ }
+
+ if (byte_order == lldb::eByteOrderBig) {
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes +
+ sizeof(XMMReg),
+ m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof(XMMReg));
+ ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
+ m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
+ sizeof(YMMHReg));
+ return true;
+ }
+ return false; // unsupported or invalid byte order
}
-bool
-NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE(uint32_t reg, lldb::ByteOrder byte_order)
-{
- if (!IsAVX(reg))
- return false;
-
- if (byte_order == lldb::eByteOrderLittle)
- {
- ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
- m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
- sizeof(XMMReg));
- ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
- m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
- sizeof(YMMHReg));
- return true;
- }
-
- if (byte_order == lldb::eByteOrderBig)
- {
- ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
- m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
- sizeof(XMMReg));
- ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
- m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
- sizeof(YMMHReg));
- return true;
- }
- return false; // unsupported or invalid byte order
+bool NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE(
+ uint32_t reg, lldb::ByteOrder byte_order) {
+ if (!IsAVX(reg))
+ return false;
+
+ if (byte_order == lldb::eByteOrderLittle) {
+ ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(XMMReg));
+ ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
+ sizeof(YMMHReg));
+ return true;
+ }
+
+ if (byte_order == lldb::eByteOrderBig) {
+ ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
+ sizeof(XMMReg));
+ ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
+ m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(YMMHReg));
+ return true;
+ }
+ return false; // unsupported or invalid byte order
}
-void*
-NativeRegisterContextLinux_x86_64::GetFPRBuffer()
-{
- const FPRType fpr_type = GetFPRType ();
- switch (fpr_type)
- {
- case FPRType::eFPRTypeFXSAVE:
- return &m_fpr.xstate.fxsave;
- case FPRType::eFPRTypeXSAVE:
- return &m_iovec;
- default:
- return nullptr;
- }
+void *NativeRegisterContextLinux_x86_64::GetFPRBuffer() {
+ const FPRType fpr_type = GetFPRType();
+ switch (fpr_type) {
+ case FPRType::eFPRTypeFXSAVE:
+ return &m_fpr.xstate.fxsave;
+ case FPRType::eFPRTypeXSAVE:
+ return &m_iovec;
+ default:
+ return nullptr;
+ }
}
-size_t
-NativeRegisterContextLinux_x86_64::GetFPRSize()
-{
- const FPRType fpr_type = GetFPRType ();
- switch (fpr_type)
- {
- case FPRType::eFPRTypeFXSAVE:
- return sizeof(m_fpr.xstate.fxsave);
- case FPRType::eFPRTypeXSAVE:
- return sizeof(m_iovec);
- default:
- return 0;
- }
+size_t NativeRegisterContextLinux_x86_64::GetFPRSize() {
+ const FPRType fpr_type = GetFPRType();
+ switch (fpr_type) {
+ case FPRType::eFPRTypeFXSAVE:
+ return sizeof(m_fpr.xstate.fxsave);
+ case FPRType::eFPRTypeXSAVE:
+ return sizeof(m_iovec);
+ default:
+ return 0;
+ }
}
-Error
-NativeRegisterContextLinux_x86_64::ReadFPR ()
-{
- const FPRType fpr_type = GetFPRType ();
- const lldb_private::ArchSpec& target_arch = GetRegisterInfoInterface().GetTargetArchitecture();
- switch (fpr_type)
- {
- case FPRType::eFPRTypeFXSAVE:
- // For 32-bit inferiors on x86_32/x86_64 architectures,
- // FXSAVE area can be read using PTRACE_GETREGSET ptrace api
- // For 64-bit inferiors on x86_64 architectures,
- // FXSAVE area can be read using PTRACE_GETFPREGS ptrace api
- switch (target_arch.GetMachine ())
- {
- case llvm::Triple::x86:
- return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_PRXFPREG);
- case llvm::Triple::x86_64:
- return NativeRegisterContextLinux::ReadFPR();
- default:
- assert(false && "Unhandled target architecture.");
- break;
- }
- case FPRType::eFPRTypeXSAVE:
- return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
+Error NativeRegisterContextLinux_x86_64::ReadFPR() {
+ const FPRType fpr_type = GetFPRType();
+ const lldb_private::ArchSpec &target_arch =
+ GetRegisterInfoInterface().GetTargetArchitecture();
