diff options
| author | Mehdi Amini <aminim@google.com> | 2019-04-03 18:45:01 -0700 |
|---|---|---|
| committer | Mehdi Amini <joker.eph@gmail.com> | 2019-04-03 19:22:32 -0700 |
| commit | f0a328b6d5e0b1e4679352c7b3c37d3fe7de80e7 (patch) | |
| tree | 39c3aba8ce1e22ed086d23fe47133a599c959cb9 | |
| parent | 393c77c5da883e9cc53d43e0e9abc5db78bcbf69 (diff) | |
| download | bcm5719-llvm-f0a328b6d5e0b1e4679352c7b3c37d3fe7de80e7.tar.gz bcm5719-llvm-f0a328b6d5e0b1e4679352c7b3c37d3fe7de80e7.zip | |
Chapter 3 for Toy tutorial: introduction of a dialect
--
PiperOrigin-RevId: 241849162
20 files changed, 3077 insertions, 9 deletions
diff --git a/mlir/examples/toy/CMakeLists.txt b/mlir/examples/toy/CMakeLists.txt index b70c371ad53..d50aa185d86 100644 --- a/mlir/examples/toy/CMakeLists.txt +++ b/mlir/examples/toy/CMakeLists.txt @@ -8,3 +8,4 @@ endmacro(add_toy_chapter name) add_subdirectory(Ch1) add_subdirectory(Ch2) +add_subdirectory(Ch3) diff --git a/mlir/examples/toy/Ch2/mlir/MLIRGen.cpp b/mlir/examples/toy/Ch2/mlir/MLIRGen.cpp index 5bd80738a22..062f88aa34a 100644 --- a/mlir/examples/toy/Ch2/mlir/MLIRGen.cpp +++ b/mlir/examples/toy/Ch2/mlir/MLIRGen.cpp @@ -360,12 +360,6 @@ private: mlir::OperationState result(&context, location, "toy.generic_call"); result.types.push_back(getType(VarType{})); result.operands = std::move(operands); - for (auto &expr : call.getArgs()) { - auto *arg = mlirGen(*expr); - if (!arg) - return nullptr; - result.operands.push_back(arg); - } auto calleeAttr = builder->getStringAttr(call.getCallee()); result.attributes.push_back(builder->getNamedAttr("callee", calleeAttr)); return builder->createOperation(result)->getResult(0); diff --git a/mlir/examples/toy/Ch3/CMakeLists.txt b/mlir/examples/toy/Ch3/CMakeLists.txt new file mode 100644 index 00000000000..060f3dd26ec --- /dev/null +++ b/mlir/examples/toy/Ch3/CMakeLists.txt @@ -0,0 +1,17 @@ +set(LLVM_LINK_COMPONENTS + Support + ) + +add_toy_chapter(toyc-ch3 + toyc.cpp + parser/AST.cpp + mlir/MLIRGen.cpp + mlir/ToyDialect.cpp + ) +include_directories(include/) +target_link_libraries(toyc-ch3 + PRIVATE + MLIRAnalysis + MLIRIR + MLIRParser + MLIRTransforms) diff --git a/mlir/examples/toy/Ch3/include/toy/AST.h b/mlir/examples/toy/Ch3/include/toy/AST.h new file mode 100644 index 00000000000..456a32309c4 --- /dev/null +++ b/mlir/examples/toy/Ch3/include/toy/AST.h @@ -0,0 +1,256 @@ +//===- AST.h - Node definition for the Toy AST ----------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the AST for the Toy language. It is optimized for +// simplicity, not efficiency. The AST forms a tree structure where each node +// references its children using std::unique_ptr<>. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_AST_H_ +#define MLIR_TUTORIAL_TOY_AST_H_ + +#include "toy/Lexer.h" + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Casting.h" +#include <vector> + +namespace toy { + +/// A variable +struct VarType { + enum { TY_FLOAT, TY_INT } elt_ty; + std::vector<int> shape; +}; + +/// Base class for all expression nodes. +class ExprAST { +public: + enum ExprASTKind { + Expr_VarDecl, + Expr_Return, + Expr_Num, + Expr_Literal, + Expr_Var, + Expr_BinOp, + Expr_Call, + Expr_Print, // builtin + Expr_If, + Expr_For, + }; + + ExprAST(ExprASTKind kind, Location location) + : kind(kind), location(location) {} + + virtual ~ExprAST() = default; + + ExprASTKind getKind() const { return kind; } + + const Location &loc() { return location; } + +private: + const ExprASTKind kind; + Location location; +}; + +/// A block-list of expressions. +using ExprASTList = std::vector<std::unique_ptr<ExprAST>>; + +/// Expression class for numeric literals like "1.0". +class NumberExprAST : public ExprAST { + double Val; + +public: + NumberExprAST(Location loc, double Val) : ExprAST(Expr_Num, loc), Val(Val) {} + + double getValue() { return Val; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Num; } +}; + +/// +class LiteralExprAST : public ExprAST { + std::vector<std::unique_ptr<ExprAST>> values; + std::vector<int64_t> dims; + +public: + LiteralExprAST(Location loc, std::vector<std::unique_ptr<ExprAST>> values, + std::vector<int64_t> dims) + : ExprAST(Expr_Literal, loc), values(std::move(values)), + dims(std::move(dims)) {} + + std::vector<std::unique_ptr<ExprAST>> &getValues() { return values; } + std::vector<int64_t> &getDims() { return dims; } + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Literal; } +}; + +/// Expression class for referencing a variable, like "a". +class VariableExprAST : public ExprAST { + std::string name; + +public: + VariableExprAST(Location loc, const std::string &name) + : ExprAST(Expr_Var, loc), name(name) {} + + llvm::StringRef getName() { return name; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Var; } +}; + +/// +class VarDeclExprAST : public ExprAST { + std::string name; + VarType type; + std::unique_ptr<ExprAST> initVal; + +public: + VarDeclExprAST(Location loc, const std::string &name, VarType type, + std::unique_ptr<ExprAST> initVal) + : ExprAST(Expr_VarDecl, loc), name(name), type(std::move(type)), + initVal(std::move(initVal)) {} + + llvm::StringRef getName() { return name; } + ExprAST *getInitVal() { return initVal.get(); } + VarType &getType() { return type; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_VarDecl; } +}; + +/// +class ReturnExprAST : public ExprAST { + llvm::Optional<std::unique_ptr<ExprAST>> expr; + +public: + ReturnExprAST(Location loc, llvm::Optional<std::unique_ptr<ExprAST>> expr) + : ExprAST(Expr_Return, loc), expr(std::move(expr)) {} + + llvm::Optional<ExprAST *> getExpr() { + if (expr.hasValue()) + return expr->get(); + return llvm::NoneType(); + } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Return; } +}; + +/// Expression class for a binary operator. +class BinaryExprAST : public ExprAST { + char Op; + std::unique_ptr<ExprAST> LHS, RHS; + +public: + char getOp() { return Op; } + ExprAST *getLHS() { return LHS.get(); } + ExprAST *getRHS() { return RHS.get(); } + + BinaryExprAST(Location loc, char Op, std::unique_ptr<ExprAST> LHS, + std::unique_ptr<ExprAST> RHS) + : ExprAST(Expr_BinOp, loc), Op(Op), LHS(std::move(LHS)), + RHS(std::move(RHS)) {} + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_BinOp; } +}; + +/// Expression class for function calls. +class CallExprAST : public ExprAST { + std::string Callee; + std::vector<std::unique_ptr<ExprAST>> Args; + +public: + CallExprAST(Location loc, const std::string &Callee, + std::vector<std::unique_ptr<ExprAST>> Args) + : ExprAST(Expr_Call, loc), Callee(Callee), Args(std::move(Args)) {} + + llvm::StringRef getCallee() { return Callee; } + llvm::ArrayRef<std::unique_ptr<ExprAST>> getArgs() { return Args; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Call; } +}; + +/// Expression class for builtin print calls. +class PrintExprAST : public ExprAST { + std::unique_ptr<ExprAST> Arg; + +public: + PrintExprAST(Location