diff options
author | mike-m <mikem.llvm@gmail.com> | 2010-05-06 23:46:27 +0000 |
---|---|---|
committer | mike-m <mikem.llvm@gmail.com> | 2010-05-06 23:46:27 +0000 |
commit | 9bb682b7130d5211fb36c2a7cbfb3de027c5043e (patch) | |
tree | 51e51518ddf912f6527ba7f9248630aaa73e13b8 /clang/docs/LanguageExtensions.html | |
parent | e08af303a642a69accf5d06c5ac61e6b8f2ef6b6 (diff) | |
download | bcm5719-llvm-9bb682b7130d5211fb36c2a7cbfb3de027c5043e.tar.gz bcm5719-llvm-9bb682b7130d5211fb36c2a7cbfb3de027c5043e.zip |
2nd part of: Overhauled llvm/clang docs builds.
llvm-svn: 103214
Diffstat (limited to 'clang/docs/LanguageExtensions.html')
-rw-r--r-- | clang/docs/LanguageExtensions.html | 658 |
1 files changed, 0 insertions, 658 deletions
diff --git a/clang/docs/LanguageExtensions.html b/clang/docs/LanguageExtensions.html deleted file mode 100644 index 838b65f27b8..00000000000 --- a/clang/docs/LanguageExtensions.html +++ /dev/null @@ -1,658 +0,0 @@ -<html> -<head> -<title>Clang Language Extensions</title> -<link type="text/css" rel="stylesheet" href="../menu.css" /> -<link type="text/css" rel="stylesheet" href="../content.css" /> -<style type="text/css"> -td { - vertical-align: top; -} -</style> -</head> -<body> - -<!--#include virtual="../menu.html.incl"--> - -<div id="content"> - -<h1>Clang Language Extensions</h1> - -<ul> -<li><a href="#intro">Introduction</a></li> -<li><a href="#feature_check">Feature Checking Macros</a></li> -<li><a href="#has_include">Include File Checking Macros</a></li> -<li><a href="#builtinmacros">Builtin Macros</a></li> -<li><a href="#vectors">Vectors and Extended Vectors</a></li> -<li><a href="#checking_language_features">Checks for Standard Language Features</a></li> - <ul> - <li><a href="#cxx_exceptions">C++ exceptions</a></li> - <li><a href="#cxx_rtti">C++ RTTI</a></li> - </ul> -<li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a></li> - <ul> - <li><a href="#cxx_attributes">C++0x attributes</a></li> - <li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li> - <li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li> - <li><a href="#cxx_concepts">C++ TR concepts</a></li> - <li><a href="#cxx_lambdas">C++0x lambdas</a></li> - <li><a href="#cxx_nullptr">C++0x nullptr</a></li> - <li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li> - <li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li> - <li><a href="#cxx_auto_type">C++0x type inference</a></li> - <li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li> - </ul> -<li><a href="#blocks">Blocks</a></li> -<li><a href="#overloading-in-c">Function Overloading in C</a></li> -<li><a href="#builtins">Builtin Functions</a> - <ul> - <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li> - <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li> - </ul> -</li> -<li><a href="#targetspecific">Target-Specific Extensions</a> - <ul> - <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li> - </ul> -</li> -<li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a> - <ul> - <li><a href="#analyzerattributes">Analyzer Attributes</a></li> - </ul> -</li> -</ul> - -<!-- ======================================================================= --> -<h2 id="intro">Introduction</h2> -<!-- ======================================================================= --> - -<p>This document describes the language extensions provided by Clang. In -addition to the language extensions listed here, Clang aims to support a broad -range of GCC extensions. Please see the <a -href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for -more information on these extensions.</p> - -<!-- ======================================================================= --> -<h2 id="feature_check">Feature Checking Macros</h2> -<!-- ======================================================================= --> - -<p>Language extensions can be very useful, but only if you know you can depend -on them. In order to allow fine-grain features checks, we support two builtin -function-like macros. This allows you to directly test for a feature in your -code without having to resort to something like autoconf or fragile "compiler -version checks".</p> - -<!-- ======================================================================= --> -<h3 id="__has_builtin">__has_builtin</h3> -<!-- ======================================================================= --> - -<p>This function-like macro takes a single identifier argument that is the name -of a builtin function. It evaluates to 1 if the builtin is supported or 0 if -not. It can be used like this:</p> - -<blockquote> -<pre> -#ifndef __has_builtin // Optional of course. - #define __has_builtin(x) 0 // Compatibility with non-clang compilers. -#endif - -... -#if __has_builtin(__builtin_trap) - __builtin_trap(); -#else - abort(); -#endif -... -</pre> -</blockquote> - - -<!-- ======================================================================= --> -<h3 id="__has_feature">__has_feature</h3> -<!-- ======================================================================= --> - -<p>This function-like macro takes a single identifier argument that is the name -of a feature. It evaluates to 1 if the feature is supported or 0 if not. It -can be used like this:</p> - -<blockquote> -<pre> -#ifndef __has_feature // Optional of course. - #define __has_feature(x) 0 // Compatibility with non-clang compilers. -#endif - -... -#if __has_feature(attribute_overloadable) || \ - __has_feature(blocks) -... -#endif -... -</pre> -</blockquote> - -<p>The feature tag is described along with the language feature below.