diff options
author | Saleem Abdulrasool <compnerd@compnerd.org> | 2015-04-24 19:39:17 +0000 |
---|---|---|
committer | Saleem Abdulrasool <compnerd@compnerd.org> | 2015-04-24 19:39:17 +0000 |
commit | b1b1911777d3516fab27ce1461fdc39fe372bf6f (patch) | |
tree | 08e05b7d3cac64b47f40748770e11abaf6fef95b /libunwind/src/UnwindCursor.hpp | |
parent | cb6b6f7e20bc169cdf6d768f740f8efae66edc8b (diff) | |
download | bcm5719-llvm-b1b1911777d3516fab27ce1461fdc39fe372bf6f.tar.gz bcm5719-llvm-b1b1911777d3516fab27ce1461fdc39fe372bf6f.zip |
unwind: move src/Unwind, include/, and test/ unwind content
This moves the majority of the unwind sources into the new project layout for
libunwind. This was previously discussed on llvmdev at [1]. This is a
purely movement related change, with the build infrastructure currently still
residing in the libc++abi repository.
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/081507.html
llvm-svn: 235758
Diffstat (limited to 'libunwind/src/UnwindCursor.hpp')
-rw-r--r-- | libunwind/src/UnwindCursor.hpp | 1317 |
1 files changed, 1317 insertions, 0 deletions
diff --git a/libunwind/src/UnwindCursor.hpp b/libunwind/src/UnwindCursor.hpp new file mode 100644 index 00000000000..b4d413f4f32 --- /dev/null +++ b/libunwind/src/UnwindCursor.hpp @@ -0,0 +1,1317 @@ +//===------------------------- UnwindCursor.hpp ---------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +// +// C++ interface to lower levels of libuwind +//===----------------------------------------------------------------------===// + +#ifndef __UNWINDCURSOR_HPP__ +#define __UNWINDCURSOR_HPP__ + +#include <algorithm> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> +#include <pthread.h> +#include <unwind.h> + +#ifdef __APPLE__ + #include <mach-o/dyld.h> +#endif + +#include "config.h" + +#include "AddressSpace.hpp" +#include "CompactUnwinder.hpp" +#include "config.h" +#include "DwarfInstructions.hpp" +#include "EHHeaderParser.hpp" +#include "libunwind.h" +#include "Registers.hpp" +#include "Unwind-EHABI.h" + +namespace libunwind { + +#if _LIBUNWIND_SUPPORT_DWARF_UNWIND +/// Cache of recently found FDEs. +template <typename A> +class _LIBUNWIND_HIDDEN DwarfFDECache { + typedef typename A::pint_t pint_t; +public: + static pint_t findFDE(pint_t mh, pint_t pc); + static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); + static void removeAllIn(pint_t mh); + static void iterateCacheEntries(void (*func)(unw_word_t ip_start, + unw_word_t ip_end, + unw_word_t fde, unw_word_t mh)); + +private: + + struct entry { + pint_t mh; + pint_t ip_start; + pint_t ip_end; + pint_t fde; + }; + + // These fields are all static to avoid needing an initializer. + // There is only one instance of this class per process. + static pthread_rwlock_t _lock; +#ifdef __APPLE__ + static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); + static bool _registeredForDyldUnloads; +#endif + // Can't use std::vector<> here because this code is below libc++. + static entry *_buffer; + static entry *_bufferUsed; + static entry *_bufferEnd; + static entry _initialBuffer[64]; +}; + +template <typename A> +typename DwarfFDECache<A>::entry * +DwarfFDECache<A>::_buffer = _initialBuffer; + +template <typename A> +typename DwarfFDECache<A>::entry * +DwarfFDECache<A>::_bufferUsed = _initialBuffer; + +template <typename A> +typename DwarfFDECache<A>::entry * +DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; + +template <typename A> +typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; + +template <typename A> +pthread_rwlock_t DwarfFDECache<A>::_lock = PTHREAD_RWLOCK_INITIALIZER; + +#ifdef __APPLE__ +template <typename A> +bool DwarfFDECache<A>::_registeredForDyldUnloads = false; +#endif + +template <typename A> +typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { + pint_t result = 0; + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_rdlock(&_lock)); + for (entry *p = _buffer; p < _bufferUsed; ++p) { + if ((mh == p->mh) || (mh == 0)) { + if ((p->ip_start <= pc) && (pc < p->ip_end)) { + result = p->fde; + break; + } + } + } + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock)); + return result; +} + +template <typename A> +void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, + pint_t fde) { + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock)); + if (_bufferUsed >= _bufferEnd) { + size_t oldSize = (size_t)(_bufferEnd - _buffer); + size_t newSize = oldSize * 4; + // Can't use operator new (we are below it). + entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); + memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); + if (_buffer != _initialBuffer) + free(_buffer); + _buffer = newBuffer; + _bufferUsed = &newBuffer[oldSize]; + _bufferEnd = &newBuffer[newSize]; + } + _bufferUsed->mh = mh; + _bufferUsed->ip_start = ip_start; + _bufferUsed->ip_end = ip_end; + _bufferUsed->fde = fde; + ++_bufferUsed; +#ifdef __APPLE__ + if (!