summaryrefslogtreecommitdiffstats
path: root/clang/docs/LanguageExtensions.html
diff options
context:
space:
mode:
authormike-m <mikem.llvm@gmail.com>2010-05-06 23:46:27 +0000
committermike-m <mikem.llvm@gmail.com>2010-05-06 23:46:27 +0000
commit9bb682b7130d5211fb36c2a7cbfb3de027c5043e (patch)
tree51e51518ddf912f6527ba7f9248630aaa73e13b8 /clang/docs/LanguageExtensions.html
parente08af303a642a69accf5d06c5ac61e6b8f2ef6b6 (diff)
downloadbcm5719-llvm-9bb682b7130d5211fb36c2a7cbfb3de027c5043e.tar.gz
bcm5719-llvm-9bb682b7130d5211fb36c2a7cbfb3de027c5043e.zip
2nd part of: Overhauled llvm/clang docs builds.
llvm-svn: 103214
Diffstat (limited to 'clang/docs/LanguageExtensions.html')
-rw-r--r--clang/docs/LanguageExtensions.html658
1 files changed, 0 insertions, 658 deletions
diff --git a/clang/docs/LanguageExtensions.html b/clang/docs/LanguageExtensions.html
deleted file mode 100644
index 838b65f27b8..00000000000
--- a/clang/docs/LanguageExtensions.html
+++ /dev/null
@@ -1,658 +0,0 @@
-<html>
-<head>
-<title>Clang Language Extensions</title>
-<link type="text/css" rel="stylesheet" href="../menu.css" />
-<link type="text/css" rel="stylesheet" href="../content.css" />
-<style type="text/css">
-td {
- vertical-align: top;
-}
-</style>
-</head>
-<body>
-
-<!--#include virtual="../menu.html.incl"-->
-
-<div id="content">
-
-<h1>Clang Language Extensions</h1>
-
-<ul>
-<li><a href="#intro">Introduction</a></li>
-<li><a href="#feature_check">Feature Checking Macros</a></li>
-<li><a href="#has_include">Include File Checking Macros</a></li>
-<li><a href="#builtinmacros">Builtin Macros</a></li>
-<li><a href="#vectors">Vectors and Extended Vectors</a></li>
-<li><a href="#checking_language_features">Checks for Standard Language Features</a></li>
- <ul>
- <li><a href="#cxx_exceptions">C++ exceptions</a></li>
- <li><a href="#cxx_rtti">C++ RTTI</a></li>
- </ul>
-<li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a></li>
- <ul>
- <li><a href="#cxx_attributes">C++0x attributes</a></li>
- <li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li>
- <li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li>
- <li><a href="#cxx_concepts">C++ TR concepts</a></li>
- <li><a href="#cxx_lambdas">C++0x lambdas</a></li>
- <li><a href="#cxx_nullptr">C++0x nullptr</a></li>
- <li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li>
- <li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li>
- <li><a href="#cxx_auto_type">C++0x type inference</a></li>
- <li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li>
- </ul>
-<li><a href="#blocks">Blocks</a></li>
-<li><a href="#overloading-in-c">Function Overloading in C</a></li>
-<li><a href="#builtins">Builtin Functions</a>
- <ul>
- <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
- <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
- </ul>
-</li>
-<li><a href="#targetspecific">Target-Specific Extensions</a>
- <ul>
- <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
- </ul>
-</li>
-<li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a>
- <ul>
- <li><a href="#analyzerattributes">Analyzer Attributes</a></li>
- </ul>
-</li>
-</ul>
-
-<!-- ======================================================================= -->
-<h2 id="intro">Introduction</h2>
-<!-- ======================================================================= -->
-
-<p>This document describes the language extensions provided by Clang. In
-addition to the language extensions listed here, Clang aims to support a broad
-range of GCC extensions. Please see the <a
-href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
-more information on these extensions.</p>
-
-<!-- ======================================================================= -->
-<h2 id="feature_check">Feature Checking Macros</h2>
-<!-- ======================================================================= -->
-
-<p>Language extensions can be very useful, but only if you know you can depend
-on them. In order to allow fine-grain features checks, we support two builtin
-function-like macros. This allows you to directly test for a feature in your
-code without having to resort to something like autoconf or fragile "compiler
-version checks".</p>
-
-<!-- ======================================================================= -->
-<h3 id="__has_builtin">__has_builtin</h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single identifier argument that is the name
-of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
-not. It can be used like this:</p>
-
-<blockquote>
-<pre>
-#ifndef __has_builtin // Optional of course.
- #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
-#endif
-
-...
