summaryrefslogtreecommitdiffstats
path: root/clang/lib/Analysis/ThreadSafety.cpp
diff options
context:
space:
mode:
authorDeLesley Hutchins <delesley@google.com>2014-07-28 15:57:27 +0000
committerDeLesley Hutchins <delesley@google.com>2014-07-28 15:57:27 +0000
commitea1f83385fab96b5274fb60402e7ce6d0925a2f8 (patch)
treed4d7a5c259719a2a3233373767d3ac8058e1a6c4 /clang/lib/Analysis/ThreadSafety.cpp
parent51510e7f4c38972b4eef7f5b943aac6d9044cb68 (diff)
downloadbcm5719-llvm-ea1f83385fab96b5274fb60402e7ce6d0925a2f8.tar.gz
bcm5719-llvm-ea1f83385fab96b5274fb60402e7ce6d0925a2f8.zip
Thread Safety Analysis: Replace the old and broken SExpr with the new
til::SExpr. This is a large patch, with many small changes to pretty printing and expression lowering to make the new SExpr representation equivalent in functionality to the old. llvm-svn: 214089
Diffstat (limited to 'clang/lib/Analysis/ThreadSafety.cpp')
-rw-r--r--clang/lib/Analysis/ThreadSafety.cpp891
1 files changed, 168 insertions, 723 deletions
diff --git a/clang/lib/Analysis/ThreadSafety.cpp b/clang/lib/Analysis/ThreadSafety.cpp
index 11df61f80fa..f4f174d59bc 100644
--- a/clang/lib/Analysis/ThreadSafety.cpp
+++ b/clang/lib/Analysis/ThreadSafety.cpp
@@ -40,682 +40,107 @@
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
+#include <ostream>
+#include <sstream>
#include <utility>
#include <vector>
-using namespace clang;
-using namespace thread_safety;
+
+namespace clang {
+namespace threadSafety {
// Key method definition
ThreadSafetyHandler::~ThreadSafetyHandler() {}
-namespace {
-
-/// SExpr implements a simple expression language that is used to store,
-/// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr
-/// does not capture surface syntax, and it does not distinguish between
-/// C++ concepts, like pointers and references, that have no real semantic
-/// differences. This simplicity allows SExprs to be meaningfully compared,
-/// e.g.
-/// (x) = x
-/// (*this).foo = this->foo
-/// *&a = a
-///
-/// Thread-safety analysis works by comparing lock expressions. Within the
-/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
-/// a particular mutex object at run-time. Subsequent occurrences of the same
-/// expression (where "same" means syntactic equality) will refer to the same
-/// run-time object if three conditions hold:
-/// (1) Local variables in the expression, such as "x" have not changed.
-/// (2) Values on the heap that affect the expression have not changed.
-/// (3) The expression involves only pure function calls.
-///
-/// The current implementation assumes, but does not verify, that multiple uses
-/// of the same lock expression satisfies these criteria.
-class SExpr {
-private:
- enum ExprOp {
- EOP_Nop, ///< No-op
- EOP_Wildcard, ///< Matches anything.
- EOP_Universal, ///< Universal lock.
- EOP_This, ///< This keyword.
- EOP_NVar, ///< Named variable.
- EOP_LVar, ///< Local variable.
- EOP_Dot, ///< Field access
- EOP_Call, ///< Function call
- EOP_MCall, ///< Method call
- EOP_Index, ///< Array index
- EOP_Unary, ///< Unary operation
- EOP_Binary, ///< Binary operation
- EOP_Unknown ///< Catchall for everything else
- };
-
-
- class SExprNode {
- private:
- unsigned char Op; ///< Opcode of the root node
- unsigned char Flags; ///< Additional opcode-specific data
- unsigned short Sz; ///< Number of child nodes
- const void* Data; ///< Additional opcode-specific data
-
- public:
- SExprNode(ExprOp O, unsigned F, const void* D)
- : Op(static_cast<unsigned char>(O)),
- Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
- { }
-
- unsigned size() const { return Sz; }
- void setSize(unsigned S) { Sz = S; }
-
- ExprOp kind() const { return static_cast<ExprOp>(Op); }
-
- const NamedDecl* getNamedDecl() const {
- assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
- return reinterpret_cast<const NamedDecl*>(Data);
- }
-
- const NamedDecl* getFunctionDecl() const {
- assert(Op == EOP_Call || Op == EOP_MCall);
- return reinterpret_cast<const NamedDecl*>(Data);
- }
-
- bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
- void setArrow(bool A) { Flags = A ? 1 : 0; }
-
- unsigned arity() const {
- switch (Op) {
- case EOP_Nop: return 0;
- case EOP_Wildcard: return 0;
- case EOP_Universal: return 0;
- case EOP_NVar: return 0;
- case EOP_LVar: return 0;
- case EOP_This: return 0;
- case EOP_Dot: return 1;
- case EOP_Call: return Flags+1; // First arg is function.
- case EOP_MCall: return Flags+1; // First arg is implicit obj.
- case EOP_Index: return 2;
- case EOP_Unary: return 1;
- case EOP_Binary: return 2;
- case EOP_Unknown: return Flags;
- }
- return 0;
- }
-
- bool operator==(const SExprNode& Other) const {
- // Ignore flags and size -- they don't matter.