loc, std::unique_ptr<ExprAST> Arg) + : ExprAST(Expr_Print, loc), Arg(std::move(Arg)) {} + + ExprAST *getArg() { return Arg.get(); } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Print; } +}; + +/// This class represents the "prototype" for a function, which captures its +/// name, and its argument names (thus implicitly the number of arguments the +/// function takes). +class PrototypeAST { + Location location; + std::string name; + std::vector<std::unique_ptr<VariableExprAST>> args; + +public: + PrototypeAST(Location location, const std::string &name, + std::vector<std::unique_ptr<VariableExprAST>> args) + : location(location), name(name), args(std::move(args)) {} + + const Location &loc() { return location; } + const std::string &getName() const { return name; } + const std::vector<std::unique_ptr<VariableExprAST>> &getArgs() { + return args; + } +}; + +/// This class represents a function definition itself. +class FunctionAST { + std::unique_ptr<PrototypeAST> Proto; + std::unique_ptr<ExprASTList> Body; + +public: + FunctionAST(std::unique_ptr<PrototypeAST> Proto, + std::unique_ptr<ExprASTList> Body) + : Proto(std::move(Proto)), Body(std::move(Body)) {} + PrototypeAST *getProto() { return Proto.get(); } + ExprASTList *getBody() { return Body.get(); } +}; + +/// This class represents a list of functions to be processed together +class ModuleAST { + std::vector<FunctionAST> functions; + +public: + ModuleAST(std::vector<FunctionAST> functions) + : functions(std::move(functions)) {} + + auto begin() -> decltype(functions.begin()) { return functions.begin(); } + auto end() -> decltype(functions.end()) { return functions.end(); } +}; + +void dump(ModuleAST &); + +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_AST_H_ diff --git a/mlir/examples/toy/Ch3/include/toy/Dialect.h b/mlir/examples/toy/Ch3/include/toy/Dialect.h new file mode 100644 index 00000000000..cc867700b68 --- /dev/null +++ b/mlir/examples/toy/Ch3/include/toy/Dialect.h @@ -0,0 +1,324 @@ +//===- AST.h - Node definition for the Toy AST ----------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the AST for the Toy language. It is optimized for +// simplicity, not efficiency. The AST forms a tree structure where each node +// references its children using std::unique_ptr<>. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_DIALECT_H_ +#define MLIR_TUTORIAL_TOY_DIALECT_H_ + +#include "mlir/IR/Dialect.h" +#include "mlir/IR/Function.h" +#include "mlir/IR/OpDefinition.h" +#include "mlir/IR/OpImplementation.h" +#include "mlir/IR/TypeSupport.h" +#include "mlir/IR/Types.h" + +namespace mlir { +class FuncBuilder; +} + +namespace toy { + +/// This is the definition of the Toy dialect. A dialect inherits from +/// mlir::Dialect and register custom operations and types (in its constructor). +/// It can also overridding general behavior of dialects exposed as virtual +/// method, for example regarding verification and parsing/printing. +class ToyDialect : public mlir::Dialect { +public: + explicit ToyDialect(mlir::MLIRContext *ctx); + + /// Parse a type registered to this dialect. Overridding this method is + /// required for dialects that have custom types. + /// Technically this is only needed to be able to round-trip to textual IR. + mlir::Type parseType(llvm::StringRef tyData, + mlir::Location loc) const override; + + /// Print a type registered to this dialect. Overridding this method is + /// only required for dialects that have custom types. + /// Technically this is only needed to be able to round-trip to textual IR. + void printType(mlir::Type type, llvm::raw_ostream &os) const override; +}; + +//////////////////////////////////////////////////////////////////////////////// +/////////////////////// Custom Types for the Dialect /////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +namespace detail { +struct ToyArrayTypeStorage; +} + +/// LLVM-style RTTI: one entry per subclass to allow dyn_cast/isa. +enum ToyTypeKind { + // The enum starts at the range reserved for this dialect. + TOY_TYPE = mlir::OpaqueType::FIRST_TOY_TYPE, + TOY_ARRAY, +}; + +/// Type for Toy arrays. +/// In MLIR Types are reference to immutable and uniqued objects owned by the +/// MLIRContext. As such `ToyArrayType` only wraps a pointer to an uniqued +/// instance of `ToyArrayTypeStorage` (defined in our implementation file) and +/// provide the public facade API to interact with the type. +class ToyArrayType : public mlir::Type::TypeBase<ToyArrayType, mlir::Type, + detail::ToyArrayTypeStorage> { +public: + using Base::Base; + + /// Returns the dimensions for this array, or and empty range for a generic + /// array. + llvm::ArrayRef<int64_t> getShape(); + + /// Predicate to test if this array is generic (shape haven't been inferred + /// yet). + bool isGeneric() { return getShape().empty(); } + + /// Return the rank of this array (0 if it is generic) + int getRank() { return getShape().size(); } + + /// Return the type of individual elements in the array. + mlir::Type getElementType(); + + /// Get the unique instance of this Type from the context. + /// A ToyArrayType is only defined by the shape of the array. + static ToyArrayType get(mlir::MLIRContext *context, + llvm::ArrayRef<int64_t> shape = {}); + + /// Support method to enable LLVM-style RTTI type casting. + static bool kindof(unsigned kind) { return kind == ToyTypeKind::TOY_ARRAY; } +}; + +//////////////////////////////////////////////////////////////////////////////// +//////////////////// Custom Operations for the Dialect ///////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +/// Constant operation turns a literal into an SSA value. The data is attached +/// to the operation as an attribute. For example: +/// +/// %0 = "toy.constant"() +/// {value: dense<tensor<2x3xf64>, [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]>} +/// : () -> !toy<"array<2, 3>"> +/// +/// An operation inherit from `class Op` and specify optional traits. Here we +/// indicate that `toy.constant` does not have any operand and return a single +/// result. The traits are making some methods available on the operation, for +/// instance we will be able to use `getResult()` but `getOperand()` won't be +/// available. +class ConstantOp : public mlir::Op<ConstantOp, mlir::OpTrait::ZeroOperands, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + /// This is the name used by MLIR to match an operation to this class during + /// parsing. + static llvm::StringRef getOperationName() { return "toy.constant"; } + + /// Operation can have extra verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.constant` operation does not have arguments but attaches a + /// constant array as attribute and returns it as an SSA value. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + llvm::ArrayRef<int64_t> shape, + mlir::DenseElementsAttr value); + + /// Similar to the one above, but takes a single float and returns a + /// !toy<"array<1>">. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::FloatAttr value); + + /// Inherit Constructor + using Op::Op; +}; + +/// Generic calls are representing calls to a user defined function that need to +/// be specialized for the shape of its arguments. The callee name is attached +/// as a literal string as an attribute. The arguments list must match the +/// arguments expected by the callee. For example: +/// +/// %4 = "toy.generic_call"(%1, %3) {callee: "my_func"} +/// : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +/// +/// This is only valid if a function named "my_func" exists and takes two +/// arguments. +class GenericCallOp + : public mlir::Op<GenericCallOp, mlir::OpTrait::VariadicOperands, + mlir::OpTrait::OneResult> { +public: + /// MLIR will use this to register the operation with the parser/printer. + static llvm::StringRef getOperationName() { return "toy.generic_call"; } + + /// Operations can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to the builder to allow: + /// mlir::FuncBuilder::create<GenericCallOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.generic_call` operation accepts a callee name and a list of + /// arguments for the call. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + llvm::StringRef callee, + llvm::ArrayRef<mlir::Value *> arguments); + + /// Return the name of the callee. + llvm::StringRef getCalleeName(); + + /// Inherit Constructor + using Op::Op; +}; + +/// Return operation terminates blocks (and function as well). They take a +/// single argument and the type must match the function return type. +class ReturnOp + : public mlir::Op<ReturnOp, mlir::OpTrait::VariadicOperands, + mlir::OpTrait::ZeroResult, mlir::OpTrait::IsTerminator> { +public: + static llvm::StringRef getOperationName() { return "toy.return"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.return` operation accepts an optional single array as argument + /// and does not have any returned value. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value = nullptr); + + /// Return true if there is a returned value. + bool hasOperand() { return 0 != getNumOperands(); } + + /// Helper to return the optional operand. Caller must check if the operand + /// is present before calling this. + mlir::Value *getOperand() { return getOperation()->getOperand(0); } + + /// Inherit Constructor + using Op::Op; +}; + +/// The print builtin takes a single array argument and does not return any. +class PrintOp : public mlir::Op<PrintOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::ZeroResult> { +public: + static llvm::StringRef getOperationName() { return "toy.print"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.print` operation accepts a single array as argument and does + /// not have any returned value. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value); + + /// Inherit Constructor + using Op::Op; +}; + +class TransposeOp : public mlir::Op<TransposeOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::OneResult> { +public: + static llvm::StringRef getOperationName() { return "toy.transpose"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<TransposeOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.transpose` operation accepts a single array as argument and + /// returns the transposed array as its only result. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value); + + /// Inherit Constructor + using Op::Op; +}; + +/// Reshape operation is transforming its input array into a new array with the +/// same number of elements but different shapes. For example: +/// +/// %0 = "toy.transpose"(%arg1) : (!toy<"array<10>">) -> !toy<"array<5, 2>"> +/// +class ReshapeOp : public mlir::Op<ReshapeOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::OneResult> { +public: + static llvm::StringRef getOperationName() { return "toy.reshape"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<ReshapeOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.reshape` operation accepts a single array as argument and + /// returns the array with the specified reshapedType as its only result. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value, ToyArrayType reshapedType); + + /// Inherit Constructor + using Op::Op; +}; + +/// Binary operation implementing a multiplication. For two-dimensional array +/// a matrix multiplication is implemented, while for one dimensional array a +/// dot product is performed. +class MulOp : public mlir::Op<MulOp, mlir::OpTrait::NOperands<2>::Impl, + mlir::OpTrait::OneResult> { +public: + static llvm::StringRef getOperationName() { return "toy.mul"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.mul` operation accepts two operands as argument and returns + /// a single value. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs); + + /// Inherit Constructor + using Op::Op; +}; + +/// Element wise addition of two arrays. The shape must match. +class AddOp : public mlir::Op<AddOp, mlir::OpTrait::NOperands<3>::Impl, + mlir::OpTrait::OneResult> { +public: + static llvm::StringRef getOperationName() { return "toy.add"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::FuncBuilder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.mul` operation accepts two operands as argument and returns + /// a single value. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs); + + /// Inherit Constructor + using Op::Op; +}; + +} // end namespace toy + +#endif // MLIR_TUTORIAL_TOY_DIALECT_H_ diff --git a/mlir/examples/toy/Ch3/include/toy/Lexer.h b/mlir/examples/toy/Ch3/include/toy/Lexer.h new file mode 100644 index 00000000000..d73adb9706b --- /dev/null +++ b/mlir/examples/toy/Ch3/include/toy/Lexer.h @@ -0,0 +1,239 @@ +//===- Lexer.h - Lexer for the Toy language -------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements a simple Lexer for the Toy language. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_LEXER_H_ +#define MLIR_TUTORIAL_TOY_LEXER_H_ + +#include "llvm/ADT/StringRef.h" + +#include <memory> +#include <string> + +namespace toy { + +/// Structure definition a location in a file. +struct Location { + std::shared_ptr<std::string> file; ///< filename + int line; ///< line number. + int col; ///< column number. +}; + +// List of Token returned by the lexer. +enum Token : int { + tok_semicolon = ';', + tok_parenthese_open = '(', + tok_parenthese_close = ')', + tok_bracket_open = '{', + tok_bracket_close = '}', + tok_sbracket_open = '[', + tok_sbracket_close = ']', + + tok_eof = -1, + + // commands + tok_return = -2, + tok_var = -3, + tok_def = -4, + + // primary + tok_identifier = -5, + tok_number = -6, +}; + +/// The Lexer is an abstract base class providing all the facilities that the +/// Parser expects. It goes through the stream one token at a time and keeps +/// track of the location in the file for debugging purpose. +/// It relies on a subclass to provide a `readNextLine()` method. The subclass +/// can proceed by reading the next line from the standard input or from a +/// memory