-#if __has_builtin(__builtin_trap)
- __builtin_trap();
-#else
- abort();
-#endif
-...
-</pre>
-</blockquote>
-
-
-<!-- ======================================================================= -->
-<h3 id="__has_feature">__has_feature</h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single identifier argument that is the name
-of a feature. It evaluates to 1 if the feature is supported or 0 if not. It
-can be used like this:</p>
-
-<blockquote>
-<pre>
-#ifndef __has_feature // Optional of course.
- #define __has_feature(x) 0 // Compatibility with non-clang compilers.
-#endif
-
-...
-#if __has_feature(attribute_overloadable) || \
- __has_feature(blocks)
-...
-#endif
-...
-</pre>
-</blockquote>
-
-<p>The feature tag is described along with the language feature below.</p>
-
-<!-- ======================================================================= -->
-<h2 id="has_include">Include File Checking Macros</h2>
-<!-- ======================================================================= -->
-
-<p>Not all developments systems have the same include files.
-The <a href="#__has_include">__has_include</a> and
-<a href="#__has_include_next">__has_include_next</a> macros allow you to
-check for the existence of an include file before doing
-a possibly failing #include directive.</p>
-
-<!-- ======================================================================= -->
-<h3 id="__has_include">__has_include</h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single file name string argument that
-is the name of an include file. It evaluates to 1 if the file can
-be found using the include paths, or 0 otherwise:</p>
-
-<blockquote>
-<pre>
-// Note the two possible file name string formats.
-#if __has_include("myinclude.h") && __has_include(&lt;stdint.h&gt;)
-# include "myinclude.h"
-#endif
-
-// To avoid problem with non-clang compilers not having this macro.
-#if defined(__has_include) && __has_include("myinclude.h")
-# include "myinclude.h"
-#endif
-</pre>
-</blockquote>
-
-<p>To test for this feature, use #if defined(__has_include).</p>
-
-<!-- ======================================================================= -->
-<h3 id="__has_include_next">__has_include_next</h3>
-<!-- ======================================================================= -->
-
-<p>This function-like macro takes a single file name string argument that
-is the name of an include file. It is like __has_include except that it
-looks for the second instance of the given file found in the include
-paths. It evaluates to 1 if the second instance of the file can
-be found using the include paths, or 0 otherwise:</p>
-
-<blockquote>
-<pre>
-// Note the two possible file name string formats.
-#if __has_include_next("myinclude.h") && __has_include_next(&lt;stdint.h&gt;)
-# include_next "myinclude.h"
-#endif
-
-// To avoid problem with non-clang compilers not having this macro.
-#if defined(__has_include_next) && __has_include_next("myinclude.h")
-# include_next "myinclude.h"
-#endif
-</pre>
-</blockquote>
-
-<p>Note that __has_include_next, like the GNU extension
-#include_next directive, is intended for use in headers only,
-and will issue a warning if used in the top-level compilation
-file. A warning will also be issued if an absolute path
-is used in the file argument.</p>
-
-<!-- ======================================================================= -->
-<h2 id="builtinmacros">Builtin Macros</h2>
-<!-- ======================================================================= -->
-
-<dl>
- <dt><code>__BASE_FILE__</code></dt>
- <dd>Defined to a string that contains the name of the main input
- file passed to Clang.</dd>
-
- <dt><code>__COUNTER__</code></dt>
- <dd>Defined to an integer value that starts at zero and is
- incremented each time the <code>__COUNTER__</code> macro is
- expanded.</dd>
-
- <dt><code>__INCLUDE_LEVEL__</code></dt>
- <dd>Defined to an integral value that is the include depth of the
- file currently being translated. For the main file, this value is
- zero.</dd>
-
- <dt><code>__TIMESTAMP__</code></dt>
- <dd>Defined to the date and time of the last modification of the
- current source file.</dd>
-