- return (Op == Other.Op &&
- Data == Other.Data);
- }
-
- bool operator!=(const SExprNode& Other) const {
- return !(*this == Other);
- }
-
- bool matches(const SExprNode& Other) const {
- return (*this == Other) ||
- (Op == EOP_Wildcard) ||
- (Other.Op == EOP_Wildcard);
- }
- };
-
-
- /// \brief Encapsulates the lexical context of a function call. The lexical
- /// context includes the arguments to the call, including the implicit object
- /// argument. When an attribute containing a mutex expression is attached to
- /// a method, the expression may refer to formal parameters of the method.
- /// Actual arguments must be substituted for formal parameters to derive
- /// the appropriate mutex expression in the lexical context where the function
- /// is called. PrevCtx holds the context in which the arguments themselves
- /// should be evaluated; multiple calling contexts can be chained together
- /// by the lock_returned attribute.
- struct CallingContext {
- const NamedDecl* AttrDecl; // The decl to which the attribute is attached.
- const Expr* SelfArg; // Implicit object argument -- e.g. 'this'
- bool SelfArrow; // is Self referred to with -> or .?
- unsigned NumArgs; // Number of funArgs
- const Expr* const* FunArgs; // Function arguments
- CallingContext* PrevCtx; // The previous context; or 0 if none.
-
- CallingContext(const NamedDecl *D)
- : AttrDecl(D), SelfArg(nullptr), SelfArrow(false), NumArgs(0),
- FunArgs(nullptr), PrevCtx(nullptr) {}
- };
-
- typedef SmallVector<SExprNode, 4> NodeVector;
-
-private:
- // A SExpr is a list of SExprNodes in prefix order. The Size field allows
- // the list to be traversed as a tree.
- NodeVector NodeVec;
-
-private:
- unsigned make(ExprOp O, unsigned F = 0, const void *D = nullptr) {
- NodeVec.push_back(SExprNode(O, F, D));
- return NodeVec.size() - 1;
- }
-
- unsigned makeNop() {
- return make(EOP_Nop);
- }
-
- unsigned makeWildcard() {
- return make(EOP_Wildcard);
- }
-
- unsigned makeUniversal() {
- return make(EOP_Universal);
- }
-
- unsigned makeNamedVar(const NamedDecl *D) {
- return make(EOP_NVar, 0, D);
- }
-
- unsigned makeLocalVar(const NamedDecl *D) {
- return make(EOP_LVar, 0, D);
- }
-
- unsigned makeThis() {
- return make(EOP_This);
- }
-
- unsigned makeDot(const NamedDecl *D, bool Arrow) {
- return make(EOP_Dot, Arrow ? 1 : 0, D);
- }
-
- unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
- return make(EOP_Call, NumArgs, D);
- }
-
- // Grab the very first declaration of virtual method D
- const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
- while (true) {
- D = D->getCanonicalDecl();
- CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
- E = D->end_overridden_methods();
- if (I == E)
- return D; // Method does not override anything
- D = *I; // FIXME: this does not work with multiple inheritance.
- }
- return nullptr;
- }
-
- unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
- return make(EOP_MCall, NumArgs, getFirstVirtualDecl(D));
- }
-
- unsigned makeIndex() {
- return make(EOP_Index);
- }
-
- unsigned makeUnary() {
- return make(EOP_Unary);
- }
-
- unsigned makeBinary() {
- return make(EOP_Binary);
- }
-
- unsigned makeUnknown(unsigned Arity) {
- return make(EOP_Unknown, Arity);
- }
-
- inline bool isCalleeArrow(const Expr *E) {
- const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
- return ME ? ME->isArrow() : false;
- }
-
- /// Build an SExpr from the given C++ expression.
- /// Recursive function that terminates on DeclRefExpr.
- /// Note: this function merely creates a SExpr; it does not check to
- /// ensure that the original expression is a valid mutex expression.
- ///
- /// NDeref returns the number of Derefence and AddressOf operations
- /// preceding the Expr; this is used to decide whether to pretty-print
- /// SExprs with . or ->.
- unsigned buildSExpr(const Expr *Exp, CallingContext *CallCtx,
- int *NDeref = nullptr) {
- if (!Exp)
- return 0;
-
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
- const NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
- const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
- if (PV) {
- const FunctionDecl *FD =
- cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
- unsigned i = PV->getFunctionScopeIndex();
-
- if (CallCtx && CallCtx->FunArgs &&
- FD == CallCtx->AttrDecl->getCanonicalDecl()) {
- // Substitute call arguments for references to function parameters
- assert(i < CallCtx->NumArgs);
- return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
- }
- // Map the param back to the param of the original function declaration.
- makeNamedVar(FD->getParamDecl(i));
- return 1;
- }
- // Not a function parameter -- just store the reference.
- makeNamedVar(ND);
- return 1;
- } else if (isa<CXXThisExpr>(Exp)) {
- // Substitute parent for 'this'
- if (CallCtx && CallCtx->SelfArg) {
- if (!CallCtx->SelfArrow && NDeref)
- // 'this' is a pointer, but self is not, so need to take address.
- --(*NDeref);
- return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
- }
- else {
- makeThis();
- return 1;
- }
- } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
- const NamedDecl *ND = ME->getMemberDecl();
- int ImplicitDeref = ME->isArrow() ? 1 : 0;
- unsigned Root = makeDot(ND, false);
- unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
- NodeVec[Root].setArrow(ImplicitDeref > 0);
- NodeVec[Root].setSize(Sz + 1);
- return Sz + 1;
- } else if (const CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
- // When calling a function with a lock_returned attribute, replace
- // the function call with the expression in lock_returned.