</p> - -<!-- ======================================================================= --> -<h2 id="has_include">Include File Checking Macros</h2> -<!-- ======================================================================= --> - -<p>Not all developments systems have the same include files. -The <a href="#__has_include">__has_include</a> and -<a href="#__has_include_next">__has_include_next</a> macros allow you to -check for the existence of an include file before doing -a possibly failing #include directive.</p> - -<!-- ======================================================================= --> -<h3 id="__has_include">__has_include</h3> -<!-- ======================================================================= --> - -<p>This function-like macro takes a single file name string argument that -is the name of an include file. It evaluates to 1 if the file can -be found using the include paths, or 0 otherwise:</p> - -<blockquote> -<pre> -// Note the two possible file name string formats. -#if __has_include("myinclude.h") && __has_include(<stdint.h>) -# include "myinclude.h" -#endif - -// To avoid problem with non-clang compilers not having this macro. -#if defined(__has_include) && __has_include("myinclude.h") -# include "myinclude.h" -#endif -</pre> -</blockquote> - -<p>To test for this feature, use #if defined(__has_include).</p> - -<!-- ======================================================================= --> -<h3 id="__has_include_next">__has_include_next</h3> -<!-- ======================================================================= --> - -<p>This function-like macro takes a single file name string argument that -is the name of an include file. It is like __has_include except that it -looks for the second instance of the given file found in the include -paths. It evaluates to 1 if the second instance of the file can -be found using the include paths, or 0 otherwise:</p> - -<blockquote> -<pre> -// Note the two possible file name string formats. -#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>) -# include_next "myinclude.h" -#endif - -// To avoid problem with non-clang compilers not having this macro. -#if defined(__has_include_next) && __has_include_next("myinclude.h") -# include_next "myinclude.h" -#endif -</pre> -</blockquote> - -<p>Note that __has_include_next, like the GNU extension -#include_next directive, is intended for use in headers only, -and will issue a warning if used in the top-level compilation -file. A warning will also be issued if an absolute path -is used in the file argument.</p> - -<!-- ======================================================================= --> -<h2 id="builtinmacros">Builtin Macros</h2> -<!-- ======================================================================= --> - -<dl> - <dt><code>__BASE_FILE__</code></dt> - <dd>Defined to a string that contains the name of the main input - file passed to Clang.</dd> - - <dt><code>__COUNTER__</code></dt> - <dd>Defined to an integer value that starts at zero and is - incremented each time the <code>__COUNTER__</code> macro is - expanded.</dd> - - <dt><code>__INCLUDE_LEVEL__</code></dt> - <dd>Defined to an integral value that is the include depth of the - file currently being translated. For the main file, this value is - zero.</dd> - - <dt><code>__TIMESTAMP__</code></dt> - <dd>Defined to the date and time of the last modification of the - current source file.</dd> - - <dt><code>__clang__</code></dt> - <dd>Defined when compiling with Clang</dd> - - <dt><code>__clang_major__</code></dt> - <dd>Defined to the major version number of Clang (e.g., the 2 in - 2.0.1).</dd> - - <dt><code>__clang_minor__</code></dt> - <dd>Defined to the minor version number of Clang (e.g., the 0 in - 2.0.1).</dd> - - <dt><code>__clang_patchlevel__</code></dt> - <dd>Defined to the patch level of Clang (e.g., the 1 in 2.0.1).</dd> - - <dt><code>__clang_version__</code></dt> - <dd>Defined to a string that captures the Clang version, including - the Subversion tag or revision number, e.g., "1.5 (trunk - 102332)".</dd> -</dl> - -<!-- ======================================================================= --> -<h2 id="vectors">Vectors and Extended Vectors</h2> -<!-- ======================================================================= --> - -<p>Supports the GCC vector extensions, plus some stuff like V[1].</p> - -<p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw -syntax and other tidbits as seen in OpenCL. An example is:</p> - -<blockquote> -<pre> -typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>; -typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>; - -float4 foo(float2 a, float2 b) { - float4 c; - c.xz = a; - c.yw = b; - return c; -} -</blockquote> - -<p>Query for this feature with __has_feature(attribute_ext_vector_type).</p> - -<p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p> - -<!-- ======================================================================= --> -<h2 id="checking_language_features">Checks for Standard Language Features</h2> -<!