- <dt><code>__clang__</code></dt>
- <dd>Defined when compiling with Clang</dd>
-
- <dt><code>__clang_major__</code></dt>
- <dd>Defined to the major version number of Clang (e.g., the 2 in
- 2.0.1).</dd>
-
- <dt><code>__clang_minor__</code></dt>
- <dd>Defined to the minor version number of Clang (e.g., the 0 in
- 2.0.1).</dd>
-
- <dt><code>__clang_patchlevel__</code></dt>
- <dd>Defined to the patch level of Clang (e.g., the 1 in 2.0.1).</dd>
-
- <dt><code>__clang_version__</code></dt>
- <dd>Defined to a string that captures the Clang version, including
- the Subversion tag or revision number, e.g., "1.5 (trunk
- 102332)".</dd>
-</dl>
-
-<!-- ======================================================================= -->
-<h2 id="vectors">Vectors and Extended Vectors</h2>
-<!-- ======================================================================= -->
-
-<p>Supports the GCC vector extensions, plus some stuff like V[1].</p>
-
-<p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw
-syntax and other tidbits as seen in OpenCL. An example is:</p>
-
-<blockquote>
-<pre>
-typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
-typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
-
-float4 foo(float2 a, float2 b) {
- float4 c;
- c.xz = a;
- c.yw = b;
- return c;
-}
-</blockquote>
-
-<p>Query for this feature with __has_feature(attribute_ext_vector_type).</p>
-
-<p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
-
-<!-- ======================================================================= -->
-<h2 id="checking_language_features">Checks for Standard Language Features</h2>
-<!-- ======================================================================= -->
-
-<p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are
-enabled. Those features are listed here.</p>
-
-<h3 id="cxx_exceptions">C++ exceptions</h3>
-
-<p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
-example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p>
-
-<h3 id="cxx_rtti">C++ RTTI</h3>
-
-<p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
-compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
-
-<!-- ======================================================================= -->
-<h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2>
-<!-- ======================================================================= -->
-
-<p>The <tt>__has_feature</tt> macro can be used to query if certain upcoming
-standard language features are enabled. Those features are listed here.</p>
-
-<p>Currently, all features listed here are slated for inclusion in the upcoming
-C++0x standard. As a result, all the features that clang supports are enabled
-with the <tt>-std=c++0x</tt> option when compiling C++ code. Features that are
-not yet implemented will be noted.</p>
-
-<h3 id="cxx_decltype">C++0x <tt>decltype()</tt></h3>
-
-<p>Use <tt>__has_feature(cxx_decltype)</tt> to determine if support for the
-<tt>decltype()</tt> specifier is enabled.</p>
-
-<h3 id="cxx_attributes">C++0x attributes</h3>
-
-<p>Use <tt>__has_feature(cxx_attributes)</tt> to determine if support for
-attribute parsing with C++0x's square bracket notation is enabled.
-
-<h3 id="cxx_deleted_functions">C++0x deleted functions</tt></h3>
-
-<p>Use <tt>__has_feature(cxx_deleted_functions)</tt> to determine if support for
-deleted function definitions (with <tt>= delete</tt>) is enabled.
-
-<h3 id="cxx_concepts">C++ TR concepts</h3>
-
-<p>Use <tt>__has_feature(cxx_concepts)</tt> to determine if support for
-concepts is enabled. clang does not currently implement this feature.
-
-<h3 id="cxx_lambdas">C++0x lambdas</h3>
-
-<p>Use <tt>__has_feature(cxx_lambdas)</tt> to determine if support for
-lambdas is enabled. clang does not currently implement this feature.
-
-<h3 id="cxx_nullptr">C++0x <tt>nullptr</tt></h3>
-
-<p>Use <tt>__has_feature(cxx_nullptr)</tt> to determine if support for
-<tt>nullptr</tt> is enabled. clang does not yet fully implement this feature.
-
-<h3 id="cxx_rvalue_references">C++0x rvalue references</tt></h3>
-
-<p>Use <tt>__has_feature(cxx_rvalue_references)</tt> to determine if support for
-rvalue references is enabled. clang does not yet fully implement this feature.