- const CXXMethodDecl *MD = CMCE->getMethodDecl()->getMostRecentDecl();
- if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
- CallingContext LRCallCtx(CMCE->getMethodDecl());
- LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
- LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee());
- LRCallCtx.NumArgs = CMCE->getNumArgs();
- LRCallCtx.FunArgs = CMCE->getArgs();
- LRCallCtx.PrevCtx = CallCtx;
- return buildSExpr(At->getArg(), &LRCallCtx);
- }
- // Hack to treat smart pointers and iterators as pointers;
- // ignore any method named get().
- if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
- CMCE->getNumArgs() == 0) {
- if (NDeref && isCalleeArrow(CMCE->getCallee()))
- ++(*NDeref);
- return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
- }
- unsigned NumCallArgs = CMCE->getNumArgs();
- unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
- unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
- const Expr* const* CallArgs = CMCE->getArgs();
- for (unsigned i = 0; i < NumCallArgs; ++i) {
- Sz += buildSExpr(CallArgs[i], CallCtx);
- }
- NodeVec[Root].setSize(Sz + 1);
- return Sz + 1;
- } else if (const CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
- const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
- if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
- CallingContext LRCallCtx(CE->getDirectCallee());
- LRCallCtx.NumArgs = CE->getNumArgs();
- LRCallCtx.FunArgs = CE->getArgs();
- LRCallCtx.PrevCtx = CallCtx;
- return buildSExpr(At->getArg(), &LRCallCtx);
- }
- // Treat smart pointers and iterators as pointers;
- // ignore the * and -> operators.
- if (const CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
- OverloadedOperatorKind k = OE->getOperator();
- if (k == OO_Star) {
- if (NDeref) ++(*NDeref);
- return buildSExpr(OE->getArg(0), CallCtx, NDeref);
- }
- else if (k == OO_Arrow) {
- return buildSExpr(OE->getArg(0), CallCtx, NDeref);
- }
- }
- unsigned NumCallArgs = CE->getNumArgs();
- unsigned Root = makeCall(NumCallArgs, nullptr);
- unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
- const Expr* const* CallArgs = CE->getArgs();
- for (unsigned i = 0; i < NumCallArgs; ++i) {
- Sz += buildSExpr(CallArgs[i], CallCtx);
- }
- NodeVec[Root].setSize(Sz+1);
- return Sz+1;
- } else if (const BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
- unsigned Root = makeBinary();
- unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
- Sz += buildSExpr(BOE->getRHS(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
- // Ignore & and * operators -- they're no-ops.
- // However, we try to figure out whether the expression is a pointer,
- // so we can use . and -> appropriately in error messages.
- if (UOE->getOpcode() == UO_Deref) {
- if (NDeref) ++(*NDeref);
- return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
- }
- if (UOE->getOpcode() == UO_AddrOf) {
- if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
- if (DRE->getDecl()->isCXXInstanceMember()) {
- // This is a pointer-to-member expression, e.g. &MyClass::mu_.
- // We interpret this syntax specially, as a wildcard.
- unsigned Root = makeDot(DRE->getDecl(), false);
- makeWildcard();
- NodeVec[Root].setSize(2);
- return 2;
- }
- }
- if (NDeref) --(*NDeref);
- return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
- }
- unsigned Root = makeUnary();
- unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const ArraySubscriptExpr *ASE =
- dyn_cast<ArraySubscriptExpr>(Exp)) {
- unsigned Root = makeIndex();
- unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
- Sz += buildSExpr(ASE->getIdx(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const AbstractConditionalOperator *CE =
- dyn_cast<AbstractConditionalOperator>(Exp)) {
- unsigned Root = makeUnknown(3);
- unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
- Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
- Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
- unsigned Root = makeUnknown(3);
- unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
- Sz += buildSExpr(CE->getLHS(), CallCtx);
- Sz += buildSExpr(CE->getRHS(), CallCtx);
- NodeVec[Root].setSize(Sz);
- return Sz;
- } else if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
- return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
- } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
- return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
- } else if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
- return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
- } else if (const CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
- return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
- } else if (isa<CharacterLiteral>(Exp) ||
- isa<CXXNullPtrLiteralExpr>(Exp) ||
- isa<GNUNullExpr>(Exp) ||
- isa<CXXBoolLiteralExpr>(Exp) ||
- isa<FloatingLiteral>(Exp) ||
- isa<ImaginaryLiteral>(Exp) ||
- isa<IntegerLiteral>(Exp) ||
- isa<StringLiteral>(Exp) ||
- isa<ObjCStringLiteral>(Exp)) {
- makeNop();
- return 1; // FIXME: Ignore literals for now
- } else {
- makeNop();
- return 1; // Ignore. FIXME: mark as invalid expression?
- }
- }
-
- /// \brief Construct a SExpr from an expression.
- /// \param MutexExp The original mutex expression within an attribute
- /// \param DeclExp An expression involving the Decl on which the attribute
- /// occurs.
- /// \param D The declaration to which the lock/unlock attribute is attached.
- void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp,
- const NamedDecl *D, VarDecl *SelfDecl = nullptr) {
- CallingContext CallCtx(D);
-
- if (MutexExp) {
- if (const StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
- if (SLit->getString() == StringRef("*"))
- // The "*" expr is a universal lock, which essentially turns off
- // checks until it is removed from the lockset.