_registeredForDyldUnloads) { + _dyld_register_func_for_remove_image(&dyldUnloadHook); + _registeredForDyldUnloads = true; + } +#endif + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock)); +} + +template <typename A> +void DwarfFDECache<A>::removeAllIn(pint_t mh) { + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock)); + entry *d = _buffer; + for (const entry *s = _buffer; s < _bufferUsed; ++s) { + if (s->mh != mh) { + if (d != s) + *d = *s; + ++d; + } + } + _bufferUsed = d; + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock)); +} + +#ifdef __APPLE__ +template <typename A> +void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { + removeAllIn((pint_t) mh); +} +#endif + +template <typename A> +void DwarfFDECache<A>::iterateCacheEntries(void (*func)( + unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock)); + for (entry *p = _buffer; p < _bufferUsed; ++p) { + (*func)(p->ip_start, p->ip_end, p->fde, p->mh); + } + _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock)); +} +#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND + + +#define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field)) + +#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND +template <typename A> class UnwindSectionHeader { +public: + UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t version() const { + return _addressSpace.get32(_addr + + offsetof(unwind_info_section_header, version)); + } + uint32_t commonEncodingsArraySectionOffset() const { + return _addressSpace.get32(_addr + + offsetof(unwind_info_section_header, + commonEncodingsArraySectionOffset)); + } + uint32_t commonEncodingsArrayCount() const { + return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, + commonEncodingsArrayCount)); + } + uint32_t personalityArraySectionOffset() const { + return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, + personalityArraySectionOffset)); + } + uint32_t personalityArrayCount() const { + return _addressSpace.get32( + _addr + offsetof(unwind_info_section_header, personalityArrayCount)); + } + uint32_t indexSectionOffset() const { + return _addressSpace.get32( + _addr + offsetof(unwind_info_section_header, indexSectionOffset)); + } + uint32_t indexCount() const { + return _addressSpace.get32( + _addr + offsetof(unwind_info_section_header, indexCount)); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; + +template <typename A> class UnwindSectionIndexArray { +public: + UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t functionOffset(uint32_t index) const { + return _addressSpace.get32( + _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, + functionOffset)); + } + uint32_t secondLevelPagesSectionOffset(uint32_t index) const { + return _addressSpace.get32( + _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, + secondLevelPagesSectionOffset)); + } + uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { + return _addressSpace.get32( + _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, + lsdaIndexArraySectionOffset)); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; + +template <typename A> class UnwindSectionRegularPageHeader { +public: + UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t kind() const { + return _addressSpace.get32( + _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); + } + uint16_t entryPageOffset() const { + return _addressSpace.get16( + _addr + offsetof(unwind_info_regular_second_level_page_header, + entryPageOffset)); + } + uint16_t entryCount() const { + return _addressSpace.get16( + _addr + + offsetof(unwind_info_regular_second_level_page_header, entryCount)); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; + +template <typename A> class UnwindSectionRegularArray { +public: + UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t functionOffset(uint32_t index) const { + return _addressSpace.get32( + _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, + functionOffset)); + } + uint32_t encoding(uint32_t index) const { + return _addressSpace.get32( + _addr + + arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; + +template <typename A> class UnwindSectionCompressedPageHeader { +public: + UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t kind() const { + return _addressSpace.get32( + _addr + + offsetof(unwind_info_compressed_second_level_page_header, kind)); + } + uint16_t entryPageOffset() const { + return _addressSpace.get16( + _addr + offsetof(unwind_info_compressed_second_level_page_header, + entryPageOffset)); + } + uint16_t entryCount() const { + return _addressSpace.get16( + _addr + + offsetof(unwind_info_compressed_second_level_page_header, entryCount)); + } + uint16_t encodingsPageOffset() const { + return _addressSpace.get16( + _addr + offsetof(unwind_info_compressed_second_level_page_header, + encodingsPageOffset)); + } + uint16_t encodingsCount() const { + return _addressSpace.get16( + _addr + offsetof(unwind_info_compressed_second_level_page_header, + encodingsCount)); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; + +template <typename A> class UnwindSectionCompressedArray { +public: + UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t functionOffset(uint32_t index) const { + return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( + _addressSpace.get32(_addr + index * sizeof(uint32_t))); + } + uint16_t