+ switch (fpr_type) {
+ case FPRType::eFPRTypeFXSAVE:
+ // For 32-bit inferiors on x86_32/x86_64 architectures,
+ // FXSAVE area can be read using PTRACE_GETREGSET ptrace api
+ // For 64-bit inferiors on x86_64 architectures,
+ // FXSAVE area can be read using PTRACE_GETFPREGS ptrace api
+ switch (target_arch.GetMachine()) {
+ case llvm::Triple::x86:
+ return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_PRXFPREG);
+ case llvm::Triple::x86_64:
+ return NativeRegisterContextLinux::ReadFPR();
default:
- return Error("Unrecognized FPR type");
+ assert(false && "Unhandled target architecture.");
+ break;
}
+ case FPRType::eFPRTypeXSAVE:
+ return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE);
+ default:
+ return Error("Unrecognized FPR type");
+ }
}
-Error
-NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index, bool &is_hit)
-{
- if (wp_index >= NumSupportedHardwareWatchpoints())
- return Error("Watchpoint index out of range");
+Error NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index,
+ bool &is_hit) {
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return Error("Watchpoint index out of range");
- RegisterValue reg_value;
- Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
- if (error.Fail())
- {
- is_hit = false;
- return error;
- }
+ RegisterValue reg_value;
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
+ if (error.Fail()) {
+ is_hit = false;
+ return error;
+ }
- uint64_t status_bits = reg_value.GetAsUInt64();
+ uint64_t status_bits = reg_value.GetAsUInt64();
- is_hit = status_bits & (1 << wp_index);
+ is_hit = status_bits & (1 << wp_index);
- return error;
+ return error;
}
-Error
-NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex(uint32_t &wp_index, lldb::addr_t trap_addr) {
- uint32_t num_hw_wps = NumSupportedHardwareWatchpoints();
- for (wp_index = 0; wp_index < num_hw_wps; ++wp_index)
- {
- bool is_hit;
- Error error = IsWatchpointHit(wp_index, is_hit);
- if (error.Fail()) {
- wp_index = LLDB_INVALID_INDEX32;
- return error;
- } else if (is_hit) {
- return error;
- }
+Error NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex(
+ uint32_t &wp_index, lldb::addr_t trap_addr) {
+ uint32_t num_hw_wps = NumSupportedHardwareWatchpoints();
+ for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) {
+ bool is_hit;
+ Error error = IsWatchpointHit(wp_index, is_hit);
+ if (error.Fail()) {
+ wp_index = LLDB_INVALID_INDEX32;
+ return error;
+ } else if (is_hit) {
+ return error;
}
- wp_index = LLDB_INVALID_INDEX32;
- return Error();
+ }
+ wp_index = LLDB_INVALID_INDEX32;
+ return Error();
}
-Error
-NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index, bool &is_vacant)
-{
- if (wp_index >= NumSupportedHardwareWatchpoints())
- return Error ("Watchpoint index out of range");
+Error NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index,
+ bool &is_vacant) {
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return Error("Watchpoint index out of range");
- RegisterValue reg_value;
- Error error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
- if (error.Fail())
- {
- is_vacant = false;
- return error;
- }
+ RegisterValue reg_value;
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail()) {
+ is_vacant = false;
+ return error;
+ }
- uint64_t control_bits = reg_value.GetAsUInt64();
+ uint64_t control_bits = reg_value.GetAsUInt64();
- is_vacant = !(control_bits & (1 << (2 * wp_index)));
+ is_vacant = !(control_bits & (1 << (2 * wp_index)));
- return error;
+ return error;
}
-Error
-NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex(
- lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) {
+Error NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex(
+ lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) {
- if (wp_index >= NumSupportedHardwareWatchpoints())
- return Error ("Watchpoint index out of range");
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return Error("Watchpoint index out of range");
- // Read only watchpoints aren't supported on x86_64. Fall back to read/write waitchpoints instead.