- makeUniversal();
- else
- // Ignore other string literals for now.
- makeNop();
- return;
- }
- }
-
- // If we are processing a raw attribute expression, with no substitutions.
- if (!DeclExp) {
- buildSExpr(MutexExp, nullptr);
- return;
- }
-
- // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
- // for formal parameters when we call buildMutexID later.
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
- CallCtx.SelfArg = ME->getBase();
- CallCtx.SelfArrow = ME->isArrow();
- } else if (const CXXMemberCallExpr *CE =
- dyn_cast<CXXMemberCallExpr>(DeclExp)) {
- CallCtx.SelfArg = CE->getImplicitObjectArgument();
- CallCtx.SelfArrow = isCalleeArrow(CE->getCallee());
- CallCtx.NumArgs = CE->getNumArgs();
- CallCtx.FunArgs = CE->getArgs();
- } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
- CallCtx.NumArgs = CE->getNumArgs();
- CallCtx.FunArgs = CE->getArgs();
- } else if (const CXXConstructExpr *CE =
- dyn_cast<CXXConstructExpr>(DeclExp)) {
- CallCtx.SelfArg = nullptr; // Will be set below
- CallCtx.NumArgs = CE->getNumArgs();
- CallCtx.FunArgs = CE->getArgs();
- } else if (D && isa<CXXDestructorDecl>(D)) {
- // There's no such thing as a "destructor call" in the AST.
- CallCtx.SelfArg = DeclExp;
- }
+class TILPrinter :
+ public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
- // Hack to handle constructors, where self cannot be recovered from
- // the expression.
- if (SelfDecl && !CallCtx.SelfArg) {
- DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
- SelfDecl->getLocation());
- CallCtx.SelfArg = &SelfDRE;
-
- // If the attribute has no arguments, then assume the argument is "this".
- if (!MutexExp)
- buildSExpr(CallCtx.SelfArg, nullptr);
- else // For most attributes.
- buildSExpr(MutexExp, &CallCtx);
- return;
- }
- // If the attribute has no arguments, then assume the argument is "this".
- if (!MutexExp)
- buildSExpr(CallCtx.SelfArg, nullptr);
- else // For most attributes.
- buildSExpr(MutexExp, &CallCtx);
- }
+/// Issue a warning about an invalid lock expression
+static void warnInvalidLock(ThreadSafetyHandler &Handler,
+ const Expr *MutexExp, const NamedDecl *D,
+ const Expr *DeclExp, StringRef Kind) {
+ SourceLocation Loc;
+ if (DeclExp)
+ Loc = DeclExp->getExprLoc();
- /// \brief Get index of next sibling of node i.
- unsigned getNextSibling(unsigned i) const {
- return i + NodeVec[i].size();
- }
+ // FIXME: add a note about the attribute location in MutexExp or D
+ if (Loc.isValid())
+ Handler.handleInvalidLockExp(Kind, Loc);
+}
-public:
- explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
- /// \param MutexExp The original mutex expression within an attribute
- /// \param DeclExp An expression involving the Decl on which the attribute
- /// occurs.
- /// \param D The declaration to which the lock/unlock attribute is attached.
- /// Caller must check isValid() after construction.
- SExpr(const Expr *MutexExp, const Expr *DeclExp, const NamedDecl *D,
- VarDecl *SelfDecl = nullptr) {
- buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
- }
+// Various helper functions on til::SExpr
+namespace sx {
- /// Return true if this is a valid decl sequence.
- /// Caller must call this by hand after construction to handle errors.
- bool isValid() const {
- return !NodeVec.empty();
- }
+bool isUniversal(const til::SExpr *E) {
+ return isa<til::Wildcard>(E);
+}
- bool shouldIgnore() const {
- // Nop is a mutex that we have decided to deliberately ignore.
- assert(NodeVec.size() > 0 && "Invalid Mutex");
- return NodeVec[0].kind() == EOP_Nop;
- }
+bool equals(const til::SExpr *E1, const til::SExpr *E2) {
+ return til::EqualsComparator::compareExprs(E1, E2);
+}
- bool isUniversal() const {
- assert(NodeVec.size() > 0 && "Invalid Mutex");
- return NodeVec[0].kind() == EOP_Universal;
+const til::SExpr* ignorePtrCasts(const til::SExpr *E) {
+ if (auto *CE = dyn_cast<til::Cast>(E)) {
+ if (CE->castOpcode() == til::CAST_objToPtr)
+ return CE->expr();
}
+ return E;
+}
- /// Issue a warning about an invalid lock expression
- static void warnInvalidLock(ThreadSafetyHandler &Handler,
- const Expr *MutexExp, const Expr *DeclExp,
- const NamedDecl *D, StringRef Kind) {
- SourceLocation Loc;
- if (DeclExp)
- Loc = DeclExp->getExprLoc();
+bool matches(const til::SExpr *E1, const til::SExpr *E2) {
+ // We treat a top-level wildcard as the "univsersal" lock.
+ // It matches everything for the purpose of checking locks, but not
+ // for unlocking them.
