diff options
author | Howard Hinnant <hhinnant@apple.com> | 2010-05-16 17:56:20 +0000 |
---|---|---|
committer | Howard Hinnant <hhinnant@apple.com> | 2010-05-16 17:56:20 +0000 |
commit | 45a999719b45e1ef00d928c54ca25ef8ef6889ff (patch) | |
tree | fc92f48f1c2aaa6270ad5851ff1f63b1e91ba1fb /libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp | |
parent | e6ae81b0a201fc1613d3c57b06c2450d0f26ccba (diff) | |
download | bcm5719-llvm-45a999719b45e1ef00d928c54ca25ef8ef6889ff.tar.gz bcm5719-llvm-45a999719b45e1ef00d928c54ca25ef8ef6889ff.zip |
Beefed up the tests for all of the distributions to include checks against the expected skewness and kurtosis
llvm-svn: 103910
Diffstat (limited to 'libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp')
-rw-r--r-- | libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp | 76 |
1 files changed, 68 insertions, 8 deletions
diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp index 4bb9ea10096..2632ab5f3ae 100644 --- a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp +++ b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval_param.pass.cpp @@ -39,60 +39,120 @@ int main() const int N = 100000; std::vector<D::result_type> u; for (int i = 0; i < N; ++i) - u.push_back(d(g, p)); + { + D::result_type v = d(g, p); + assert(0 <= v && v <= p.t()); + u.push_back(v); + } double mean = std::accumulate(u.begin(), u.end(), double(0)) / u.size(); double var = 0; + double skew = 0; + double kurtosis = 0; for (int i = 0; i < u.size(); ++i) - var += sqr(u[i] - mean); + { + double d = (u[i] - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; double x_mean = p.t() * p.p(); double x_var = x_mean*(1-p.p()); + double x_skew = (1-2*p.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var; assert(std::abs(mean - x_mean) / x_mean < 0.01); assert(std::abs(var - x_var) / x_var < 0.01); + assert(std::abs(skew - x_skew) / x_skew < 0.01); + assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01); } { typedef std::binomial_distribution<> D; typedef D::param_type P; - typedef std::minstd_rand G; + typedef std::mt19937 G; G g; D d(16, .75); P p(30, .03125); const int N = 100000; std::vector<D::result_type> u; for (int i = 0; i < N; ++i) - u.push_back(d(g, p)); + { + D::result_type v = d(g, p); + assert(0 <= v && v <= p.t()); + u.push_back(v); + } double mean = std::accumulate(u.begin(), u.end(), double(0)) / u.size(); double var = 0; + double skew = 0; + double kurtosis = 0; for (int i = 0; i < u.size(); ++i) - var += sqr(u[i] - mean); + { + double d = (u[i] - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; double x_mean = p.t() * p.p(); double x_var = x_mean*(1-p.p()); + double x_skew = (1-2*p.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var; assert(std::abs(mean - x_mean) / x_mean < 0.01); assert(std::abs(var - x_var) / x_var < 0.01); + assert(std::abs(skew - x_skew) / x_skew < 0.01); + assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01); } { typedef std::binomial_distribution<> D; typedef D::param_type P; - typedef std::minstd_rand G; + typedef std::mt19937 G; G g; D d(16, .75); P p(40, .25); const int N = 100000; std::vector<D::result_type> u; for (int i = 0; i < N; ++i) - u.push_back(d(g, p)); + { + D::result_type v = d(g, p); + assert(0 <= v && v <= p.t()); + u.push_back(v); + } double mean = std::accumulate(u.begin(), u.end(), double(0)) / u.size(); double var = 0; + double skew = 0; + double kurtosis = 0; for (int i = 0; i < u.size(); ++i) - var += sqr(u[i] - mean); + { + double d = (u[i] - mean); + double d2 = sqr(d); + var += d2; + skew += d * d2; + kurtosis += d2 * d2; + } var /= u.size(); + double dev = std::sqrt(var); + skew /= u.size() * dev * var; + kurtosis /= u.size() * var * var; + kurtosis -= 3; double x_mean = p.t() * p.p(); double x_var = x_mean*(1-p.p()); + double x_skew = (1-2*p.p()) / std::sqrt(x_var); + double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var; assert(std::abs(mean - x_mean) / x_mean < 0.01); assert(std::abs(var - x_var) / x_var < 0.01); + assert(std::abs(skew - x_skew) / x_skew < 0.03); + assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01); } } |