diff options
author | Eric Fiselier <eric@efcs.ca> | 2014-12-20 01:40:03 +0000 |
---|---|---|
committer | Eric Fiselier <eric@efcs.ca> | 2014-12-20 01:40:03 +0000 |
commit | 5a83710e371fe68a06e6e3876c6a2c8b820a8976 (patch) | |
tree | afde4c82ad6704681781c5cd49baa3fbd05c85db /libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp | |
parent | f11e8eab527fba316c64112f6e05de1a79693a3e (diff) | |
download | bcm5719-llvm-5a83710e371fe68a06e6e3876c6a2c8b820a8976.tar.gz bcm5719-llvm-5a83710e371fe68a06e6e3876c6a2c8b820a8976.zip |
Move test into test/std subdirectory.
llvm-svn: 224658
Diffstat (limited to 'libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp')
-rw-r--r-- | libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp | 475 |
1 files changed, 0 insertions, 475 deletions
diff --git a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp b/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp deleted file mode 100644 index 43c6b546bdb..00000000000 --- a/libcxx/test/numerics/rand/rand.dis/rand.dist.bern/rand.dist.bern.bin/eval.pass.cpp +++ /dev/null @@ -1,475 +0,0 @@ -//===----------------------------------------------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is dual licensed under the MIT and the University of Illinois Open -// Source Licenses. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// REQUIRES: long_tests - -// <random> - -// template<class IntType = int> -// class binomial_distribution - -// template<class _URNG> result_type operator()(_URNG& g); - -#include <random> -#include <numeric> -#include <vector> -#include <cassert> - -template <class T> -inline -T -sqr(T x) -{ - return x * x; -} - -int main() -{ - { - typedef std::binomial_distribution<> D; - typedef std::mt19937_64 G; - G g; - D d(5, .75); - const int N = 1000000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(30, .03125); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, .25); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs((skew - x_skew) / x_skew) < 0.03); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, 0); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(40, 1); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == -inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(400, 0.5); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs(skew - x_skew) < 0.01); - assert(std::abs(kurtosis - x_kurtosis) < 0.01); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(1, 0.5); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - skew /= u.size() * dev * var; - kurtosis /= u.size() * var * var; - kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); - double x_skew = (1-2*d.p()) / std::sqrt(x_var); - double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(std::abs((mean - x_mean) / x_mean) < 0.01); - assert(std::abs((var - x_var) / x_var) < 0.01); - assert(std::abs(skew - x_skew) < 0.01); - assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01); - } - { - const int N = 100000; - std::mt19937 gen1; - std::mt19937 gen2; - - std::binomial_distribution<> dist1(5, 0.1); - std::binomial_distribution<unsigned> dist2(5, 0.1); - - for(int i = 0; i < N; ++i) - assert(dist1(gen1) == dist2(gen2)); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0, 0.005); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0, 0); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); - } - { - typedef std::binomial_distribution<> D; - typedef std::mt19937 G; - G g; - D d(0, 1); - const int N = 100000; - std::vector<D::result_type> u; - for (int i = 0; i < N; ++i) - { - D::result_type v = d(g); - assert(d.min() <= v && v <= d.max()); - u.push_back(v); - } - double mean = std::accumulate(u.begin(), u.end(), - double(0)) / u.size(); - double var = 0; - double skew = 0; - double kurtosis = 0; - for (int i = 0; i < u.size(); ++i) - { - double d = (u[i] - mean); - double d2 = sqr(d); - var += d2; - skew += d * d2; - kurtosis += d2 * d2; - } - var /= u.size(); - double dev = std::sqrt(var); - // In this case: - // skew computes to 0./0. == nan - // kurtosis computes to 0./0. == nan - // x_skew == -inf - // x_kurtosis == inf - // These tests are commented out because UBSan warns about division by 0 -// skew /= u.size() * dev * var; -// kurtosis /= u.size() * var * var; -// kurtosis -= 3; - double x_mean = d.t() * d.p(); - double x_var = x_mean*(1-d.p()); -// double x_skew = (1-2*d.p()) / std::sqrt(x_var); -// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var; - assert(mean == x_mean); - assert(var == x_var); -// assert(skew == x_skew); -// assert(kurtosis == x_kurtosis); - } -} |