mapped file. +class Lexer { +public: + /// Create a lexer for the given filename. The filename is kept only for + /// debugging purpose (attaching a location to a Token). + Lexer(std::string filename) + : lastLocation( + {std::make_shared<std::string>(std::move(filename)), 0, 0}) {} + virtual ~Lexer() = default; + + /// Look at the current token in the stream. + Token getCurToken() { return curTok; } + + /// Move to the next token in the stream and return it. + Token getNextToken() { return curTok = getTok(); } + + /// Move to the next token in the stream, asserting on the current token + /// matching the expectation. + void consume(Token tok) { + assert(tok == curTok && "consume Token mismatch expectation"); + getNextToken(); + } + + /// Return the current identifier (prereq: getCurToken() == tok_identifier) + llvm::StringRef getId() { + assert(curTok == tok_identifier); + return IdentifierStr; + } + + /// Return the current number (prereq: getCurToken() == tok_number) + double getValue() { + assert(curTok == tok_number); + return NumVal; + } + + /// Return the location for the beginning of the current token. + Location getLastLocation() { return lastLocation; } + + // Return the current line in the file. + int getLine() { return curLineNum; } + + // Return the current column in the file. + int getCol() { return curCol; } + +private: + /// Delegate to a derived class fetching the next line. Returns an empty + /// string to signal end of file (EOF). Lines are expected to always finish + /// with "\n" + virtual llvm::StringRef readNextLine() = 0; + + /// Return the next character from the stream. This manages the buffer for the + /// current line and request the next line buffer to the derived class as + /// needed. + int getNextChar() { + // The current line buffer should not be empty unless it is the end of file. + if (curLineBuffer.empty()) + return EOF; + ++curCol; + auto nextchar = curLineBuffer.front(); + curLineBuffer = curLineBuffer.drop_front(); + if (curLineBuffer.empty()) + curLineBuffer = readNextLine(); + if (nextchar == '\n') { + ++curLineNum; + curCol = 0; + } + return nextchar; + } + + /// Return the next token from standard input. + Token getTok() { + // Skip any whitespace. + while (isspace(LastChar)) + LastChar = Token(getNextChar()); + + // Save the current location before reading the token characters. + lastLocation.line = curLineNum; + lastLocation.col = curCol; + + if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9_]* + IdentifierStr = (char)LastChar; + while (isalnum((LastChar = Token(getNextChar()))) || LastChar == '_') + IdentifierStr += (char)LastChar; + + if (IdentifierStr == "return") + return tok_return; + if (IdentifierStr == "def") + return tok_def; + if (IdentifierStr == "var") + return tok_var; + return tok_identifier; + } + + if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ + std::string NumStr; + do { + NumStr += LastChar; + LastChar = Token(getNextChar()); + } while (isdigit(LastChar) || LastChar == '.'); + + NumVal = strtod(NumStr.c_str(), nullptr); + return tok_number; + } + + if (LastChar == '#') { + // Comment until end of line. + do + LastChar = Token(getNextChar()); + while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); + + if (LastChar != EOF) + return getTok(); + } + + // Check for end of file. Don't eat the EOF. + if (LastChar == EOF) + return tok_eof; + + // Otherwise, just return the character as its ascii value. + Token ThisChar = Token(LastChar); + LastChar = Token(getNextChar()); + return ThisChar; + } + + /// The last token read from the input. + Token curTok = tok_eof; + + /// Location for `curTok`. + Location lastLocation; + + /// If the current Token is an identifier, this string contains the value. + std::string IdentifierStr; + + /// If the current Token is a number, this contains the value. + double NumVal = 0; + + /// The last value returned by getNextChar(). We need to keep it around as we + /// always need to read ahead one character to decide when to end a token and + /// we can't put it back in the stream after reading from it. + Token LastChar = Token(' '); + + /// Keep track of the current line number in the input stream + int curLineNum = 0; + + /// Keep track of the current column number in the input stream + int curCol = 0; + + /// Buffer supplied by the derived class on calls to `readNextLine()` + llvm::StringRef curLineBuffer = "\n"; +}; + +/// A lexer implementation operating on a buffer in memory. +class LexerBuffer final : public Lexer { +public: + LexerBuffer(const char *begin, const char *end, std::string filename) + : Lexer(std::move(filename)), current(begin), end(end) {} + +private: + /// Provide one line at a time to the Lexer, return an empty string when + /// reaching the end of the buffer. + llvm::StringRef readNextLine() override { + auto *begin = current; + while (current <= end && *current && *current != '\n') + ++current; + if (current <= end && *current) + ++current; + llvm::StringRef result{begin, static_cast<size_t>(current - begin)}; + return result; + } + const char *current, *end; +}; +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_LEXER_H_ diff --git a/mlir/examples/toy/Ch3/include/toy/MLIRGen.h b/mlir/examples/toy/Ch3/include/toy/MLIRGen.h new file mode 100644 index 00000000000..21637bc19af --- /dev/null +++ b/mlir/examples/toy/Ch3/include/toy/MLIRGen.h @@ -0,0 +1,42 @@ +//===- MLIRGen.h - MLIR Generation from a Toy AST -------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file declares a simple interface to perform IR generation targeting MLIR +// from a Module AST for the Toy language. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_MLIRGEN_H_ +#define MLIR_TUTORIAL_TOY_MLIRGEN_H_ + +#include <memory> + +namespace mlir { +class MLIRContext; +class Module; +} // namespace mlir + +namespace toy { +class ModuleAST; + +/// Emit IR for the given Toy moduleAST, returns a newly created MLIR module +/// or nullptr on failure. +std::unique_ptr<mlir::Module> mlirGen(mlir::MLIRContext &context, + ModuleAST &moduleAST); +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_MLIRGEN_H_ diff --git a/mlir/examples/toy/Ch3/include/toy/Parser.h b/mlir/examples/toy/Ch3/include/toy/Parser.h new file mode 100644 index 00000000000..bc7aa520624 --- /dev/null +++ b/mlir/examples/toy/Ch3/include/toy/Parser.h @@ -0,0 +1,494 @@ +//===- Parser.h - Toy Language Parser -------------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the parser for the Toy language. It processes the Token +// provided by the Lexer and returns an AST. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_PARSER_H +#define MLIR_TUTORIAL_TOY_PARSER_H + +#include "toy/AST.h" +#include "toy/Lexer.h" + +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/raw_ostream.h" + +#include <map> +#include <utility> +#include <vector> + +namespace toy { + +/// This is a simple recursive parser for the Toy language. It produces a well +/// formed AST from a stream of Token supplied by the Lexer. No semantic checks +/// or symbol resolution is performed. For example, variables are referenced by +/// string and the code could reference an undeclared variable and the parsing +/// succeeds. +class Parser { +public: + /// Create a Parser for the supplied lexer. + Parser(Lexer &lexer) : lexer(lexer) {} + + /// Parse a full Module. A module is a list of function definitions. + std::unique_ptr<ModuleAST> ParseModule() { + lexer.getNextToken(); // prime the lexer + + // Parse functions one at a time and accumulate in this vector. + std::vector<FunctionAST> functions; + while (auto F = ParseDefinition()) { + functions.push_back(std::move(*F)); + if (lexer.getCurToken() == tok_eof) + break; + } + // If we didn't reach EOF, there was an error during parsing + if (lexer.getCurToken() != tok_eof) + return parseError<ModuleAST>("nothing", "at end of module"); + + return llvm::make_unique<ModuleAST>(std::move(functions)); + } + +private: + Lexer &lexer; + + /// Parse a return statement. + /// return :== return ; | return expr ; + std::unique_ptr<ReturnExprAST> ParseReturn() { + auto loc = lexer.getLastLocation(); + lexer.consume(tok_return); + + // return takes an optional argument + llvm::Optional<std::unique_ptr<ExprAST>> expr; + if (lexer.getCurToken() != ';') { + expr = ParseExpression(); + if (!expr) + return nullptr; + } + return llvm::make_unique<ReturnExprAST>(std::move(loc), std::move(expr)); + } + + /// Parse a literal number. + /// numberexpr ::= number + std::unique_ptr<ExprAST> ParseNumberExpr() { + auto loc = lexer.getLastLocation(); + auto Result = + llvm::make_unique<NumberExprAST>(std::move(loc), lexer.getValue()); + lexer.consume(tok_number); + return std::move(Result); + } + + /// Parse a literal array expression. + /// tensorLiteral ::= [ literalList ] | number + /// literalList ::= tensorLiteral | tensorLiteral, literalList + std::unique_ptr<ExprAST> ParseTensorLitteralExpr() { + auto loc = lexer.getLastLocation(); + lexer.consume(Token('[')); + + // Hold the list of values at this nesting level. + std::vector<std::unique_ptr<ExprAST>> values; + // Hold the dimensions for all the nesting inside this level. + std::vector<int64_t> dims; + do { + // We can have either another nested array or a number literal. + if (lexer.getCurToken() == '[') { + values.push_back(ParseTensorLitteralExpr()); + if (!values.back()) + return nullptr; // parse error in the nested array. + } else { + if (lexer.getCurToken() != tok_number) + return parseError<ExprAST>("<num> or [", "in literal expression"); + values.push_back(ParseNumberExpr()); + } + + // End of this list on ']' + if (lexer.getCurToken() == ']') + break; + + // Elements are separated by a comma. + if (lexer.getCurToken() != ',') + return parseError<ExprAST>("] or ,", "in literal expression"); + + lexer.getNextToken(); // eat , + } while (true); + if (values.empty()) + return parseError<ExprAST>("<something>", "to fill literal expression"); + lexer.getNextToken(); // eat ] + /// Fill in the dimensions now. First the current nesting level: + dims.push_back(values.size()); + /// If there is any nested array, process all of them and ensure that + /// dimensions are uniform. + if (llvm::any_of(values, [](std::unique_ptr<ExprAST> &expr) { + return llvm::isa<LiteralExprAST>(expr.get()); + })) { + auto *firstLiteral = llvm::dyn_cast<LiteralExprAST>(values.front().get()); + if (!firstLiteral) + return parseError<ExprAST>("uniform well-nested dimensions", + "inside literal expession"); + + // Append the nested dimensions to the current level + auto &firstDims = firstLiteral->getDims(); + dims.insert(dims.end(), firstDims.begin(), firstDims.end()); + + // Sanity check that shape is uniform across all elements of the list. + for (auto &expr : values) { + auto *exprLiteral = llvm::cast<LiteralExprAST>(expr.get()); + if (!exprLiteral) + return parseError<ExprAST>("uniform well-nested dimensions", + "inside literal expession"); + if (exprLiteral->getDims() != firstDims) + return parseError<ExprAST>("uniform well-nested dimensions", + "inside literal expession"); + } + } + return llvm::make_unique<LiteralExprAST>(std::move(loc), std::move(values), + std::move(dims)); + } + + /// parenexpr ::= '(' expression ')' + std::unique_ptr<ExprAST> ParseParenExpr() { + lexer.getNextToken(); // eat (. + auto V = ParseExpression(); + if (!V) + return nullptr; + + if (lexer.getCurToken() != ')') + return parseError<ExprAST>(")", "to close expression with parentheses"); + lexer.consume(Token(')')); + return V; + } + + /// identifierexpr + /// ::= identifier + /// ::= identifier '(' expression ')' + std::unique_ptr<ExprAST> ParseIdentifierExpr() { + std::string name = lexer.getId(); + + auto loc = lexer.getLastLocation(); + lexer.getNextToken(); // eat identifier. + + if (lexer.getCurToken() != '(') // Simple variable ref. + return llvm::make_unique<VariableExprAST>(std::move(loc), name); + + // This is a function call. + lexer.consume(Token('(')); + std::vector<std::unique_ptr<ExprAST>> Args; + if (lexer.getCurToken() != ')') { + while (true) { + if (auto Arg = ParseExpression()) + Args.push_back(std::move(Arg)); + else + return nullptr; + + if (lexer.getCurToken() == ')') + break; + + if (lexer.getCurToken() != ',') + return parseError<ExprAST>(", or )", "in argument list"); + lexer.getNextToken(); + } + } + lexer.consume(Token(')')); + + // It can be a builtin call to print + if (name == "print") { + if (Args.size() != 1) + return parseError<ExprAST>("<single arg>", "as argument to print()"); + + return llvm::make_unique<PrintExprAST>(std::move(loc), + std::move(Args[0])); + } + + // Call to a user-defined function + return llvm::make_unique<CallExprAST>(std::move(loc), name, + std::move(Args)); + } + + /// primary + /// ::= identifierexpr + /// ::= numberexpr + /// ::= parenexpr + /// ::= tensorliteral + std::unique_ptr<ExprAST> ParsePrimary() { + switch (lexer.getCurToken()) { + default: + llvm::errs() << "unknown token '" << lexer.getCurToken() + << "' when expecting an expression\n"; + return nullptr; + case tok_identifier: + return ParseIdentifierExpr(); + case tok_number: + return ParseNumberExpr(); + case '(': + return ParseParenExpr(); + case '[': + return ParseTensorLitteralExpr(); + case ';': + return nullptr; + case '}': + return nullptr; + } + } + + /// Recursively parse the right hand side of a binary expression, the ExprPrec + /// argument indicates the precedence of the current binary operator. + /// + /// binoprhs ::= ('+' primary)* + std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, + std::unique_ptr<ExprAST> LHS) { + // If this is a binop, find its precedence. + while (true) { + int TokPrec = GetTokPrecedence(); + + // If this is a binop that binds at least as tightly as the current binop, + // consume it, otherwise we are done. + if (TokPrec < ExprPrec) + return LHS; + + // Okay, we know this is a binop. + int BinOp = lexer.getCurToken(); + lexer.consume(Token(BinOp)); + auto loc = lexer.getLastLocation(); + + // Parse the primary expression after the binary operator. + auto RHS = ParsePrimary(); + if (!RHS) + return parseError<ExprAST>("expression", "to complete binary operator"); + + // If BinOp binds less tightly with RHS than the operator after RHS, let + // the pending operator take RHS as its LHS. + int NextPrec = GetTokPrecedence(); + if (TokPrec < NextPrec) { + RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS)); + if (!RHS) + return nullptr; + } + + // Merge LHS/RHS. + LHS = llvm::make_unique<BinaryExprAST>(std::move(loc), BinOp, + std::move(LHS), std::move(RHS)); + } + } + + /// expression::= primary binoprhs + std::unique_ptr<ExprAST> ParseExpression() { + auto LHS = ParsePrimary(); + if (!LHS) + return nullptr; + + return ParseBinOpRHS(0, std::move(LHS)); + } + + /// type ::= < shape_list > + /// shape_list ::= num | num , shape_list + std::unique_ptr<VarType> ParseType() { + if (lexer.getCurToken() != '<') + return parseError<VarType>("<", "to begin type"); + lexer.getNextToken(); // eat < + + auto type = llvm::make_unique<VarType>(); + + while (lexer.getCurToken() == tok_number) { + type->shape.push_back(lexer.getValue()); + lexer.getNextToken(); + if (lexer.getCurToken() == ',') + lexer.getNextToken(); + } + + if (lexer.getCurToken() != '>') + return parseError<VarType>(">", "to end type"); + lexer.getNextToken(); // eat > + return type; + } + + /// Parse a variable declaration, it starts with a `var` keyword followed by + /// and identifier and an optional type (shape specification) before the + /// initializer. + /// decl ::= var identifier [ type ] = expr + std::unique_ptr<VarDeclExprAST> ParseDeclaration() { + if (lexer.getCurToken() != tok_var) + return parseError<VarDeclExprAST>("var", "to begin declaration"); + auto loc = lexer.getLastLocation(); + lexer.getNextToken(); // eat var + + if (lexer.getCurToken() != tok_identifier) + return parseError<VarDeclExprAST>("identified", + "after 'var' declaration"); + std::string id = lexer.getId(); + lexer.getNextToken(); // eat id + + std::unique_ptr<VarType> type; // Type is optional, it can be inferred + if (lexer.getCurToken() == '<') { + type = ParseType(); + if (!type) + return nullptr; + } + + if (!type) + type = llvm::make_unique<VarType>(); + lexer.consume(Token('=')); + auto expr = ParseExpression(); + return llvm::make_unique<VarDeclExprAST>(std::move(loc), std::move(id), + std::move(*type), std::move(expr)); + } + + /// Parse a block: a list of expression separated by semicolons and wrapped in + /// curly braces. + /// + /// block ::= { expression_list } + /// expression_list ::= block_expr ; expression_list + /// block_expr ::= decl | "return" | expr + std::unique_ptr<ExprASTList> ParseBlock() { + if (lexer.getCurToken() != '{') + return parseError<ExprASTList>("{", "to begin block"); + lexer.consume(Token('{')); + + auto exprList = llvm::make_unique<ExprASTList>(); + + // Ignore empty expressions: swallow sequences of semicolons. + while (lexer.getCurToken() == ';') + lexer.consume(Token(';')); + + while (lexer.getCurToken() != '}' && lexer.getCurToken() != tok_eof) { + if (lexer.getCurToken() == tok_var) { + // Variable declaration + auto varDecl = ParseDeclaration(); + if (!varDecl) + return nullptr; + exprList->push_back(std::move(varDecl)); + } else if (lexer.getCurToken() == tok_return) { + // Return statement + auto ret = ParseReturn(); + if (!ret) + return nullptr; + exprList->push_back(std::move(ret)); + } else { + // General expression + auto expr = ParseExpression(); + if (!expr) + return nullptr; + exprList->push_back(std::move(expr)); + } + // Ensure that elements are separated by a semicolon. + if (lexer.getCurToken() != ';') + return parseError<ExprASTList>(";", "after expression"); + + // Ignore empty expressions: swallow sequences of semicolons. + while (lexer.getCurToken() == ';') + lexer.consume(Token(';')); + } + + if (lexer.getCurToken() != '}') + return parseError<ExprASTList>("}", "to close block"); + + lexer.consume(Token('}')); + return exprList; + } + + /// prototype ::= def id '(' decl_list ')' + /// decl_list ::= identifier | identifier, decl_list + std::unique_ptr<PrototypeAST> ParsePrototype() { + auto loc = lexer.getLastLocation(); + lexer.consume(tok_def); + if (lexer.getCurToken() != tok_identifier) + return parseError<PrototypeAST>("function name", "in prototype"); + + std::string FnName = lexer.getId(); + lexer.consume(tok_identifier); + + if (lexer.getCurToken() != '(') + return parseError<PrototypeAST>("(", "in prototype"); + lexer.consume(Token('(')); + + std::vector<std::unique_ptr<VariableExprAST>> args; + if (lexer.getCurToken() != ')') { + do { + std::string name = lexer.getId(); + auto loc = lexer.getLastLocation(); + lexer.consume(tok_identifier); + auto decl = llvm::make_unique<VariableExprAST>(std::move(loc), name); + args.push_back(std::move(decl)); + if (lexer.getCurToken() != ',') + break; + lexer.consume(Token(',')); + if (lexer.getCurToken() != tok_identifier) + return parseError<PrototypeAST>( + "identifier", "after ',' in function parameter list"); + } while (true); + } + if (lexer.getCurToken() != ')') + return parseError<PrototypeAST>("}", "to end function prototype"); + + // success. + lexer.consume(Token(')')); + return llvm::make_unique<PrototypeAST>(std::move(loc), FnName, + std::move(args)); + } + + /// Parse a function definition, we expect a prototype initiated with the + /// `def` keyword, followed by a block containing a list of expressions. + /// + /// definition ::= prototype block + std::unique_ptr<FunctionAST> ParseDefinition() { + auto Proto = ParsePrototype(); + if (!Proto) + return nullptr; + + if (auto block = ParseBlock()) + return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(block)); + return nullptr; + } + + /// Get the precedence of the pending binary operator token. + int GetTokPrecedence() { + if (!isascii(lexer.getCurToken())) + return -1; + + // 1 is lowest precedence. + switch (static_cast<char>(lexer.getCurToken())) { + case '-': + return 20; + case '+': + return 20; + case '*': + return 40; + default: + return -1; + } + } + + /// Helper function to signal errors while parsing, it takes an argument + /// indicating the expected token and another argument giving more context. + /// Location is retrieved from the lexer to enrich the error message. + template <typename R, typename T, typename U = const char *> + std::unique_ptr<R> parseError(T &&expected, U &&context = "") { + auto curToken = lexer.getCurToken(); + llvm::errs() << "Parse error (" << lexer.getLastLocation().line << ", " + << lexer.getLastLocation().col << "): expected '" << expected + << "' " << context << " but has Token " << curToken; + if (isprint(curToken)) + llvm::errs() << " '" << (char)curToken << "'"; + llvm::errs() << "\n"; + return nullptr; + } +}; + +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_PARSER_H diff --git a/mlir/examples/toy/Ch3/mlir/MLIRGen.cpp b/mlir/examples/toy/Ch3/mlir/MLIRGen.cpp new file mode 100644 index 00000000000..464a206f7f1 --- /dev/null +++ b/mlir/examples/toy/Ch3/mlir/MLIRGen.cpp @@ -0,0 +1,480 @@ +//===- MLIRGen.cpp - MLIR Generation from a Toy AST -----------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements a simple IR generation targeting MLIR from a Module AST +// for the Toy language. +// +//===----------------------------------------------------------------------===// + +#include "toy/MLIRGen.h" +#include "toy/AST.h" +#include "toy/Dialect.h" + +#include "mlir/IR/Attributes.h" +#include "mlir/IR/Builders.h" +#include "mlir/IR/Location.h" +#include "mlir/IR/MLIRContext.h" +#include "mlir/IR/Module.