diff options
author | Eric Fiselier <eric@efcs.ca> | 2016-06-22 01:13:44 +0000 |
---|---|---|
committer | Eric Fiselier <eric@efcs.ca> | 2016-06-22 01:13:44 +0000 |
commit | 8d0d842e7b11d29498b150b136426600d770e533 (patch) | |
tree | 9d0cc830e92fb17200eba01348a898500a21a1a6 /libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp | |
parent | 7a580d0a72e54b8ffe5c257323029afdbc7fab9b (diff) | |
download | bcm5719-llvm-8d0d842e7b11d29498b150b136426600d770e533.tar.gz bcm5719-llvm-8d0d842e7b11d29498b150b136426600d770e533.zip |
Avoid huge main() functions and huge arrays. Patch from STL@microsoft.com
llvm-svn: 273354
Diffstat (limited to 'libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp')
-rw-r--r-- | libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp | 482 |
1 files changed, 253 insertions, 229 deletions
diff --git a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp index ed3bf8f1c4d..4e9f9d3c044 100644 --- a/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp +++ b/libcxx/test/std/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.geo/eval.pass.cpp @@ -29,246 +29,270 @@ sqr(T x) return x * x; } -int main() +void +test1() +{ + typedef std::geometric_distribution<> D; + typedef std::mt19937 G; + G g; + D d(.03125); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); + double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); +} + +void +test2() +{ + typedef std::geometric_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0.05); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); + double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); +} + +void +test3() +{ + typedef std::geometric_distribution<> D; + typedef std::minstd_rand G; + G g; + D d(.25); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); + double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); +} + +void +test4() { + typedef std::geometric_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0.5); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::geometric_distribution<> D; - typedef std::mt19937 G; - G g; - D d(.03125); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); - double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::geometric_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0.05); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); - double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); + double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); +} + +void +test5() +{ + typedef std::geometric_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0.75); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::geometric_distribution<> D; - typedef std::minstd_rand G; - G g; - D d(.25); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); - double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::geometric_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0.5); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); - double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); + double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); +} + +void +test6() +{ + typedef std::geometric_distribution<> D; + typedef std::mt19937 G; + G g; + D d(0.96875); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) { - typedef std::geometric_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0.75); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); - double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); + D::result_type v = d(g); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) { - typedef std::geometric_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0.96875); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double dbl = (u[i] - mean); - double d2 = sqr(dbl); - var += d2; - skew += dbl * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = (1 - d.p()) / d.p(); - double x_var = x_mean / d.p(); - double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); - double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); + double dbl = (u[i] - mean); + double d2 = sqr(dbl); + var += d2; + skew += dbl * d2; + kurtosis += d2 * d2; } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = (1 - d.p()) / d.p(); + double x_var = x_mean / d.p(); + double x_skew = (2 - d.p()) / std::sqrt((1 - d.p())); + double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p()); + assert(std::abs((mean - x_mean) / x_mean) < 0.01); + assert(std::abs((var - x_var) / x_var) < 0.01); + assert(std::abs((skew - x_skew) / x_skew) < 0.01); + assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02); +} + +int main() +{ + test1(); + test2(); + test3(); + test4(); + test5(); + test6(); } |