+ if (isa<til::Wildcard>(E1))
+ return isa<til::Wildcard>(E2);
+ if (isa<til::Wildcard>(E2))
+ return isa<til::Wildcard>(E1);
- // FIXME: add a note about the attribute location in MutexExp or D
- if (Loc.isValid())
- Handler.handleInvalidLockExp(Kind, Loc);
- }
+ return til::MatchComparator::compareExprs(E1, E2);
+}
- bool operator==(const SExpr &other) const {
- return NodeVec == other.NodeVec;
- }
+bool partiallyMatches(const til::SExpr *E1, const til::SExpr *E2) {
+ auto *PE1 = dyn_cast_or_null<til::Project>(E1);
+ if (!PE1)
+ return false;
+ auto *PE2 = dyn_cast_or_null<til::Project>(E2);
+ if (!PE2)
+ return false;
+ return PE1->clangDecl() == PE2->clangDecl();
+}
- bool operator!=(const SExpr &other) const {
- return !(*this == other);
- }
+std::string toString(const til::SExpr *E) {
+ std::stringstream ss;
+ til::StdPrinter::print(E, ss);
+ return ss.str();
+}
- bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
- if (NodeVec[i].matches(Other.NodeVec[j])) {
- unsigned ni = NodeVec[i].arity();
- unsigned nj = Other.NodeVec[j].arity();
- unsigned n = (ni < nj) ? ni : nj;
- bool Result = true;
- unsigned ci = i+1; // first child of i
- unsigned cj = j+1; // first child of j
- for (unsigned k = 0; k < n;
- ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
- Result = Result && matches(Other, ci, cj);
- }
- return Result;
- }
- return false;
- }
+bool shouldIgnore(const til::SExpr *E) {
+ if (!E)
+ return true;
+ // Trap mutex expressions like nullptr, or 0.
+ // Any literal value is nonsense.
+ if (isa<til::Literal>(E))
+ return true;
+ return false;
+}
- // A partial match between a.mu and b.mu returns true a and b have the same
- // type (and thus mu refers to the same mutex declaration), regardless of
- // whether a and b are different objects or not.
- bool partiallyMatches(const SExpr &Other) const {
- if (NodeVec[0].kind() == EOP_Dot)
- return NodeVec[0].matches(Other.NodeVec[0]);
- return false;
- }
+} // end namespace sx
- /// \brief Pretty print a lock expression for use in error messages.
- std::string toString(unsigned i = 0) const {
- assert(isValid());
- if (i >= NodeVec.size())
- return "";
-
- const SExprNode* N = &NodeVec[i];
- switch (N->kind()) {
- case EOP_Nop:
- return "_";
- case EOP_Wildcard:
- return "(?)";
- case EOP_Universal:
- return "*";
- case EOP_This:
- return "this";
- case EOP_NVar:
- case EOP_LVar: {
- return N->getNamedDecl()->getNameAsString();
- }
- case EOP_Dot: {
- if (NodeVec[i+1].kind() == EOP_Wildcard) {
- std::string S = "&";
- S += N->getNamedDecl()->getQualifiedNameAsString();
- return S;
- }
- std::string FieldName = N->getNamedDecl()->getNameAsString();
- if (NodeVec[i+1].kind() == EOP_This)
- return FieldName;
- std::string S = toString(i+1);
- if (N->isArrow())
- return S + "->" + FieldName;
- else
- return S + "." + FieldName;
- }
- case EOP_Call: {
- std::string S = toString(i+1) + "(";
- unsigned NumArgs = N->arity()-1;
- unsigned ci = getNextSibling(i+1);
- for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
- S += toString(ci);
- if (k+1 < NumArgs) S += ",";
- }
- S += ")";
- return S;
- }
- case EOP_MCall: {
- std::string S = "";
- if (NodeVec[i+1].kind() != EOP_This)
- S = toString(i+1) + ".";
- if (const NamedDecl *D = N->getFunctionDecl())
- S += D->getNameAsString() + "(";
- else
- S += "#(";
- unsigned NumArgs = N->arity()-1;
- unsigned ci = getNextSibling(i+1);
- for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
- S += toString(ci);
- if (k+1 < NumArgs) S += ",";
- }
- S += ")";
- return S;
- }
- case EOP_Index: {
- std::string S1 = toString(i+1);
- std::string S2 = toString(i+1 + NodeVec[i+1].size());
- return S1 + "[" + S2 + "]";
- }
- case EOP_Unary: {
- std::string S = toString(i+1);
- return "#" + S;
- }
- case EOP_Binary: {
- std::string S1 = toString(i+1);
- std::string S2 = toString(i+1 + NodeVec[i+1].size());
- return "(" + S1 + "#" + S2 + ")";
- }
- case EOP_Unknown: {
- unsigned NumChildren = N->arity();
- if (NumChildren == 0)
- return "(...)";
- std::string S = "(";
- unsigned ci = i+1;
- for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
- S += toString(ci);
- if (j+1 < NumChildren) S += "#";
- }
- S += ")";
- return S;
- }
- }
- return "";
- }
-};
/// \brief A short list of SExprs
-class MutexIDList : public SmallVector<SExpr, 3> {
+class MutexIDList : public SmallVector<const til::SExpr*, 3> {
public:
/// \brief Push M onto list, but discard duplicates.