-
-<h3 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h3>
-
-<p>Use <tt>__has_feature(cxx_static_assert)</tt> to determine if support for
-compile-time assertions using <tt>static_assert</tt> is enabled.</p>
-
-<h3 id="cxx_auto_type">C++0x type inference</h3>
-
-<p>Use <tt>__has_feature(cxx_auto_type)</tt> to determine C++0x type inference
-is supported using the <tt>auto</tt> specifier. If this is disabled,
-<tt>auto</tt> will instead be a storage class specifier, as in C or C++98.</p>
-
-<h3 id="cxx_variadic_templates">C++0x variadic templates</tt></h3>
-
-<p>Use <tt>__has_feature(cxx_variadic_templates)</tt> to determine if support
-for templates taking any number of arguments with the ellipsis notation is
-enabled. clang does not yet fully implement this feature.</p>
-
-<!-- ======================================================================= -->
-<h2 id="blocks">Blocks</h2>
-<!-- ======================================================================= -->
-
-<p>The syntax and high level language feature description is in <a
-href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
-details for the clang implementation are in <a
-href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
-
-
-<p>Query for this feature with __has_feature(blocks).</p>
-
-<!-- ======================================================================= -->
-<h2 id="overloading-in-c">Function Overloading in C</h2>
-<!-- ======================================================================= -->
-
-<p>Clang provides support for C++ function overloading in C. Function
-overloading in C is introduced using the <tt>overloadable</tt> attribute. For
-example, one might provide several overloaded versions of a <tt>tgsin</tt>
-function that invokes the appropriate standard function computing the sine of a
-value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
-precision:</p>
-
-<blockquote>
-<pre>
-#include &lt;math.h&gt;
-float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
-double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
-long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
-</pre>
-</blockquote>
-
-<p>Given these declarations, one can call <tt>tgsin</tt> with a
-<tt>float</tt> value to receive a <tt>float</tt> result, with a
-<tt>double</tt> to receive a <tt>double</tt> result, etc. Function
-overloading in C follows the rules of C++ function overloading to pick
-the best overload given the call arguments, with a few C-specific
-semantics:</p>
-<ul>
- <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
- double</tt> is ranked as a floating-point promotion (per C99) rather
- than as a floating-point conversion (as in C++).</li>
-
- <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
- <tt>U*</tt> is considered a pointer conversion (with conversion
- rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
-
- <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
- is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
- conversion is given "conversion" rank.</li>
-</ul>
-
-<p>The declaration of <tt>overloadable</tt> functions is restricted to
-function declarations and definitions. Most importantly, if any
-function with a given name is given the <tt>overloadable</tt>
-attribute, then all function declarations and definitions with that
-name (and in that scope) must have the <tt>overloadable</tt>
-attribute. This rule even applies to redeclarations of functions whose original
-declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
-
-<blockquote>
-<pre>
-int f(int) __attribute__((overloadable));
-float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
-
-int g(int) __attribute__((overloadable));
-int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
-</pre>
-</blockquote>
-
-<p>Functions marked <tt>overloadable</tt> must have
-prototypes. Therefore, the following code is ill-formed:</p>
-
-<blockquote>
-<pre>
-int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
-</pre>
-</blockquote>
-
-<p>However, <tt>overloadable</tt> functions are allowed to use a
-ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
-
-<blockquote>
-<pre>
-void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
-</pre>
-</blockquote>
-
-<p>Functions declared with the <tt>overloadable</tt> attribute have
-their names mangled according to the same rules as C++ function
-names. For example, the three <tt>tgsin</tt> functions in our
-motivating example get the mangled names <tt>_Z5tgsinf</tt>,
-<tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two
-caveats to this use of name mangling:</p>
-
-<ul>
-
- <li>Future versions of Clang may change the name mangling of
- functions overloaded in C, so you should not depend on an specific
- mangling. To be completely safe, we strongly urge the use of
- <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
-
- <li>The <tt>overloadable</tt> attribute has almost no meaning when
- used in C++, because names will already be mangled and functions are
- already overloadable. However, when an <tt>overloadable</tt>
- function occurs within an <tt>extern "C"</tt> linkage specification,
- it's name <i>will</i> be mangled in the same way as it would in
- C.</li>
-</ul>
-
-<p>Query for this feature with __has_feature(attribute_overloadable).</p>
-
-
-<!-- ======================================================================= -->
-<h2 id="builtins">Builtin Functions</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports a number of builtin library functions with the same syntax as
-GCC, including things like <tt>__builtin_nan</tt>,
-<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
-<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
-addition to the GCC builtins, Clang supports a number of builtins that GCC does
-not, which are listed here.</p>
-
-<p>Please note that Clang does not and will not support all of the GCC builtins
-for vector operations. Instead of using builtins, you should use the functions
-defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
-define portable wrappers for these. Many of the Clang versions of these
-functions are implemented directly in terms of <a href="#vectors">extended
-vector support</a> instead of builtins, in order to reduce the number of
-builtins that we need to implement.</p>
-
-<!-- ======================================================================= -->
-<h3 id="__builtin_shufflevector">__builtin_shufflevector</h3>
-<!-- ======================================================================= -->
-
-<p><tt>__builtin_shufflevector</tt> is used to express generic vector
-permutation/shuffle/swizzle operations. This builtin is also very important for
-the implementation of various target-specific header files like
-<tt>&lt;xmmintrin.h&gt;</tt>.
-</p>
-
-<p><b>Syntax:</b></p>
-
-<pre>
-__builtin_shufflevector(vec1, vec2, index1, index2, ...)
-</pre>
-
-<p><b>Examples:</b></p>
-
-<pre>
- // Identity operation - return 4-element vector V1.
- __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
-
- // "Splat" element 0 of V1 into a 4-element result.
- __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
-
- // Reverse 4-element vector V1.