encodingIndex(uint32_t index) const { + return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( + _addressSpace.get32(_addr + index * sizeof(uint32_t))); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; + +template <typename A> class UnwindSectionLsdaArray { +public: + UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) + : _addressSpace(addressSpace), _addr(addr) {} + + uint32_t functionOffset(uint32_t index) const { + return _addressSpace.get32( + _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, + index, functionOffset)); + } + uint32_t lsdaOffset(uint32_t index) const { + return _addressSpace.get32( + _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, + index, lsdaOffset)); + } + +private: + A &_addressSpace; + typename A::pint_t _addr; +}; +#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND + +class _LIBUNWIND_HIDDEN AbstractUnwindCursor { +public: + // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) + // This avoids an unnecessary dependency to libc++abi. + void operator delete(void *, size_t) {} + + virtual ~AbstractUnwindCursor() {} + virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } + virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } + virtual void setReg(int, unw_word_t) { + _LIBUNWIND_ABORT("setReg not implemented"); + } + virtual bool validFloatReg(int) { + _LIBUNWIND_ABORT("validFloatReg not implemented"); + } + virtual unw_fpreg_t getFloatReg(int) { + _LIBUNWIND_ABORT("getFloatReg not implemented"); + } + virtual void setFloatReg(int, unw_fpreg_t) { + _LIBUNWIND_ABORT("setFloatReg not implemented"); + } + virtual int step() { _LIBUNWIND_ABORT("step not implemented"); } + virtual void getInfo(unw_proc_info_t *) { + _LIBUNWIND_ABORT("getInfo not implemented"); + } + virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } + virtual bool isSignalFrame() { + _LIBUNWIND_ABORT("isSignalFrame not implemented"); + } + virtual bool getFunctionName(char *, size_t, unw_word_t *) { + _LIBUNWIND_ABORT("getFunctionName not implemented"); + } + virtual void setInfoBasedOnIPRegister(bool = false) { + _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); + } + virtual const char *getRegisterName(int) { + _LIBUNWIND_ABORT("getRegisterName not implemented"); + } +#ifdef __arm__ + virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } +#endif +}; + +/// UnwindCursor contains all state (including all register values) during +/// an unwind. This is normally stack allocated inside a unw_cursor_t. +template <typename A, typename R> +class UnwindCursor : public AbstractUnwindCursor{ + typedef typename A::pint_t pint_t; +public: + UnwindCursor(unw_context_t *context, A &as); + UnwindCursor(A &as, void *threadArg); + virtual ~UnwindCursor() {} + virtual bool validReg(int); + virtual unw_word_t getReg(int); + virtual void setReg(int, unw_word_t); + virtual bool validFloatReg(int); + virtual unw_fpreg_t getFloatReg(int); + virtual void setFloatReg(int, unw_fpreg_t); + virtual int step(); + virtual void getInfo(unw_proc_info_t *); + virtual void jumpto(); + virtual bool isSignalFrame(); + virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); + virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); + virtual const char *getRegisterName(int num); +#ifdef __arm__ + virtual void saveVFPAsX(); +#endif + +private: + +#if LIBCXXABI_ARM_EHABI + bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); +#endif + +#if _LIBUNWIND_SUPPORT_DWARF_UNWIND + bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, + uint32_t fdeSectionOffsetHint=0); + int stepWithDwarfFDE() { + return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace, + (pint_t)this->getReg(UNW_REG_IP), + (pint_t)_info.unwind_info, + _registers); + } +#endif + +#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND + bool getInfoFromCompactEncodingSection(pint_t pc, + const UnwindInfoSections §s); + int stepWithCompactEncoding() { + #if _LIBUNWIND_SUPPORT_DWARF_UNWIND + if ( compactSaysUseDwarf() ) + return stepWithDwarfFDE(); + #endif + R dummy; + return stepWithCompactEncoding(dummy); + } + + int stepWithCompactEncoding(Registers_x86_64 &) { + return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( + _info.format, _info.start_ip, _addressSpace, _registers); + } + + int stepWithCompactEncoding(Registers_x86 &) { + return CompactUnwinder_x86<A>::stepWithCompactEncoding( + _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); + } + + int stepWithCompactEncoding(Registers_ppc &) { + return UNW_EINVAL; + } + + int stepWithCompactEncoding(Registers_arm64 &) { + return CompactUnwinder_arm64<A>::stepWithCompactEncoding( + _info.format, _info.start_ip, _addressSpace, _registers); + } + + bool compactSaysUseDwarf(uint32_t *offset=NULL) const { + R dummy; + return compactSaysUseDwarf(dummy, offset); + } + + bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { + if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { + if (offset) + *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); + return true; + } + return false; + } + + bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { + if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { + if (offset) + *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); + return true; + } + return false; + } + + bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { + return true; + } + + bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { + if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { + if (offset) + *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); + return true; + } + return false; + } +#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND + +#if _LIBUNWIND_SUPPORT_DWARF_UNWIND + compact_unwind_encoding_t dwarfEncoding() const { + R dummy; + return dwarfEncoding(dummy); + } + + compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { + return UNWIND_X86_64_MODE_DWARF; + } + + compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { + return UNWIND_X86_MODE_DWARF; + } + + compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { + return 0; + } + + compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { + return UNWIND_ARM64_MODE_DWARF; + } +#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND + + + A &_addressSpace; + R _registers; + unw_proc_info_t _info; + bool _unwindInfoMissing; + bool _isSignalFrame; +}; + + +template <typename A, typename R> +UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) + : _addressSpace(as), _registers(context), _unwindInfoMissing(false), + _isSignalFrame(false) { + static_assert(sizeof(UnwindCursor<A, R>) < sizeof(unw_cursor_t), + "UnwindCursor<> does not fit in unw_cursor_t"); + memset(&_info, 0, sizeof(_info)); +} + +template <typename A, typename R> +UnwindCursor<A, R>::UnwindCursor(A &as, void *) + : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { + memset(&_info, 0, sizeof(_info)); + // FIXME + // fill in _registers from thread arg +} + + +template <typename A, typename R> +bool UnwindCursor<A, R>::validReg(int regNum) { + return _registers.validRegister(regNum); +} + +template <typename A, typename R> +unw_word_t UnwindCursor<A, R>::getReg(int regNum) { + return _registers.getRegister(regNum); +} + +template <typename A, typename R> +void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { + _registers.setRegister(regNum, (typename A::pint_t)value); +} + +template <typename A, typename R> +bool UnwindCursor<A, R>::validFloatReg(int regNum) { + return _registers.validFloatRegister(regNum); +} + +template <typename A, typename R> +unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { + return _registers.getFloatRegister(regNum); +} + +template <typename A, typename R> +void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { + _registers.setFloatRegister(regNum, value); +} + +template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { + _registers.jumpto(); +} + +#ifdef __arm__ +template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { + _registers.saveVFPAsX(); +} +#endif + +template <typename A, typename R> +const char *UnwindCursor<A, R>::getRegisterName(int regNum) { + return _registers.getRegisterName(regNum); +} + +template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { + return _isSignalFrame; +} + +#if LIBCXXABI_ARM_EHABI +struct EHABIIndexEntry { + uint32_t functionOffset; + uint32_t data; +}; + +template<typename A> +struct EHABISectionIterator { + typedef EHABISectionIterator _Self; + + typedef std::random_access_iterator_tag iterator_category; + typedef typename A::pint_t value_type; + typedef typename A::pint_t* pointer; + typedef typename A::pint_t& reference; + typedef size_t size_type; + typedef size_t difference_type; + + static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { + return _Self(addressSpace, sects, 0); + } + static _Self end(A& addressSpace, const UnwindInfoSections& sects) { + return _Self(addressSpace, sects, sects.arm_section_length); + } + + EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) + : _i(i), _addressSpace(&addressSpace), _sects(§s) {} + + _Self& operator++() { ++_i; return *this; } + _Self& operator+=(size_t a) { _i += a; return *this; } + _Self& operator--() { assert(_i > 0); --_i; return *this; } + _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } + + _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } + _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } + + size_t operator-(const _Self& other) { return _i - other._i; } + + bool operator==(const _Self& other) const { + assert(_addressSpace == other._addressSpace); + assert(_sects == other._sects); + return _i == other._i; + } + + typename A::pint_t operator*() const { return functionAddress(); } + + typename A::pint_t functionAddress() const { + typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( + EHABIIndexEntry, _i, functionOffset); + return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); + } + + typename A::pint_t dataAddress() { + typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( + EHABIIndexEntry, _i, data); + return indexAddr; + } + + private: + size_t _i; + A* _addressSpace; + const UnwindInfoSections* _sects; +}; + +template <typename A, typename R> +bool UnwindCursor<A, R>::getInfoFromEHABISection( + pint_t pc, + const UnwindInfoSections §s) { + EHABISectionIterator<A> begin = + EHABISectionIterator<A>::begin(_addressSpace, sects); + EHABISectionIterator<A> end = + EHABISectionIterator<A>::end(_addressSpace, sects); + + EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc); + if (itNextPC == begin || itNextPC == end) + return false; + EHABISectionIterator<A> itThisPC = itNextPC - 1; + + pint_t thisPC = itThisPC.functionAddress(); + pint_t nextPC = itNextPC.functionAddress(); + pint_t indexDataAddr = itThisPC.dataAddress(); + + if (indexDataAddr == 0) + return false; + + uint32_t indexData = _addressSpace.get32(indexDataAddr); + if (indexData == UNW_EXIDX_CANTUNWIND) + return false; + + // If the high bit is set, the exception handling table entry is inline inside + // the index table entry on the second word (aka |indexDataAddr|). Otherwise, + // the table points at an offset in the exception handling table (section 5 EHABI). + pint_t exceptionTableAddr; + uint32_t exceptionTableData; + bool isSingleWordEHT; + if (indexData & 0x80000000) { + exceptionTableAddr = indexDataAddr; + // TODO(ajwong): Should this data be 0? + exceptionTableData = indexData; + isSingleWordEHT = true; + } else { + exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); + exceptionTableData = _addressSpace.get32(exceptionTableAddr); + isSingleWordEHT = false; + } + + // Now we know the 3 things: + // exceptionTableAddr -- exception handler table entry. + // exceptionTableData -- the data inside the first word of the eht entry. + // isSingleWordEHT -- whether the entry is in the index. + unw_word_t personalityRoutine = 0xbadf00d; + bool scope32 = false; + uintptr_t lsda = 0xbadf00d; + + // If the high bit in the exception handling table entry is set, the entry is + // in compact form (section 6.3 EHABI). + if (exceptionTableData & 0x80000000) { + // Grab the index of the personality routine from the compact form. + uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; + uint32_t extraWords = 0; + switch (choice) { + case 0: + personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; + extraWords = 0; + scope32 = false; + break; + case 1: + personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; + extraWords = (exceptionTableData & 0x00ff0000) >> 16; + scope32 = false; + break; + case 2: + personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; + extraWords = (exceptionTableData & 0x00ff0000) >> 16; + scope32 = true; + break; + default: + _LIBUNWIND_ABORT("unknown personality routine"); + return false; + } + + if (isSingleWordEHT) { + if (extraWords != 0) { + _LIBUNWIND_ABORT("index inlined table detected but pr function " + "requires extra words"); + return false; + } + } + } else { + pint_t personalityAddr = + exceptionTableAddr + signExtendPrel31(exceptionTableData); + personalityRoutine = personalityAddr; + + // ARM EHABI # 6.2, # 9.2 + // + // +---- ehtp + // v + // +--------------------------------------+ + // | +--------+--------+--------+-------+ | + // | |0| prel31 to personalityRoutine | | + // | +--------+--------+--------+-------+ | + // | | N | unwind opcodes | | <-- UnwindData + // | +--------+--------+--------+-------+ | + // | | Word 2 unwind opcodes | | + // | +--------+--------+--------+-------+ | + // | ... | + // | +--------+--------+--------+-------+ | + // | | Word N unwind opcodes | | + // | +--------+--------+--------+-------+ | + // | | LSDA | | <-- lsda + // | | ... | | + // | +--------+--------+--------+-------+ | + // +--------------------------------------+ + + uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; + uint32_t FirstDataWord = *UnwindData; + size_t N = ((FirstDataWord >> 24) & 0xff); + size_t NDataWords = N + 1; + lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); + } + + _info.start_ip = thisPC; + _info.end_ip = nextPC; + _info.handler = personalityRoutine; + _info.unwind_info = exceptionTableAddr; + _info.lsda = lsda; + // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. + _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum? + + return true; +} +#endif + +#if _LIBUNWIND_SUPPORT_DWARF_UNWIND +template <typename A, typename R> +bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, + const UnwindInfoSections §s, + uint32_t fdeSectionOffsetHint) { + typename CFI_Parser<A>::FDE_Info fdeInfo; + typename CFI_Parser<A>::CIE_Info cieInfo; + bool foundFDE = false; + bool foundInCache = false; + // If compact encoding table gave offset into dwarf section, go directly there + if (fdeSectionOffsetHint != 0) { + foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, + (uint32_t)sects.dwarf_section_length, + sects.dwarf_section + fdeSectionOffsetHint, + &fdeInfo, &cieInfo); + } +#if _LIBUNWIND_SUPPORT_DWARF_INDEX + if (!foundFDE && (sects.dwarf_index_section != 0)) { + foundFDE = EHHeaderParser<A>::findFDE( + _addressSpace, pc, sects.dwarf_index_section, + (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); + } +#endif + if (!foundFDE) { + // otherwise, search cache of previously found FDEs. + pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); + if (cachedFDE != 0) { + foundFDE = + CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, + (uint32_t)sects.dwarf_section_length, + cachedFDE, &fdeInfo, &cieInfo); + foundInCache = foundFDE; + } + } + if (!foundFDE) { + // Still not found, do full scan of __eh_frame section. + foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, + (uint32_t)sects.dwarf_section_length, 0, + &fdeInfo, &cieInfo); + } + if (foundFDE) { + typename CFI_Parser<A>::PrologInfo prolog; + if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, + &prolog)) { + // Save off parsed FDE info + _info.start_ip = fdeInfo.pcStart; + _info.end_ip = fdeInfo.pcEnd; + _info.lsda = fdeInfo.lsda; + _info.handler = cieInfo.personality; + _info.gp = prolog.spExtraArgSize; + _info.flags = 0; + _info.format = dwarfEncoding(); + _info.unwind_info = fdeInfo.fdeStart; + _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; + _info.extra = (unw_word_t) sects.dso_base; + + // Add to cache (to make next lookup faster) if we had no hint + // and there was no index. + if (!foundInCache && (fdeSectionOffsetHint == 0)) { + #if _LIBUNWIND_SUPPORT_DWARF_INDEX + if (sects.dwarf_index_section == 0) + #endif + DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, + fdeInfo.fdeStart); + } + return true; + } + } + //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX\n", (uint64_t)pc); + return false; +} +#endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND + + +#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND +template <typename A, typename R> +bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, + const UnwindInfoSections §s) { + const bool log = false; + if (log) + fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", + (uint64_t)pc, (uint64_t)sects.dso_base); + + const UnwindSectionHeader<A> sectionHeader(_addressSpace, + sects.compact_unwind_section); + if (sectionHeader.version() != UNWIND_SECTION_VERSION) + return false; + + // do a binary search of top level index to find page with unwind info + pint_t targetFunctionOffset = pc - sects.dso_base; + const UnwindSectionIndexArray<A> topIndex(_addressSpace, + sects.compact_unwind_section + + sectionHeader.indexSectionOffset()); + uint32_t low = 0; + uint32_t high = sectionHeader.indexCount(); + uint32_t last = high - 1; + while (low < high) { + uint32_t mid = (low + high) / 2; + //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", + //mid, low, high, topIndex.functionOffset(mid)); + if (topIndex.functionOffset(mid) <= targetFunctionOffset) { + if ((mid == last) || + (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { + low = mid; + break; + } else { + low = mid + 1; + } + } else { + high = mid; + } + } + const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); + const uint32_t firstLevelNextPageFunctionOffset = + topIndex.functionOffset(low + 1); + const pint_t secondLevelAddr = + sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); + const pint_t lsdaArrayStartAddr = + sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); + const pint_t lsdaArrayEndAddr = + sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); + if (log) + fprintf(stderr, "\tfirst level search for result index=%d " + "to secondLevelAddr=0x%llX\n", + low, (uint64_t) secondLevelAddr); + // do a binary search of second level page index + uint32_t encoding = 0; + pint_t funcStart = 0; + pint_t funcEnd = 0; + pint_t lsda = 0; + pint_t personality = 0; + uint32_t pageKind = _addressSpace.get32(secondLevelAddr); + if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { + // regular page + UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, + secondLevelAddr); + UnwindSectionRegularArray<A> pageIndex( + _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); + // binary search looks for entry with e where index[e].offset <= pc < + // index[e+1].offset + if (log) + fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " + "regular page starting at secondLevelAddr=0x%llX\n", + (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); + low = 0; + high = pageHeader.entryCount(); + while (low < high) { + uint32_t mid = (low + high) / 2; + if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { + if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { + // at end of table + low = mid; + funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; + break; + } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { + // next is too big, so we found it + low = mid; + funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; + break; + } else { + low = mid + 1; + } + } else { + high = mid; + } + } + encoding = pageIndex.encoding(low); + funcStart = pageIndex.functionOffset(low) + sects.dso_base; + if (pc < funcStart) { + if (log) + fprintf( + stderr, + "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", + (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); + return false; + } + if (pc > funcEnd) { + if (log) + fprintf( + stderr, + "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", + (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); + return false; + } + } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { + // compressed page + UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, + secondLevelAddr); + UnwindSectionCompressedArray<A> pageIndex( + _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); + const uint32_t targetFunctionPageOffset = + (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); + // binary search looks for entry with e where index[e].offset <= pc < + // index[e+1].offset + if (log) + fprintf(stderr, "\tbinary search of compressed page starting at " + "secondLevelAddr=0x%llX\n", + (uint64_t) secondLevelAddr); + low = 0; + last = pageHeader.entryCount() - 1; + high = pageHeader.entryCount(); + while (low < high) { + uint32_t mid = (low + high) / 2; + if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { + if ((mid == last) || + (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { + low = mid; + break; + } else { + low = mid + 1; + } + } else { + high = mid; + } + } + funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset + + sects.dso_base; + if (low < last) + funcEnd = + pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset + + sects.dso_base; + else + funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; + if (pc < funcStart) { + _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " + "level compressed unwind table. funcStart=0x%llX\n", + (uint64_t) pc, (uint64_t) funcStart); + return false; + } + if (pc > funcEnd) { + _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second " + "level compressed unwind table. funcEnd=0x%llX\n", + (uint64_t) pc, (uint64_t) funcEnd); + return false; + } + uint16_t encodingIndex = pageIndex.encodingIndex(low); + if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { + // encoding is in common table in section header + encoding = _addressSpace.get32( + sects.compact_unwind_section + + sectionHeader.commonEncodingsArraySectionOffset() + + encodingIndex * sizeof(uint32_t)); + } else { + // encoding is in page specific table + uint16_t pageEncodingIndex = + encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); + encoding = _addressSpace.get32(secondLevelAddr + + pageHeader.encodingsPageOffset() + + pageEncodingIndex * sizeof(uint32_t)); + } + } else { + _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second " + "level page\n", + (uint64_t) sects.compact_unwind_section); + return false; + } + + // look up LSDA, if encoding says function has one + if (encoding & UNWIND_HAS_LSDA) { + UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); + uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); + low = 0; + high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / + sizeof(unwind_info_section_header_lsda_index_entry); + // binary search looks for entry with exact match for functionOffset + if (log) + fprintf(stderr, + "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", + funcStartOffset); + while (low < high) { + uint32_t mid = (low + high) / 2; + if (lsdaIndex.functionOffset(mid) == funcStartOffset) { + lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; + break; + } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { + low = mid + 1; + } else { + high = mid; + } + } + if (lsda == 0) { + _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " + "pc=0x%0llX, but lsda table has no entry\n", + encoding, (uint64_t) pc); + return false; + } + } + + // extact personality routine, if encoding says function has one + uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> + (__builtin_ctz(UNWIND_PERSONALITY_MASK)); + if (personalityIndex != 0) { + --personalityIndex; // change 1-based to zero-based index + if (personalityIndex > sectionHeader.personalityArrayCount()) { + _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " + "but personality table has only %d entires\n", + encoding, personalityIndex, + sectionHeader.personalityArrayCount()); + return false; + } + int32_t personalityDelta = (int32_t)_addressSpace.get32( + sects.compact_unwind_section + + sectionHeader.personalityArraySectionOffset() + + personalityIndex * sizeof(uint32_t)); + pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; + personality = _addressSpace.getP(personalityPointer); + if (log) + fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " + "personalityDelta=0x%08X, personality=0x%08llX\n", + (uint64_t) pc, personalityDelta, (uint64_t) personality); + } + + if (log) + fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " + "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", + (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); + _info.start_ip = funcStart; + _info.end_ip = funcEnd; + _info.lsda = lsda; + _info.handler = personality; + _info.gp = 0; + _info.flags = 0; + _info.format = encoding; + _info.unwind_info = 0; + _info.unwind_info_size = 0; + _info.extra = sects.dso_base; + return true; +} +#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND + + +template <typename A, typename R> +void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { + pint_t pc = (pint_t)this->getReg(UNW_REG_IP); +#if LIBCXXABI_ARM_EHABI + // Remove the thumb bit so the IP represents the actual instruction address. + // This matches the behaviour of _Unwind_GetIP on arm. + pc &= (pint_t)~0x1; +#endif + + // If