- void push_back_nodup(const SExpr& M) {
- if (end() == std::find(begin(), end(), M))
- push_back(M);
+ void push_back_nodup(const til::SExpr *E) {
+ iterator It = std::find_if(begin(), end(), [=](const til::SExpr *E2) {
+ return sx::equals(E, E2);
+ });
+ if (It == end())
+ push_back(E);
}
};
@@ -735,15 +160,15 @@ struct LockData {
LockKind LKind;
bool Asserted; // for asserted locks
bool Managed; // for ScopedLockable objects
- SExpr UnderlyingMutex; // for ScopedLockable objects
+ const til::SExpr* UnderlyingMutex; // for ScopedLockable objects
LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false,
bool Asrt=false)
: AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M),
- UnderlyingMutex(Decl::EmptyShell())
+ UnderlyingMutex(nullptr)
{}
- LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
+ LockData(SourceLocation AcquireLoc, LockKind LKind, const til::SExpr *Mu)
: AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false),
UnderlyingMutex(Mu)
{}
@@ -771,10 +196,10 @@ struct LockData {
/// in the program execution. Currently, this is information regarding a lock
/// that is held at that point.
struct FactEntry {
- SExpr MutID;
+ const til::SExpr *MutID;
LockData LDat;
- FactEntry(const SExpr& M, const LockData& L)
+ FactEntry(const til::SExpr* M, const LockData& L)
: MutID(M), LDat(L)
{ }
};
@@ -789,8 +214,8 @@ private:
std::vector<FactEntry> Facts;
public:
- FactID newLock(const SExpr& M, const LockData& L) {
- Facts.push_back(FactEntry(M,L));
+ FactID newLock(const til::SExpr *M, const LockData& L) {
+ Facts.push_back(FactEntry(M, L));
return static_cast<unsigned short>(Facts.size() - 1);
}
@@ -824,66 +249,67 @@ public:
bool isEmpty() const { return FactIDs.size() == 0; }
- FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
+ FactID addLock(FactManager& FM, const til::SExpr *M, const LockData& L) {
FactID F = FM.newLock(M, L);
FactIDs.push_back(F);
return F;
}
- bool removeLock(FactManager& FM, const SExpr& M) {
+ bool removeLock(FactManager& FM, const til::SExpr *M) {
unsigned n = FactIDs.size();
if (n == 0)
return false;
for (unsigned i = 0; i < n-1; ++i) {
- if (FM[FactIDs[i]].MutID.matches(M)) {
+ if (sx::matches(FM[FactIDs[i]].MutID, M)) {
FactIDs[i] = FactIDs[n-1];
FactIDs.pop_back();
return true;
}
}
- if (FM[FactIDs[n-1]].MutID.matches(M)) {
+ if (sx::matches(FM[FactIDs[n-1]].MutID, M)) {
FactIDs.pop_back();
return true;
}
return false;
}
- iterator findLockIter(FactManager &FM, const SExpr &M) {
+ iterator findLockIter(FactManager &FM, const til::SExpr *M) {
return std::find_if(begin(), end(), [&](FactID ID) {
- return FM[ID].MutID.matches(M);
+ return sx::matches(FM[ID].MutID, M);
});
}
- LockData *findLock(FactManager &FM, const SExpr &M) const {
+ LockData *findLock(FactManager &FM, const til::SExpr *M) const {
auto I = std::find_if(begin(), end(), [&](FactID ID) {
- return FM[ID].MutID.matches(M);
+ return sx::matches(FM[ID].MutID, M);
});
return I != end() ? &FM[*I].LDat : nullptr;
}
- LockData *findLockUniv(FactManager &FM, const SExpr &M) const {
+ LockData *findLockUniv(FactManager &FM, const til::SExpr *M) const {
auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
- const SExpr &Expr = FM[ID].MutID;
- return Expr.isUniversal() || Expr.matches(M);
+ const til::SExpr *E = FM[ID].MutID;
+ return sx::isUniversal(E) || sx::matches(E, M);
});
return I != end() ? &FM[*I].LDat : nullptr;
}
- FactEntry *findPartialMatch(FactManager &FM, const SExpr &M) const {
+ FactEntry *findPartialMatch(FactManager &FM, const til::SExpr *M) const {
auto I = std::find_if(begin(), end(), [&](FactID ID) {
- return FM[ID].MutID.partiallyMatches(M);
+ return sx::partiallyMatches(FM[ID].MutID, M);
});
return I != end() ? &FM[*I] : nullptr;
}
};
+
/// A Lockset maps each SExpr (defined above) to information about how it has
/// been locked.
-typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
+typedef llvm::ImmutableMap<til::SExpr*, LockData> Lockset;
typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
class LocalVariableMap;
@@ -1408,18 +834,24 @@ static void findBlockLocations(CFG *CFGraph,
class ThreadSafetyAnalyzer {
friend class BuildLockset;
+ llvm::BumpPtrAllocator Bpa;
+ threadSafety::til::MemRegionRef Arena;
+ threadSafety::SExprBuilder SxBuilder;
+
ThreadSafetyHandler &Handler;
LocalVariableMap LocalVarMap;
FactManager FactMan;
std::vector<CFGBlockInfo> BlockInfo;
public:
- ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
+ ThreadSafetyAnalyzer(ThreadSafetyHandler &H)
+ : Arena(&Bpa), SxBuilder(Arena), Handler(H) {}
- void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat,
+ void addLock(FactSet &FSet, const til::SExpr *Mutex, const LockData &LDat,
StringRef DiagKind);
- void removeLock(FactSet &FSet, const SExpr &Mutex, SourceLocation UnlockLoc,
- bool FullyRemove, LockKind Kind, StringRef DiagKind);
+ void removeLock(FactSet &FSet, const til::SExpr *Mutex,
+ SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
+ StringRef DiagKind);
template <typename AttrType>
void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
@@ -1533,16 +965,16 @@ ClassifyDiagnostic(const AttrTy *A) {
/// \brief Add a new lock to the lockset, warning if the lock is already there.
