summaryrefslogtreecommitdiffstats
path: root/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp
diff options
context:
space:
mode:
authorEric Fiselier <eric@efcs.ca>2014-12-20 01:40:03 +0000
committerEric Fiselier <eric@efcs.ca>2014-12-20 01:40:03 +0000
commit5a83710e371fe68a06e6e3876c6a2c8b820a8976 (patch)
treeafde4c82ad6704681781c5cd49baa3fbd05c85db /libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp
parentf11e8eab527fba316c64112f6e05de1a79693a3e (diff)
downloadbcm5719-llvm-5a83710e371fe68a06e6e3876c6a2c8b820a8976.tar.gz
bcm5719-llvm-5a83710e371fe68a06e6e3876c6a2c8b820a8976.zip
Move test into test/std subdirectory.
llvm-svn: 224658
Diffstat (limited to 'libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp')
-rw-r--r--libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp475
1 files changed, 0 insertions, 475 deletions
diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp
deleted file mode 100644
index 43c6b546bdb..00000000000
--- a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp
+++ /dev/null
@@ -1,475 +0,0 @@
-//===----------------------------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// REQUIRES: long_tests
-
-// <random>
-
-// template<class IntType = int>
-// class binomial_distribution
-
-// template<class _URNG> result_type operator()(_URNG& g);
-
-#include <random>
-#include <numeric>
-#include <vector>
-#include <cassert>
-
-template <class T>
-inline
-T
-sqr(T x)
-{
- return x * x;
-}
-
-int main()
-{
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937_64 G;
- G g;
- D d(5, .75);
- const int N = 1000000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- skew /= u.size() * dev * var;
- kurtosis /= u.size() * var * var;
- kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
- double x_skew = (1-2*d.p()) / std::sqrt(x_var);
- double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(std::abs((mean - x_mean) / x_mean) < 0.01);
- assert(std::abs((var - x_var) / x_var) < 0.01);
- assert(std::abs((skew - x_skew) / x_skew) < 0.01);
- assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(30, .03125);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- skew /= u.size() * dev * var;
- kurtosis /= u.size() * var * var;
- kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
- double x_skew = (1-2*d.p()) / std::sqrt(x_var);
- double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(std::abs((mean - x_mean) / x_mean) < 0.01);
- assert(std::abs((var - x_var) / x_var) < 0.01);
- assert(std::abs((skew - x_skew) / x_skew) < 0.01);
- assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(40, .25);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- skew /= u.size() * dev * var;
- kurtosis /= u.size() * var * var;
- kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
- double x_skew = (1-2*d.p()) / std::sqrt(x_var);
- double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(std::abs((mean - x_mean) / x_mean) < 0.01);
- assert(std::abs((var - x_var) / x_var) < 0.01);
- assert(std::abs((skew - x_skew) / x_skew) < 0.03);
- assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(40, 0);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- // In this case:
- // skew computes to 0./0. == nan
- // kurtosis computes to 0./0. == nan
- // x_skew == inf
- // x_kurtosis == inf
- // These tests are commented out because UBSan warns about division by 0
-// skew /= u.size() * dev * var;
-// kurtosis /= u.size() * var * var;
-// kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
-// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
-// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(mean == x_mean);
- assert(var == x_var);
-// assert(skew == x_skew);
-// assert(kurtosis == x_kurtosis);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(40, 1);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- // In this case:
- // skew computes to 0./0. == nan
- // kurtosis computes to 0./0. == nan
- // x_skew == -inf
- // x_kurtosis == inf
- // These tests are commented out because UBSan warns about division by 0
-// skew /= u.size() * dev * var;
-// kurtosis /= u.size() * var * var;
-// kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
-// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
-// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(mean == x_mean);
- assert(var == x_var);
-// assert(skew == x_skew);
-// assert(kurtosis == x_kurtosis);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(400, 0.5);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- skew /= u.size() * dev * var;
- kurtosis /= u.size() * var * var;
- kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
- double x_skew = (1-2*d.p()) / std::sqrt(x_var);
- double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(std::abs((mean - x_mean) / x_mean) < 0.01);
- assert(std::abs((var - x_var) / x_var) < 0.01);
- assert(std::abs(skew - x_skew) < 0.01);
- assert(std::abs(kurtosis - x_kurtosis) < 0.01);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(1, 0.5);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- skew /= u.size() * dev * var;
- kurtosis /= u.size() * var * var;
- kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
- double x_skew = (1-2*d.p()) / std::sqrt(x_var);
- double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(std::abs((mean - x_mean) / x_mean) < 0.01);
- assert(std::abs((var - x_var) / x_var) < 0.01);
- assert(std::abs(skew - x_skew) < 0.01);
- assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
- }
- {
- const int N = 100000;
- std::mt19937 gen1;
- std::mt19937 gen2;
-
- std::binomial_distribution<> dist1(5, 0.1);
- std::binomial_distribution<unsigned> dist2(5, 0.1);
-
- for(int i = 0; i < N; ++i)
- assert(dist1(gen1) == dist2(gen2));
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(0, 0.005);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- // In this case:
- // skew computes to 0./0. == nan
- // kurtosis computes to 0./0. == nan
- // x_skew == inf
- // x_kurtosis == inf
- // These tests are commented out because UBSan warns about division by 0
-// skew /= u.size() * dev * var;
-// kurtosis /= u.size() * var * var;
-// kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
-// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
-// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(mean == x_mean);
- assert(var == x_var);
-// assert(skew == x_skew);
-// assert(kurtosis == x_kurtosis);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(0, 0);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- // In this case:
- // skew computes to 0./0. == nan
- // kurtosis computes to 0./0. == nan
- // x_skew == inf
- // x_kurtosis == inf
- // These tests are commented out because UBSan warns about division by 0
-// skew /= u.size() * dev * var;
-// kurtosis /= u.size() * var * var;
-// kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
-// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
-// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(mean == x_mean);
- assert(var == x_var);
-// assert(skew == x_skew);
-// assert(kurtosis == x_kurtosis);
- }
- {
- typedef std::binomial_distribution<> D;
- typedef std::mt19937 G;
- G g;
- D d(0, 1);
- const int N = 100000;
- std::vector<D::result_type> u;
- for (int i = 0; i < N; ++i)
- {
- D::result_type v = d(g);
- assert(d.min() <= v && v <= d.max());
- u.push_back(v);
- }
- double mean = std::accumulate(u.begin(), u.end(),
- double(0)) / u.size();
- double var = 0;
- double skew = 0;
- double kurtosis = 0;
- for (int i = 0; i < u.size(); ++i)
- {
- double d = (u[i] - mean);
- double d2 = sqr(d);
- var += d2;
- skew += d * d2;
- kurtosis += d2 * d2;
- }
- var /= u.size();
- double dev = std::sqrt(var);
- // In this case:
- // skew computes to 0./0. == nan
- // kurtosis computes to 0./0. == nan
- // x_skew == -inf
- // x_kurtosis == inf
- // These tests are commented out because UBSan warns about division by 0
-// skew /= u.size() * dev * var;
-// kurtosis /= u.size() * var * var;
-// kurtosis -= 3;
- double x_mean = d.t() * d.p();
- double x_var = x_mean*(1-d.p());
-// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
-// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
- assert(mean == x_mean);
- assert(var == x_var);
-// assert(skew == x_skew);
-// assert(kurtosis == x_kurtosis);
- }
-}
OpenPOWER on IntegriCloud