the last line of a function is a "throw" the compiler sometimes + // emits no instructions after the call to __cxa_throw. This means + // the return address is actually the start of the next function. + // To disambiguate this, back up the pc when we know it is a return + // address. + if (isReturnAddress) + --pc; + + // Ask address space object to find unwind sections for this pc. + UnwindInfoSections sects; + if (_addressSpace.findUnwindSections(pc, sects)) { +#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND + // If there is a compact unwind encoding table, look there first. + if (sects.compact_unwind_section != 0) { + if (this->getInfoFromCompactEncodingSection(pc, sects)) { + #if _LIBUNWIND_SUPPORT_DWARF_UNWIND + // Found info in table, done unless encoding says to use dwarf. + uint32_t dwarfOffset; + if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { + if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { + // found info in dwarf, done + return; + } + } + #endif + // If unwind table has entry, but entry says there is no unwind info, + // record that we have no unwind info. + if (_info.format == 0) + _unwindInfoMissing = true; + return; + } + } +#endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND + +#if _LIBUNWIND_SUPPORT_DWARF_UNWIND + // If there is dwarf unwind info, look there next. + if (sects.dwarf_section != 0) { + if (this->getInfoFromDwarfSection(pc, sects)) { + // found info in dwarf, done + return; + } + } +#endif + +#if LIBCXXABI_ARM_EHABI + // If there is ARM EHABI unwind info, look there next. + if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) + return; +#endif + } + +#if _LIBUNWIND_SUPPORT_DWARF_UNWIND + // There is no static unwind info for this pc. Look to see if an FDE was + // dynamically registered for it. + pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc); + if (cachedFDE != 0) { + CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; + CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; + const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace, + cachedFDE, &fdeInfo, &cieInfo); + if (msg == NULL) { + typename CFI_Parser<A>::PrologInfo prolog; + if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, + pc, &prolog)) { + // save off parsed FDE info + _info.start_ip = fdeInfo.pcStart; + _info.end_ip = fdeInfo.pcEnd; + _info.lsda = fdeInfo.lsda; + _info.handler = cieInfo.personality; + _info.gp = prolog.spExtraArgSize; + // Some frameless functions need SP + // altered when resuming in function. + _info.flags = 0; + _info.format = dwarfEncoding(); + _info.unwind_info = fdeInfo.fdeStart; + _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; + _info.extra = 0; + return; + } + } + } + + // Lastly, ask AddressSpace object about platform specific ways to locate + // other FDEs. + pint_t fde; + if (_addressSpace.findOtherFDE(pc, fde)) { + CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo; + CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo; + if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { + // Double check this FDE is for a function that includes the pc. + if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) { + typename CFI_Parser<A>::PrologInfo prolog; + if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, + cieInfo, pc, &prolog)) { + // save off parsed FDE info + _info.start_ip = fdeInfo.pcStart; + _info.end_ip = fdeInfo.pcEnd; + _info.lsda = fdeInfo.lsda; + _info.handler = cieInfo.personality; + _info.gp = prolog.spExtraArgSize; + _info.flags = 0; + _info.format = dwarfEncoding(); + _info.unwind_info = fdeInfo.fdeStart; + _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength; + _info.extra = 0; + return; + } + } + } + } +#endif // #if _LIBUNWIND_SUPPORT_DWARF_UNWIND + + // no unwind info, flag that we can't reliably unwind + _unwindInfoMissing = true; +} + +template <typename A, typename R> +int UnwindCursor<A, R>::step() { + // Bottom of stack is defined is when unwind info cannot be found. + if (_unwindInfoMissing) + return UNW_STEP_END; + + // Use unwinding info to modify register set as if function returned. + int result; +#if _LIBUNWIND_SUPPORT_COMPACT_UNWIND + result = this->stepWithCompactEncoding(); +#elif _LIBUNWIND_SUPPORT_DWARF_UNWIND + result = this->stepWithDwarfFDE(); +#elif LIBCXXABI_ARM_EHABI + result = UNW_STEP_SUCCESS; +#else + #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ + _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ + LIBCXXABI_ARM_EHABI +#endif + + // update info based on new PC + if (result == UNW_STEP_SUCCESS) { + this->setInfoBasedOnIPRegister(true); + if (_unwindInfoMissing) + return UNW_STEP_END; + if (_info.gp) + setReg(UNW_REG_SP, getReg(UNW_REG_SP) + _info.gp); + } + + return result; +} + +template <typename A, typename R> +void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { + *info = _info; +} + +template <typename A, typename R> +bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, + unw_word_t *offset) { + return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), + buf, bufLen, offset); +} + +} // namespace libunwind + +#endif // __UNWINDCURSOR_HPP__ |