- __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
-
- // Concatenate every other element of 4-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
-
- // Concatenate every other element of 8-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
-</pre>
-
-<p><b>Description:</b></p>
-
-<p>The first two arguments to __builtin_shufflevector are vectors that have the
-same element type. The remaining arguments are a list of integers that specify
-the elements indices of the first two vectors that should be extracted and
-returned in a new vector. These element indices are numbered sequentially
-starting with the first vector, continuing into the second vector. Thus, if
-vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
-</p>
-
-<p>The result of __builtin_shufflevector is a vector
-with the same element type as vec1/vec2 but that has an element count equal to
-the number of indices specified.
-</p>
-
-<p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
-
-<!-- ======================================================================= -->
-<h3 id="__builtin_unreachable">__builtin_unreachable</h3>
-<!-- ======================================================================= -->
-
-<p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
-the program cannot be reached, even if the compiler might otherwise think it
-can. This is useful to improve optimization and eliminates certain warnings.
-For example, without the <tt>__builtin_unreachable</tt> in the example below,
-the compiler assumes that the inline asm can fall through and prints a "function
-declared 'noreturn' should not return" warning.
-</p>
-
-<p><b>Syntax:</b></p>
-
-<pre>
-__builtin_unreachable()
-</pre>
-
-<p><b>Example of Use:</b></p>
-
-<pre>
-void myabort(void) __attribute__((noreturn));
-void myabort(void) {
- asm("int3");
- __builtin_unreachable();
-}
-</pre>
-
-<p><b>Description:</b></p>
-
-<p>The __builtin_unreachable() builtin has completely undefined behavior. Since
-it has undefined behavior, it is a statement that it is never reached and the
-optimizer can take advantage of this to produce better code. This builtin takes
-no arguments and produces a void result.
-</p>
-
-<p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
-
-
-<!-- ======================================================================= -->
-<h2 id="targetspecific">Target-Specific Extensions</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports some language features conditionally on some targets.</p>
-
-<!-- ======================================================================= -->
-<h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
-<!-- ======================================================================= -->
-
-<p>The X86 backend has these language extensions:</p>
-
-<!-- ======================================================================= -->
-<h4 id="x86-gs-segment">Memory references off the GS segment</h4>
-<!-- ======================================================================= -->
-
-<p>Annotating a pointer with address space #256 causes it to be code generated
-relative to the X86 GS segment register, and address space #257 causes it to be
-relative to the X86 FS segment. Note that this is a very very low-level
-feature that should only be used if you know what you're doing (for example in
-an OS kernel).</p>
-
-<p>Here is an example:</p>
-
-<pre>
-#define GS_RELATIVE __attribute__((address_space(256)))
-int foo(int GS_RELATIVE *P) {
- return *P;
-}
-</pre>
-
-<p>Which compiles to (on X86-32):</p>
-
-<pre>
-_foo:
- movl 4(%esp), %eax
- movl %gs:(%eax), %eax
- ret
-</pre>
-
-<!-- ======================================================================= -->
-<h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
-<!-- ======================================================================= -->
-
-<p>Clang supports additional attributes that are useful for documenting program
-invariants and rules for static analysis tools. The extensions documented here
-are used by the <a
-href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
-engine</a> that is part of Clang's Analysis library.</p>
-
-<!-- ======================================================================= -->
-<h3 id="analyzerattributes">Analyzer Attributes</h3>
-<!-- ======================================================================= -->
-
-<h4 id="attr_analyzer_noreturn"><tt>analyzer_noreturn</tt></h4>
-
-<p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
-attribute. This attribute, which is typically affixed to a function prototype,
-indicates that a call to a given function never returns. Function prototypes for
-common functions like <tt>exit</tt> are typically annotated with this attribute,
-as well as a variety of common assertion handlers. Users can educate the static
-analyzer about their own custom assertion handles (thus cutting down on false
-positives due to false paths) by marking their own &quot;panic&quot; functions
-with this attribute.</p>
-
-<p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
-there are special functions that for all intents and purposes should be
-considered panic functions (i.e., they are only called when an internal program
-error occurs) but may actually return so that the program can fail gracefully.
-The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
-as being interpreted as &quot;no return&quot; functions by the analyzer (thus
-pruning bogus paths) but will not affect compilation (as in the case of
-<tt>noreturn</tt>).</p>
-
-<p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
-same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
-placed at the end of function prototypes:</p>
-
-<pre>
- void foo() <b>__attribute__((analyzer_noreturn))</b>;
-</pre>
-
-<p>Query for this feature with __has_feature(attribute_analyzer_noreturn).</p>
-
-
-</div>
-</body>
-</html>
OpenPOWER on IntegriCloud