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/IR/Types.h" +#include "mlir/StandardOps/Ops.h" + +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopedHashTable.h" +#include "llvm/Support/raw_ostream.h" +#include <numeric> + +using namespace toy; +using llvm::cast; +using llvm::dyn_cast; +using llvm::isa; +using llvm::make_unique; +using llvm::ScopedHashTableScope; +using llvm::SmallVector; +using llvm::StringRef; +using llvm::Twine; + +namespace { + +/// Implementation of a simple MLIR emission from the Toy AST. +/// +/// This will emit operations that are specific to the Toy language, preserving +/// the semantics of the language and (hopefully) allow to perform accurate +/// analysis and transformation based on these high level semantics. +/// +/// At this point we take advantage of the "raw" MLIR APIs to create operations +/// that haven't been registered in any way with MLIR. These operations are +/// unknown to MLIR, custom passes could operate by string-matching the name of +/// these operations, but no other type checking or semantic is associated with +/// them natively by MLIR. +class MLIRGenImpl { +public: + MLIRGenImpl(mlir::MLIRContext &context) : context(context) {} + + /// Public API: convert the AST for a Toy module (source file) to an MLIR + /// Module. + std::unique_ptr<mlir::Module> mlirGen(ModuleAST &moduleAST) { + // We create an empty MLIR module and codegen functions one at a time and + // add them to the module. + theModule = make_unique<mlir::Module>(&context); + + for (FunctionAST &F : moduleAST) { + auto func = mlirGen(F); + if (!func) + return nullptr; + theModule->getFunctions().push_back(func.release()); + } + + // FIXME: (in the next chapter...) without registering a dialect in MLIR, + // this won't do much, but it should at least check some structural + // properties. + if (failed(theModule->verify())) { + context.emitError(mlir::UnknownLoc::get(&context), + "Module verification error"); + return nullptr; + } + + return std::move(theModule); + } + +private: + /// In MLIR (like in LLVM) a "context" object holds the memory allocation and + /// the ownership of many internal structure of the IR and provide a level + /// of "uniquing" across multiple modules (types for instance). + mlir::MLIRContext &context; + + /// A "module" matches a source file: it contains a list of functions. + std::unique_ptr<mlir::Module> theModule; + + /// The builder is a helper class to create IR inside a function. It is + /// re-initialized every time we enter a function and kept around as a + /// convenience for emitting individual operations. + /// The builder is stateful, in particular it keeeps an "insertion point": + /// this is where the next operations will be introduced. + std::unique_ptr<mlir::FuncBuilder> builder; + + /// The symbol table maps a variable name to a value in the current scope. + /// Entering a function creates a new scope, and the function arguments are + /// added to the mapping. When the processing of a function is terminated, the + /// scope is destroyed and the mappings created in this scope are dropped. + llvm::ScopedHashTable<StringRef, mlir::Value *> symbolTable; + + /// Helper conversion for a Toy AST location to an MLIR location. + mlir::FileLineColLoc loc(Location loc) { + return mlir::FileLineColLoc::get( + mlir::UniquedFilename::get(*loc.file, &context), loc.line, loc.col, + &context); + } + + /// Declare a variable in the current scope, return true if the variable + /// wasn't declared yet. + bool declare(llvm::StringRef var, mlir::Value *value) { + if (symbolTable.count(var)) { + return false; + } + symbolTable.insert(var, value); + return true; + } + + /// Create the prototype for an MLIR function with as many arguments as the + /// provided Toy AST prototype. + mlir::Function *mlirGen(PrototypeAST &proto) { + // This is a generic function, the return type will be inferred later. + llvm::SmallVector<mlir::Type, 4> ret_types; + // Arguments type is uniformly a generic array. + llvm::SmallVector<mlir::Type, 4> arg_types(proto.getArgs().size(), + getType(VarType{})); + auto func_type = mlir::FunctionType::get(arg_types, ret_types, &context); + auto *function = new mlir::Function(loc(proto.loc()), proto.getName(), + func_type, /* attrs = */ {}); + + // Mark the function as generic: it'll require type specialization for every + // call site. + if (function->getNumArguments()) + function->setAttr("toy.generic", mlir::BoolAttr::get(true, &context)); + + return function; + } + + /// Emit a new function and add it to the MLIR module. + std::unique_ptr<mlir::Function> mlirGen(FunctionAST &funcAST) { + // Create a scope in the symbol table to hold variable declarations. + ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable); + + // Create an MLIR function for the given prototype. + std::unique_ptr<mlir::Function> function(mlirGen(*funcAST.getProto())); + if (!function) + return nullptr; + + // Let's start the body of the function now! + // In MLIR the entry block of the function is special: it must have the same + // argument list as the function itself. + function->addEntryBlock(); + + auto &entryBlock = function->front(); + auto &protoArgs = funcAST.getProto()->getArgs(); + // Declare all the function arguments in the symbol table. + for (const auto &name_value : + llvm::zip(protoArgs, entryBlock.getArguments())) { + declare(std::get<0>(name_value)->getName(), std::get<1>(name_value)); + } + + // Create a builder for the function, it will be used throughout the codegen + // to create operations in this function. + builder = llvm::make_unique<mlir::FuncBuilder>(function.get()); + + // Emit the body of the function. + if (!mlirGen(*funcAST.getBody())) + return nullptr; + + // Implicitly return void if no return statement was emited. + // FIXME: we may fix the parser instead to always return the last expression + // (this would possibly help the REPL case later) + if (function->getBlocks().back().back().getName().getStringRef() != + "toy.return") { + ReturnExprAST fakeRet(funcAST.getProto()->loc(), llvm::None); + mlirGen(fakeRet); + } + + return function; + } + + /// Emit a binary operation + mlir::Value *mlirGen(BinaryExprAST &binop) { + // First