- // TODO: Add logic to detect when a write happens and ignore that watchpoint hit.
- if (watch_flags == 0x2)
- watch_flags = 0x3;
+ // Read only watchpoints aren't supported on x86_64. Fall back to read/write
+ // waitchpoints instead.
+ // TODO: Add logic to detect when a write happens and ignore that watchpoint
+ // hit.
+ if (watch_flags == 0x2)
+ watch_flags = 0x3;
- if (watch_flags != 0x1 && watch_flags != 0x3)
- return Error ("Invalid read/write bits for watchpoint");
+ if (watch_flags != 0x1 && watch_flags != 0x3)
+ return Error("Invalid read/write bits for watchpoint");
- if (size != 1 && size != 2 && size != 4 && size != 8)
- return Error ("Invalid size for watchpoint");
+ if (size != 1 && size != 2 && size != 4 && size != 8)
+ return Error("Invalid size for watchpoint");
- bool is_vacant;
- Error error = IsWatchpointVacant (wp_index, is_vacant);
- if (error.Fail()) return error;
- if (!is_vacant) return Error("Watchpoint index not vacant");
-
- RegisterValue reg_value;
- error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
- if (error.Fail()) return error;
+ bool is_vacant;
+ Error error = IsWatchpointVacant(wp_index, is_vacant);
+ if (error.Fail())
+ return error;
+ if (!is_vacant)
+ return Error("Watchpoint index not vacant");
- // for watchpoints 0, 1, 2, or 3, respectively,
- // set bits 1, 3, 5, or 7
- uint64_t enable_bit = 1 << (2 * wp_index);
+ RegisterValue reg_value;
+ error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail())
+ return error;
- // set bits 16-17, 20-21, 24-25, or 28-29
- // with 0b01 for write, and 0b11 for read/write
- uint64_t rw_bits = watch_flags << (16 + 4 * wp_index);
+ // for watchpoints 0, 1, 2, or 3, respectively,
+ // set bits 1, 3, 5, or 7
+ uint64_t enable_bit = 1 << (2 * wp_index);
- // set bits 18-19, 22-23, 26-27, or 30-31
- // with 0b00, 0b01, 0b10, or 0b11
- // for 1, 2, 8 (if supported), or 4 bytes, respectively
- uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index);
+ // set bits 16-17, 20-21, 24-25, or 28-29
+ // with 0b01 for write, and 0b11 for read/write
+ uint64_t rw_bits = watch_flags << (16 + 4 * wp_index);
- uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
+ // set bits 18-19, 22-23, 26-27, or 30-31
+ // with 0b00, 0b01, 0b10, or 0b11
+ // for 1, 2, 8 (if supported), or 4 bytes, respectively
+ uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index);
- uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
- control_bits |= enable_bit | rw_bits | size_bits;
+ uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
- error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr));
- if (error.Fail()) return error;
+ control_bits |= enable_bit | rw_bits | size_bits;
- error = WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
- if (error.Fail()) return error;
+ error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr));
+ if (error.Fail())
+ return error;
- error.Clear();
+ error =
+ WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
+ if (error.Fail())
return error;
+
+ error.Clear();
+ return error;
}
-bool
-NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint(uint32_t wp_index)
-{
- if (wp_index >= NumSupportedHardwareWatchpoints())
- return false;
-
- RegisterValue reg_value;
-
- // for watchpoints 0, 1, 2, or 3, respectively,
- // clear bits 0, 1, 2, or 3 of the debug status register (DR6)
- Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
- if (error.Fail()) return false;
- uint64_t bit_mask = 1 << wp_index;
- uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
- error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
- if (error.Fail()) return false;
-
- // for watchpoints 0, 1, 2, or 3, respectively,
- // clear bits {0-1,16-19}, {2-3,20-23}, {4-5,24-27}, or {6-7,28-31}
- // of the debug control register (DR7)
- error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
- if (error.Fail()) return false;
- bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
- uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
- return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)).Success();
+bool NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint(
+ uint32_t wp_index) {
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return false;
+
+ RegisterValue reg_value;
+
+ // for watchpoints 0, 1, 2, or 3, respectively,
+ // clear bits 0, 1, 2, or 3 of the debug status register (DR6)