-- ======================================================================= --> - -<p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are -enabled. Those features are listed here.</p> - -<h3 id="cxx_exceptions">C++ exceptions</h3> - -<p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For -example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p> - -<h3 id="cxx_rtti">C++ RTTI</h3> - -<p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example, -compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p> - -<!-- ======================================================================= --> -<h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2> -<!-- ======================================================================= --> - -<p>The <tt>__has_feature</tt> macro can be used to query if certain upcoming -standard language features are enabled. Those features are listed here.</p> - -<p>Currently, all features listed here are slated for inclusion in the upcoming -C++0x standard. As a result, all the features that clang supports are enabled -with the <tt>-std=c++0x</tt> option when compiling C++ code. Features that are -not yet implemented will be noted.</p> - -<h3 id="cxx_decltype">C++0x <tt>decltype()</tt></h3> - -<p>Use <tt>__has_feature(cxx_decltype)</tt> to determine if support for the -<tt>decltype()</tt> specifier is enabled.</p> - -<h3 id="cxx_attributes">C++0x attributes</h3> - -<p>Use <tt>__has_feature(cxx_attributes)</tt> to determine if support for -attribute parsing with C++0x's square bracket notation is enabled. - -<h3 id="cxx_deleted_functions">C++0x deleted functions</tt></h3> - -<p>Use <tt>__has_feature(cxx_deleted_functions)</tt> to determine if support for -deleted function definitions (with <tt>= delete</tt>) is enabled. - -<h3 id="cxx_concepts">C++ TR concepts</h3> - -<p>Use <tt>__has_feature(cxx_concepts)</tt> to determine if support for -concepts is enabled. clang does not currently implement this feature. - -<h3 id="cxx_lambdas">C++0x lambdas</h3> - -<p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for -lambdas is enabled. clang does not currently implement this feature. - -<h3 id="cxx_nullptr">C++0x <tt>nullptr</tt></h3> - -<p>Use <tt>__has_feature(cxx_nullptr)</tt> to determine if support for -<tt>nullptr</tt> is enabled. clang does not yet fully implement this feature. - -<h3 id="cxx_rvalue_references">C++0x rvalue references</tt></h3> - -<p>Use <tt>__has_feature(cxx_rvalue_references)</tt> to determine if support for -rvalue references is enabled. clang does not yet fully implement this feature. - -<h3 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h3> - -<p>Use <tt>__has_feature(cxx_static_assert)</tt> to determine if support for -compile-time assertions using <tt>static_assert</tt> is enabled.</p> - -<h3 id="cxx_auto_type">C++0x type inference</h3> - -<p>Use <tt>__has_feature(cxx_auto_type)</tt> to determine C++0x type inference -is supported using the <tt>auto</tt> specifier. If this is disabled, -<tt>auto</tt> will instead be a storage class specifier, as in C or C++98.</p> - -<h3 id="cxx_variadic_templates">C++0x variadic templates</tt></h3> - -<p>Use <tt>__has_feature(cxx_variadic_templates)</tt> to determine if support -for templates taking any number of arguments with the ellipsis notation is -enabled. clang does not yet fully implement this feature.</p> - -<!-- ======================================================================= --> -<h2 id="blocks">Blocks</h2> -<!-- ======================================================================= --> - -<p>The syntax and high level language feature description is in <a -href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI -details for the clang implementation are in <a -href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p> - - -<p>Query for this feature with __has_feature(blocks).</p> - -<!-- ======================================================================= --> -<h2 id="overloading-in-c">Function Overloading in C</h2> -<!-- ======================================================================= --> - -<p>Clang provides support for C++ function overloading in C. Function -overloading in C is introduced using the <tt>overloadable</tt> attribute. For -example, one might provide several overloaded versions of a <tt>tgsin</tt> -function that invokes the appropriate standard function computing the sine of a -value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt> -precision:</p> - -<blockquote> -<pre> -#include <math.h> -float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); } -double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); } -long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); } -</pre> -</blockquote> - -<p>Given these declarations, one can call <tt>tgsin</tt> with a -<tt>float</tt> value to receive a <tt>float</tt> result, with a -<tt>double</tt> to receive a <tt>double</tt> result, etc. Function -overloading in C follows the rules of C++ function overloading to pick -the best overload given the call arguments, with a few C-specific -semantics:</p> -<ul> - <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long - double</tt> is ranked as a floating-point promotion (per C99) rather - than as a floating-point conversion (as in C++).