/// \param Mutex -- the Mutex expression for the lock
/// \param LDat -- the LockData for the lock
-void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
+void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const til::SExpr *Mutex,
const LockData &LDat, StringRef DiagKind) {
// FIXME: deal with acquired before/after annotations.
// FIXME: Don't always warn when we have support for reentrant locks.
- if (Mutex.shouldIgnore())
+ if (sx::shouldIgnore(Mutex))
return;
if (FSet.findLock(FactMan, Mutex)) {
if (!LDat.Asserted)
- Handler.handleDoubleLock(DiagKind, Mutex.toString(), LDat.AcquireLoc);
+ Handler.handleDoubleLock(DiagKind, sx::toString(Mutex), LDat.AcquireLoc);
} else {
FSet.addLock(FactMan, Mutex, LDat);
}
@@ -1552,28 +984,28 @@ void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
/// \brief Remove a lock from the lockset, warning if the lock is not there.
/// \param Mutex The lock expression corresponding to the lock to be removed
/// \param UnlockLoc The source location of the unlock (only used in error msg)
-void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const SExpr &Mutex,
+void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const til::SExpr *Mutex,
SourceLocation UnlockLoc,
bool FullyRemove, LockKind ReceivedKind,
StringRef DiagKind) {
- if (Mutex.shouldIgnore())
+ if (sx::shouldIgnore(Mutex))
return;
const LockData *LDat = FSet.findLock(FactMan, Mutex);
if (!LDat) {
- Handler.handleUnmatchedUnlock(DiagKind, Mutex.toString(), UnlockLoc);
+ Handler.handleUnmatchedUnlock(DiagKind, sx::toString(Mutex), UnlockLoc);
return;
}
// Generic lock removal doesn't care about lock kind mismatches, but
// otherwise diagnose when the lock kinds are mismatched.
if (ReceivedKind != LK_Generic && LDat->LKind != ReceivedKind) {
- Handler.handleIncorrectUnlockKind(DiagKind, Mutex.toString(), LDat->LKind,
- ReceivedKind, UnlockLoc);
+ Handler.handleIncorrectUnlockKind(DiagKind, sx::toString(Mutex),
+ LDat->LKind, ReceivedKind, UnlockLoc);
return;
}
- if (LDat->UnderlyingMutex.isValid()) {
+ if (LDat->UnderlyingMutex) {
// This is scoped lockable object, which manages the real mutex.
if (FullyRemove) {
// We're destroying the managing object.
@@ -1585,7 +1017,7 @@ void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const SExpr &Mutex,
// managing object. Warn on dual release.
if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
Handler.handleUnmatchedUnlock(
- DiagKind, LDat->UnderlyingMutex.toString(), UnlockLoc);
+ DiagKind, sx::toString(LDat->UnderlyingMutex), UnlockLoc);
}
FSet.removeLock(FactMan, LDat->UnderlyingMutex);
return;
@@ -1603,20 +1035,25 @@ void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
VarDecl *SelfDecl) {
if (Attr->args_size() == 0) {
// The mutex held is the "this" object.
- SExpr Mu(nullptr, Exp, D, SelfDecl);
- if (!Mu.isValid())
- SExpr::warnInvalidLock(Handler, nullptr, Exp, D,
- ClassifyDiagnostic(Attr));
- else
+ til::SExpr *Mu = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
+ if (Mu && isa<til::Undefined>(Mu)) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ return;
+ }
+ //else
+ if (Mu)
Mtxs.push_back_nodup(Mu);
return;
}
for (const auto *Arg : Attr->args()) {
- SExpr Mu(Arg, Exp, D, SelfDecl);
- if (!Mu.isValid())
- SExpr::warnInvalidLock(Handler, Arg, Exp, D, ClassifyDiagnostic(Attr));
- else
+ til::SExpr *Mu = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
+ if (Mu && isa<til::Undefined>(Mu)) {
+ warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
+ return;
+ }
+ //else
+ if (Mu)
Mtxs.push_back_nodup(Mu);
}
}
@@ -1845,11 +1282,12 @@ void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
StringRef DiagKind) {
LockKind LK = getLockKindFromAccessKind(AK);
- SExpr Mutex(MutexExp, Exp, D);
- if (!Mutex.isValid()) {
- SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind);
+ til::SExpr *Mutex = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (!Mutex) {
+ // TODO: invalid locks?
+ // warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
return;
- } else if (Mutex.shouldIgnore()) {
+ } else if (sx::shouldIgnore(Mutex)) {
return;
}
@@ -1861,38 +1299,42 @@ void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
if (FEntry) {
// Warn that there's no precise match.
LDat = &FEntry->LDat;
- std::string PartMatchStr = FEntry->MutID.toString();
+ std::string PartMatchStr = sx::toString(FEntry->MutID);
StringRef PartMatchName(PartMatchStr);
- Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(),
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
+ sx::toString(Mutex),
LK, Exp->getExprLoc(),
&PartMatchName);
} else {
// Warn that there's no match at all.
- Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(),
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
+ sx::toString(Mutex),
LK, Exp->getExprLoc());
}
NoError = false;
}
// Make sure the mutex we found is the right kind.
if (NoError && LDat && !LDat->isAtLeast(LK))
- Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(), LK,
- Exp->getExprLoc());
+ Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK,
+ sx::toString(Mutex),
+ LK, Exp->getExprLoc());
}
/// \brief Warn if the LSet contains the given lock.
void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
Expr *MutexExp,
StringRef DiagKind) {
- SExpr Mutex(MutexExp, Exp, D);
- if (!Mutex.isValid()) {
- SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind);
+ til::SExpr *Mutex = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
+ if (!Mutex) {
+ // TODO: invalid locks?
+ // warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
return;
}
LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
if (LDat)
Analyzer->Handler.handleFunExcludesLock(
- DiagKind, D->getNameAsString(), Mutex.toString(), Exp->getExprLoc());
+ DiagKind, D->getNameAsString(), sx::toString(Mutex), Exp->getExprLoc());
}
/// \brief Checks guarded_by and pt_guarded_by attributes.
@@ -2085,7 +1527,7 @@ void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
if (isScopedVar) {
SourceLocation MLoc = VD->getLocation();
DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
- SExpr SMutex(&DRE, nullptr, nullptr);
+ til::SExpr *SMutex = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
for (const auto &M : ExclusiveLocksToAdd)
Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, M),
@@ -2093,6 +1535,12 @@ void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
for (const auto &M : SharedLocksToAdd)
Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, M),
CapDiagKind);
+
+ // handle corner case where the underlying mutex is invalid
+ if (ExclusiveLocksToAdd.size() == 0 && SharedLocksToAdd.size() == 0) {
+ Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive),
+ CapDiagKind);
+ }
}
// Remove locks.
@@ -2254,14 +1702,14 @@ void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
// Find locks in FSet2 that conflict or are not in FSet1, and warn.
for (const auto &Fact : FSet2) {
- const SExpr &FSet2Mutex = FactMan[Fact].MutID;
+ const til::SExpr *FSet2Mutex = FactMan[Fact].MutID;
const LockData &LDat2 = FactMan[Fact].LDat;
FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex);
if (I1 != FSet1.end()) {
const LockData* LDat1 = &FactMan[*I1].LDat;
if (LDat1->LKind != LDat2.LKind) {
- Handler.handleExclusiveAndShared("mutex", FSet2Mutex.toString(),
+ Handler.handleExclusiveAndShared("mutex", sx::toString(FSet2Mutex),
LDat2.AcquireLoc, LDat1->AcquireLoc);
if (Modify && LDat1->LKind != LK_Exclusive) {
// Take the exclusive lock, which is the one in FSet2.
@@ -2273,40 +1721,42 @@ void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
*I1 = Fact;
}
} else {
- if (LDat2.UnderlyingMutex.isValid()) {
+ if (LDat2.UnderlyingMutex) {
if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
// If this is a scoped lock that manages another mutex, and if the
// underlying mutex is still held, then warn about the underlying
// mutex.
Handler.handleMutexHeldEndOfScope("mutex",
- LDat2.UnderlyingMutex.toString(),
+ sx::toString(LDat2.UnderlyingMutex),
LDat2.AcquireLoc, JoinLoc, LEK1);
}
}
- else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted)
- Handler.handleMutexHeldEndOfScope("mutex", FSet2Mutex.toString(),
+ else if (!LDat2.Managed && !sx::isUniversal(FSet2Mutex) &&
+ !LDat2.Asserted)
+ Handler.handleMutexHeldEndOfScope("mutex", sx::toString(FSet2Mutex),
LDat2.AcquireLoc, JoinLoc, LEK1);
}
}
// Find locks in FSet1 that are not in FSet2, and remove them.
for (const auto &Fact : FSet1Orig) {
- const SExpr &FSet1Mutex = FactMan[Fact].MutID;
+ const til::SExpr *FSet1Mutex = FactMan[Fact].MutID;
const LockData &LDat1 = FactMan[Fact].LDat;
if (!FSet2.findLock(FactMan, FSet1Mutex)) {
- if (LDat1.UnderlyingMutex.isValid()) {
+ if (LDat1.UnderlyingMutex) {
if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
// If this is a scoped lock that manages another mutex, and if the
// underlying mutex is still held, then warn about the underlying
// mutex.
Handler.handleMutexHeldEndOfScope("mutex",
- LDat1.UnderlyingMutex.toString(),
+ sx::toString(LDat1.UnderlyingMutex),
LDat1.AcquireLoc, JoinLoc, LEK1);
}
}
- else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted)
- Handler.handleMutexHeldEndOfScope("mutex", FSet1Mutex.toString(),
+ else if (!LDat1.Managed && !sx::isUniversal(FSet1Mutex) &&
+ !LDat1.Asserted)
+ Handler.handleMutexHeldEndOfScope("mutex", sx::toString(FSet1Mutex),
LDat1.AcquireLoc, JoinLoc, LEK2);
if (Modify)
FSet1.removeLock(FactMan, FSet1Mutex);
@@ -2618,11 +2068,6 @@ void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
false);
}
-} // end anonymous namespace
-
-
-namespace clang {
-namespace thread_safety {
/// \brief Check a function's CFG for thread-safety violations.
///
@@ -2647,4 +2092,4 @@ LockKind getLockKindFromAccessKind(AccessKind AK) {
llvm_unreachable("Unknown AccessKind");
}
-}} // end namespace clang::thread_safety
+}} // end namespace clang::threadSafety
OpenPOWER on IntegriCloud