summaryrefslogtreecommitdiffstats
path: root/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp
diff options
context:
space:
mode:
authorHoward Hinnant <hhinnant@apple.com>2010-05-17 00:09:38 +0000
committerHoward Hinnant <hhinnant@apple.com>2010-05-17 00:09:38 +0000
commit89eaea24bca2c33ae10703bb332d8456fe56f41b (patch)
tree9d009f0d18ccb19765284f80aac8f306a29f6421 /libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp
parentf92c34416734df3fc909ed0ef6baad8124d5eba1 (diff)
downloadbcm5719-llvm-89eaea24bca2c33ae10703bb332d8456fe56f41b.tar.gz
bcm5719-llvm-89eaea24bca2c33ae10703bb332d8456fe56f41b.zip
[rand.dist.bern.negbin]
llvm-svn: 103916
Diffstat (limited to 'libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp')
-rw-r--r--libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp270
1 files changed, 270 insertions, 0 deletions
diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp
new file mode 100644
index 00000000000..96b4c180261
--- /dev/null
+++ b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.negbin/eval.pass.cpp
@@ -0,0 +1,270 @@
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+// <random>
+
+// template<class IntType = int>
+// class negative_binomial_distribution
+
+// template<class _URNG> result_type operator()(_URNG& g);
+
+#include <random>
+#include <numeric>
+#include <vector>
+#include <cassert>
+
+template <class T>
+inline
+T
+sqr(T x)
+{
+ return x * x;
+}
+
+int main()
+{
+ {
+ typedef std::negative_binomial_distribution<> D;
+ typedef std::minstd_rand G;
+ G g;
+ D d(5, .25);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v <= d.max());
+ u.push_back(v);
+ }
+ double mean = std::accumulate(u.begin(), u.end(),
+ double(0)) / u.size();
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (int i = 0; i < u.size(); ++i)
+ {
+ double d = (u[i] - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= u.size();
+ double dev = std::sqrt(var);
+ skew /= u.size() * dev * var;
+ kurtosis /= u.size() * var * var;
+ kurtosis -= 3;
+ double x_mean = d.k() * (1 - d.p()) / d.p();
+ double x_var = x_mean / d.p();
+ double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
+ double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
+ assert(std::abs(mean - x_mean) / x_mean < 0.01);
+ assert(std::abs(var - x_var) / x_var < 0.01);
+ assert(std::abs(skew - x_skew) / x_skew < 0.01);
+ assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
+ }
+ {
+ typedef std::negative_binomial_distribution<> D;
+ typedef std::mt19937 G;
+ G g;
+ D d(30, .03125);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v <= d.max());
+ u.push_back(v);
+ }
+ double mean = std::accumulate(u.begin(), u.end(),
+ double(0)) / u.size();
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (int i = 0; i < u.size(); ++i)
+ {
+ double d = (u[i] - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= u.size();
+ double dev = std::sqrt(var);
+ skew /= u.size() * dev * var;
+ kurtosis /= u.size() * var * var;
+ kurtosis -= 3;
+ double x_mean = d.k() * (1 - d.p()) / d.p();
+ double x_var = x_mean / d.p();
+ double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
+ double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
+ assert(std::abs(mean - x_mean) / x_mean < 0.01);
+ assert(std::abs(var - x_var) / x_var < 0.01);
+ assert(std::abs(skew - x_skew) / x_skew < 0.01);
+ assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
+ }
+ {
+ typedef std::negative_binomial_distribution<> D;
+ typedef std::mt19937 G;
+ G g;
+ D d(40, .25);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v <= d.max());
+ u.push_back(v);
+ }
+ double mean = std::accumulate(u.begin(), u.end(),
+ double(0)) / u.size();
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (int i = 0; i < u.size(); ++i)
+ {
+ double d = (u[i] - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= u.size();
+ double dev = std::sqrt(var);
+ skew /= u.size() * dev * var;
+ kurtosis /= u.size() * var * var;
+ kurtosis -= 3;
+ double x_mean = d.k() * (1 - d.p()) / d.p();
+ double x_var = x_mean / d.p();
+ double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
+ double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
+ assert(std::abs(mean - x_mean) / x_mean < 0.01);
+ assert(std::abs(var - x_var) / x_var < 0.01);
+ assert(std::abs(skew - x_skew) / x_skew < 0.01);
+ assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
+ }
+ {
+ typedef std::negative_binomial_distribution<> D;
+ typedef std::mt19937 G;
+ G g;
+ D d(40, 1);
+ const int N = 1000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v <= d.max());
+ u.push_back(v);
+ }
+ double mean = std::accumulate(u.begin(), u.end(),
+ double(0)) / u.size();
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (int i = 0; i < u.size(); ++i)
+ {
+ double d = (u[i] - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= u.size();
+ double dev = std::sqrt(var);
+ skew /= u.size() * dev * var;
+ kurtosis /= u.size() * var * var;
+ kurtosis -= 3;
+ double x_mean = d.k() * (1 - d.p()) / d.p();
+ double x_var = x_mean / d.p();
+ double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
+ double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
+ assert(mean == x_mean);
+ assert(var == x_var);
+ }
+ {
+ typedef std::negative_binomial_distribution<> D;
+ typedef std::mt19937 G;
+ G g;
+ D d(400, 0.5);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v <= d.max());
+ u.push_back(v);
+ }
+ double mean = std::accumulate(u.begin(), u.end(),
+ double(0)) / u.size();
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (int i = 0; i < u.size(); ++i)
+ {
+ double d = (u[i] - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= u.size();
+ double dev = std::sqrt(var);
+ skew /= u.size() * dev * var;
+ kurtosis /= u.size() * var * var;
+ kurtosis -= 3;
+ double x_mean = d.k() * (1 - d.p()) / d.p();
+ double x_var = x_mean / d.p();
+ double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
+ double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
+ assert(std::abs(mean - x_mean) / x_mean < 0.01);
+ assert(std::abs(var - x_var) / x_var < 0.01);
+ assert(std::abs(skew - x_skew) / x_skew < 0.04);
+ assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
+ }
+ {
+ typedef std::negative_binomial_distribution<> D;
+ typedef std::mt19937 G;
+ G g;
+ D d(1, 0.05);
+ const int N = 1000000;
+ std::vector<D::result_type> u;
+ for (int i = 0; i < N; ++i)
+ {
+ D::result_type v = d(g);
+ assert(d.min() <= v && v <= d.max());
+ u.push_back(v);
+ }
+ double mean = std::accumulate(u.begin(), u.end(),
+ double(0)) / u.size();
+ double var = 0;
+ double skew = 0;
+ double kurtosis = 0;
+ for (int i = 0; i < u.size(); ++i)
+ {
+ double d = (u[i] - mean);
+ double d2 = sqr(d);
+ var += d2;
+ skew += d * d2;
+ kurtosis += d2 * d2;
+ }
+ var /= u.size();
+ double dev = std::sqrt(var);
+ skew /= u.size() * dev * var;
+ kurtosis /= u.size() * var * var;
+ kurtosis -= 3;
+ double x_mean = d.k() * (1 - d.p()) / d.p();
+ double x_var = x_mean / d.p();
+ double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
+ double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
+ assert(std::abs(mean - x_mean) / x_mean < 0.01);
+ assert(std::abs(var - x_var) / x_var < 0.01);
+ assert(std::abs(skew - x_skew) / x_skew < 0.01);
+ assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
+ }
+}
OpenPOWER on IntegriCloud