</li> - - <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type - <tt>U*</tt> is considered a pointer conversion (with conversion - rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li> - - <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt> - is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This - conversion is given "conversion" rank.</li> -</ul> - -<p>The declaration of <tt>overloadable</tt> functions is restricted to -function declarations and definitions. Most importantly, if any -function with a given name is given the <tt>overloadable</tt> -attribute, then all function declarations and definitions with that -name (and in that scope) must have the <tt>overloadable</tt> -attribute. This rule even applies to redeclarations of functions whose original -declaration had the <tt>overloadable</tt> attribute, e.g.,</p> - -<blockquote> -<pre> -int f(int) __attribute__((overloadable)); -float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i> - -int g(int) __attribute__((overloadable)); -int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i> -</pre> -</blockquote> - -<p>Functions marked <tt>overloadable</tt> must have -prototypes. Therefore, the following code is ill-formed:</p> - -<blockquote> -<pre> -int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i> -</pre> -</blockquote> - -<p>However, <tt>overloadable</tt> functions are allowed to use a -ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p> - -<blockquote> -<pre> -void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i> -</pre> -</blockquote> - -<p>Functions declared with the <tt>overloadable</tt> attribute have -their names mangled according to the same rules as C++ function -names. For example, the three <tt>tgsin</tt> functions in our -motivating example get the mangled names <tt>_Z5tgsinf</tt>, -<tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two -caveats to this use of name mangling:</p> - -<ul> - - <li>Future versions of Clang may change the name mangling of - functions overloaded in C, so you should not depend on an specific - mangling. To be completely safe, we strongly urge the use of - <tt>static inline</tt> with <tt>overloadable</tt> functions.</li> - - <li>The <tt>overloadable</tt> attribute has almost no meaning when - used in C++, because names will already be mangled and functions are - already overloadable. However, when an <tt>overloadable</tt> - function occurs within an <tt>extern "C"</tt> linkage specification, - it's name <i>will</i> be mangled in the same way as it would in - C.</li> -</ul> - -<p>Query for this feature with __has_feature(attribute_overloadable).</p> - - -<!-- ======================================================================= --> -<h2 id="builtins">Builtin Functions</h2> -<!-- ======================================================================= --> - -<p>Clang supports a number of builtin library functions with the same syntax as -GCC, including things like <tt>__builtin_nan</tt>, -<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>, -<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In -addition to the GCC builtins, Clang supports a number of builtins that GCC does -not, which are listed here.</p> - -<p>Please note that Clang does not and will not support all of the GCC builtins -for vector operations. Instead of using builtins, you should use the functions -defined in target-specific header files like <tt><xmmintrin.h></tt>, which -define portable wrappers for these. Many of the Clang versions of these -functions are implemented directly in terms of <a href="#vectors">extended -vector support</a> instead of builtins, in order to reduce the number of -builtins that we need to implement.</p> - -<!-- ======================================================================= --> -<h3 id="__builtin_shufflevector">__builtin_shufflevector</h3> -<!-- ======================================================================= --> - -<p><tt>__builtin_shufflevector</tt> is used to express generic vector -permutation/shuffle/swizzle operations. This builtin is also very important for -the implementation of various target-specific header files like -<tt><xmmintrin.h></tt>. -</p> - -<p><b>Syntax:</b></p> - -<pre> -__builtin_shufflevector(vec1, vec2, index1, index2, ...) -</pre> - -<p><b>Examples:</b></p> - -<pre> - // Identity operation - return 4-element vector V1. - __builtin_shufflevector(V1, V1, 0, 1, 2, 3) - - // "Splat" element 0 of V1 into a 4-element result. - __builtin_shufflevector(V1, V1, 0, 0, 0, 0) - - // Reverse 4-element vector V1. - __builtin_shufflevector(V1, V1, 3, 2, 1, 0) - - // Concatenate every other element of 4-element vectors V1 and V2. - __builtin_shufflevector(V1, V2, 0, 2, 4, 6) - - // Concatenate every other element of 8-element vectors V1 and V2. - __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14) -</pre> - -<p><b>Description:</b></p> - -<p>The first two arguments to __builtin_shufflevector are vectors that have the -same element type. The remaining arguments are a list of integers that specify -the elements indices of the first two vectors that should be extracted and -returned in a new vector. These element indices are numbered sequentially -starting with the first vector, continuing into the second vector. Thus, if -vec1 is a 4-element vector, index 5 would refer to the second element of vec2. -</p> - -<p>The result of __builtin_shufflevector is a vector -with the same element type as vec1/vec2 but that has an element count equal to -the number of indices specified. -</p> - -<p>Query for this feature with __has_builtin(__builtin_shufflevector).