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
+ if (error.Fail())
+ return false;
+ uint64_t bit_mask = 1 << wp_index;
+ uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
+ if (error.Fail())
+ return false;
+
+ // for watchpoints 0, 1, 2, or 3, respectively,
+ // clear bits {0-1,16-19}, {2-3,20-23}, {4-5,24-27}, or {6-7,28-31}
+ // of the debug control register (DR7)
+ error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail())
+ return false;
+ bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
+ uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits))
+ .Success();
}
-Error
-NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints()
-{
- RegisterValue reg_value;
-
- // clear bits {0-4} of the debug status register (DR6)
- Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
- if (error.Fail()) return error;
- uint64_t bit_mask = 0xF;
- uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
- error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
- if (error.Fail()) return error;
-
- // clear bits {0-7,16-31} of the debug control register (DR7)
- error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
- if (error.Fail()) return error;
- bit_mask = 0xFF | (0xFFFF << 16);
- uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
- return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
+Error NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints() {
+ RegisterValue reg_value;
+
+ // clear bits {0-4} of the debug status register (DR6)
+ Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
+ if (error.Fail())
+ return error;
+ uint64_t bit_mask = 0xF;
+ uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
+ if (error.Fail())
+ return error;
+
+ // clear bits {0-7,16-31} of the debug control register (DR7)
+ error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
+ if (error.Fail())
+ return error;
+ bit_mask = 0xFF | (0xFFFF << 16);
+ uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
+ return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
}
-uint32_t
-NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint(
- lldb::addr_t addr, size_t size, uint32_t watch_flags)
-{
- Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
- const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
- for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index)
- {
- bool is_vacant;
- Error error = IsWatchpointVacant(wp_index, is_vacant);
- if (is_vacant)
- {
- error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index);
- if (error.Success())
- return wp_index;
- }
- if (error.Fail() && log)
- {
- log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s",
- __FUNCTION__, error.AsCString());
- }
+uint32_t NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint(
+ lldb::addr_t addr, size_t size, uint32_t watch_flags) {
+ Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
+ const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
+ for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index) {
+ bool is_vacant;
+ Error error = IsWatchpointVacant(wp_index, is_vacant);
+ if (is_vacant) {
+ error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index);
+ if (error.Success())
+ return wp_index;
+ }
+ if (error.Fail() && log) {
+ log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s",
+ __FUNCTION__, error.AsCString());
}
- return LLDB_INVALID_INDEX32;
+ }
+ return LLDB_INVALID_INDEX32;
}
lldb::addr_t
-NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index)
-{
- if (wp_index >= NumSupportedHardwareWatchpoints())
- return LLDB_INVALID_ADDRESS;
- RegisterValue reg_value;
- if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail())
- return LLDB_INVALID_ADDRESS;
- return reg_value.GetAsUInt64();
+NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index) {
+ if (wp_index >= NumSupportedHardwareWatchpoints())
+ return LLDB_INVALID_ADDRESS;
+ RegisterValue reg_value;
+ if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail())
+ return LLDB_INVALID_ADDRESS;
+ return reg_value.GetAsUInt64();
}
-uint32_t
-NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints ()
-{
- // Available debug address registers: dr0, dr1, dr2, dr3
- return 4;
+uint32_t NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints() {
+ // Available debug address registers: dr0, dr1, dr2, dr3
+ return 4;
}
#endif // defined(__i386__) || defined(__x86_64__)
OpenPOWER on IntegriCloud