diff options
author | Howard Hinnant <hhinnant@apple.com> | 2010-05-17 00:09:38 +0000 |
---|---|---|
committer | Howard Hinnant <hhinnant@apple.com> | 2010-05-17 00:09:38 +0000 |
commit | 89eaea24bca2c33ae10703bb332d8456fe56f41b (patch) | |
tree | 9d009f0d18ccb19765284f80aac8f306a29f6421 /libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval_param.pass.cpp | |
parent | f92c34416734df3fc909ed0ef6baad8124d5eba1 (diff) | |
download | bcm5719-llvm-89eaea24bca2c33ae10703bb332d8456fe56f41b.tar.gz bcm5719-llvm-89eaea24bca2c33ae10703bb332d8456fe56f41b.zip |
[rand.dist.bern.negbin]
llvm-svn: 103916
Diffstat (limited to 'libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval_param.pass.cpp')
-rw-r--r-- | libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval_param.pass.cpp | 158 |
1 files changed, 158 insertions, 0 deletions
diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval_param.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval_param.pass.cpp new file mode 100644 index 00000000000..b8906721e61 --- /dev/null +++ b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval_param.pass.cpp @@ -0,0 +1,158 @@ +//===----------------------------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +// <random> + +// template<class IntType = int> +// class negative_binomial_distribution + +// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); + +#include <random> +#include <numeric> +#include <vector> +#include <cassert> + +template <class T> +inline +T +sqr(T x) +{ + return x * x; +} + +int main() +{ + { + typedef std::negative_binomial_distribution<> D; + typedef D::param_type P; + typedef std::minstd_rand G; + G g; + D d(16, .75); + P p(5, .75); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g, p); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double d = (u[i] - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = p.k() * (1 - p.p()) / p.p(); + double x_var = x_mean / p.p(); + double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p())); + double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p())); + assert(std::abs(mean - x_mean) / x_mean < 0.01); + assert(std::abs(var - x_var) / x_var < 0.01); + assert(std::abs(skew - x_skew) / x_skew < 0.01); + assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01); + } + { + typedef std::negative_binomial_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + D d(16, .75); + P p(30, .03125); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g, p); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double d = (u[i] - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = p.k() * (1 - p.p()) / p.p(); + double x_var = x_mean / p.p(); + double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p())); + double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p())); + assert(std::abs(mean - x_mean) / x_mean < 0.01); + assert(std::abs(var - x_var) / x_var < 0.01); + assert(std::abs(skew - x_skew) / x_skew < 0.01); + assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01); + } + { + typedef std::negative_binomial_distribution<> D; + typedef D::param_type P; + typedef std::mt19937 G; + G g; + D d(16, .75); + P p(40, .25); + const int N = 1000000; + std::vector<D::result_type> u; + for (int i = 0; i < N; ++i) + { + D::result_type v = d(g, p); + assert(d.min() <= v && v <= d.max()); + u.push_back(v); + } + double mean = std::accumulate(u.begin(), u.end(), + double(0)) / u.size(); + double var = 0; + double skew = 0; + double kurtosis = 0; + for (int i = 0; i < u.size(); ++i) + { + double d = (u[i] - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } + var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; + double x_mean = p.k() * (1 - p.p()) / p.p(); + double x_var = x_mean / p.p(); + double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p())); + double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p())); + assert(std::abs(mean - x_mean) / x_mean < 0.01); + assert(std::abs(var - x_var) / x_var < 0.01); + assert(std::abs(skew - x_skew) / x_skew < 0.01); + assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03); + } +} |