</p> - -<!-- ======================================================================= --> -<h3 id="__builtin_unreachable">__builtin_unreachable</h3> -<!-- ======================================================================= --> - -<p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in -the program cannot be reached, even if the compiler might otherwise think it -can. This is useful to improve optimization and eliminates certain warnings. -For example, without the <tt>__builtin_unreachable</tt> in the example below, -the compiler assumes that the inline asm can fall through and prints a "function -declared 'noreturn' should not return" warning. -</p> - -<p><b>Syntax:</b></p> - -<pre> -__builtin_unreachable() -</pre> - -<p><b>Example of Use:</b></p> - -<pre> -void myabort(void) __attribute__((noreturn)); -void myabort(void) { - asm("int3"); - __builtin_unreachable(); -} -</pre> - -<p><b>Description:</b></p> - -<p>The __builtin_unreachable() builtin has completely undefined behavior. Since -it has undefined behavior, it is a statement that it is never reached and the -optimizer can take advantage of this to produce better code. This builtin takes -no arguments and produces a void result. -</p> - -<p>Query for this feature with __has_builtin(__builtin_unreachable).</p> - - -<!-- ======================================================================= --> -<h2 id="targetspecific">Target-Specific Extensions</h2> -<!-- ======================================================================= --> - -<p>Clang supports some language features conditionally on some targets.</p> - -<!-- ======================================================================= --> -<h3 id="x86-specific">X86/X86-64 Language Extensions</h3> -<!-- ======================================================================= --> - -<p>The X86 backend has these language extensions:</p> - -<!-- ======================================================================= --> -<h4 id="x86-gs-segment">Memory references off the GS segment</h4> -<!-- ======================================================================= --> - -<p>Annotating a pointer with address space #256 causes it to be code generated -relative to the X86 GS segment register, and address space #257 causes it to be -relative to the X86 FS segment. Note that this is a very very low-level -feature that should only be used if you know what you're doing (for example in -an OS kernel).</p> - -<p>Here is an example:</p> - -<pre> -#define GS_RELATIVE __attribute__((address_space(256))) -int foo(int GS_RELATIVE *P) { - return *P; -} -</pre> - -<p>Which compiles to (on X86-32):</p> - -<pre> -_foo: - movl 4(%esp), %eax - movl %gs:(%eax), %eax - ret -</pre> - -<!-- ======================================================================= --> -<h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2> -<!-- ======================================================================= --> - -<p>Clang supports additional attributes that are useful for documenting program -invariants and rules for static analysis tools. The extensions documented here -are used by the <a -href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer -engine</a> that is part of Clang's Analysis library.</p> - -<!-- ======================================================================= --> -<h3 id="analyzerattributes">Analyzer Attributes</h3> -<!-- ======================================================================= --> - -<h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4> - -<p>Clang's static analysis engine understands the standard <tt>noreturn</tt> -attribute. This attribute, which is typically affixed to a function prototype, -indicates that a call to a given function never returns. Function prototypes for -common functions like <tt>exit</tt> are typically annotated with this attribute, -as well as a variety of common assertion handlers. Users can educate the static -analyzer about their own custom assertion handles (thus cutting down on false -positives due to false paths) by marking their own "panic" functions -with this attribute.</p> - -<p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes -there are special functions that for all intents and purposes should be -considered panic functions (i.e., they are only called when an internal program -error occurs) but may actually return so that the program can fail gracefully. -The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions -as being interpreted as "no return" functions by the analyzer (thus -pruning bogus paths) but will not affect compilation (as in the case of -<tt>noreturn</tt>).</p> - -<p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the -same places where the <tt>noreturn</tt> attribute can be placed. It is commonly -placed at the end of function prototypes:</p> - -<pre> - void foo() <b>__attribute__((analyzer_noreturn))</b>; -</pre> - -<p>Query for this feature with __has_feature(attribute_analyzer_noreturn).</p> - - -</div> -</body> -</html> |