emit the operations for each side of the operation before emitting + // the operation itself. For example if the expression is `a + foo(a)` + // 1) First it will visiting the LHS, which will return a reference to the + // value holding `a`. This value should have been emitted at declaration + // time and registered in the symbol table, so nothing would be + // codegen'd. If the value is not in the symbol table, an error has been + // emitted and nullptr is returned. + // 2) Then the RHS is visited (recursively) and a call to `foo` is emitted + // and the result value is returned. If an error occurs we get a nullptr + // and propagate. + // + mlir::Value *L = mlirGen(*binop.getLHS()); + if (!L) + return nullptr; + mlir::Value *R = mlirGen(*binop.getRHS()); + if (!R) + return nullptr; + auto location = loc(binop.loc()); + + // Derive the operation name from the binary operator. At the moment we only + // support '+' and '*'. + switch (binop.getOp()) { + case '+': + return builder->create<AddOp>(location, L, R).getResult(); + break; + case '*': + return builder->create<MulOp>(location, L, R).getResult(); + default: + context.emitError(loc(binop.loc()), + Twine("Error: invalid binary operator '") + + Twine(binop.getOp()) + "'"); + return nullptr; + } + } + + // This is a reference to a variable in an expression. The variable is + // expected to have been declared and so should have a value in the symbol + // table, otherwise emit an error and return nullptr. + mlir::Value *mlirGen(VariableExprAST &expr) { + if (symbolTable.count(expr.getName())) + return symbolTable.lookup(expr.getName()); + context.emitError(loc(expr.loc()), Twine("Error: unknown variable '") + + expr.getName() + "'"); + return nullptr; + } + + // Emit a return operation, return true on success. + bool mlirGen(ReturnExprAST &ret) { + auto location = loc(ret.loc()); + // `return` takes an optional expression, we need to account for it here. + if (!ret.getExpr().hasValue()) { + builder->create<ReturnOp>(location); + return true; + } + auto *expr = mlirGen(*ret.getExpr().getValue()); + if (!expr) + return false; + builder->create<ReturnOp>(location, expr); + return true; + } + + // Emit a literal/constant array. It will be emitted as a flattened array of + // data in an Attribute attached to a `toy.constant` operation. + // See documentation on [Attributes](LangRef.md#attributes) for more details. + // Here is an excerpt: + // + // Attributes are the mechanism for specifying constant data in MLIR in + // places where a variable is never allowed [...]. They consist of a name + // and a [concrete attribute value](#attribute-values). It is possible to + // attach attributes to operations, functions, and function arguments. The + // set of expected attributes, their structure, and their interpretation + // are all contextually dependent on what they are attached to. + // + // Example, the source level statement: + // var a<2, 3> = [[1, 2, 3], [4, 5, 6]]; + // will be converted to: + // %0 = "toy.constant"() {value: dense<tensor<2x3xf64>, + // [[1.000000e+00, 2.000000e+00, 3.000000e+00], + // [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> memref<2x3xf64> + // + mlir::Value *mlirGen(LiteralExprAST &lit) { + auto location = loc(lit.loc()); + // The attribute is a vector with an attribute per element (number) in the + // array, see `collectData()` below for more details. + std::vector<mlir::Attribute> data; + data.reserve(std::accumulate(lit.getDims().begin(), lit.getDims().end(), 1, + std::multiplies<int>())); + collectData(lit, data); + + // FIXME: using a tensor type is a HACK here. + // Can we do differently without registering a dialect? Using a string blob? + mlir::Type elementType = mlir::FloatType::getF64(&context); + auto dataType = builder->getTensorType(lit.getDims(), elementType); + + // This is the actual attribute that actually hold the list of values for + // this array literal. + auto dataAttribute = builder->getDenseElementsAttr(dataType, data) + .cast<mlir::DenseElementsAttr>(); + + // Build the MLIR op `toy.constant`, only boilerplate below. + return builder->create<ConstantOp>(location, lit.getDims(), dataAttribute) + .getResult(); + } + + // Recursive helper function to accumulate the data that compose an array + // literal. It flattens the nested structure in the supplied vector. For + // example with this array: + // [[1, 2], [3, 4]] + // we will generate: + // [ 1, 2, 3, 4 ] + // Individual numbers are wrapped in a light wrapper `mlir::FloatAttr`. + // Attributes are the way MLIR attaches constant to operations and functions. + void collectData(ExprAST &expr, std::vector<mlir::Attribute> &data) { + if (auto *lit = dyn_cast<LiteralExprAST>(&expr)) { + for (auto &value : lit->getValues()) + collectData(*value, data); + return; + } + assert(isa<NumberExprAST>(expr) && "expected literal or number expr"); + mlir::Type elementType = mlir::FloatType::getF64(&context); + auto attr = mlir::FloatAttr::getChecked( + elementType, cast<NumberExprAST>(expr).getValue(), loc(expr.loc())); + data.push_back(attr); + } + + // Emit a call expression. It emits specific operations for the `transpose` + // builtin. Other identifiers are assumed to be user-defined functions. + mlir::Value *mlirGen(CallExprAST &call) { + auto location = loc(call.loc()); + std::string callee = call.getCallee(); + if (callee == "transpose") { + if (call.getArgs().size() != 1) { + context.emitError( + location, Twine("MLIR codegen encountered an error: toy.transpose " + "does not accept multiple arguments")); + return nullptr; + } + mlir::Value *arg = mlirGen(*call.getArgs()[0]); + return builder->create<TransposeOp>(location, arg).getResult(); + } + + // Codegen the operands first + SmallVector<mlir::Value *, 4> operands; + for (auto &expr : call.getArgs()) { + auto *arg = mlirGen(*expr); + if (!arg) + return nullptr; + operands.push_back(arg); + } + // Calls to user-defined function are mapped to a custom call that takes + // the callee name as an attribute. + return builder->create<GenericCallOp>(location, call.getCallee(), operands) + .getResult(); + } + + // Emit a call expression. It emits specific operations for two builtins: + // transpose(x) and print(x). Other identifiers are assumed to be user-defined + // functions. Return false on failure. + bool mlirGen(PrintExprAST &call) { + auto *arg = mlirGen(*call.getArg()); + if (!arg) + return false; + auto location = loc(call.loc()); + builder->create<PrintOp>(location, arg); + return true; + } + + // Emit a constant for a single number (FIXME: semantic? broadcast?) + mlir::Value *mlirGen(NumberExprAST &num) { + auto location = loc(num.loc()); + mlir::Type elementType = mlir::FloatType::getF64(&context); + auto attr = mlir::FloatAttr::getChecked(elementType, num.getValue(), + loc(num.loc())); + return builder->create<ConstantOp>(location, attr).getResult(); + } + + // Dispatch codegen for the right expression subclass using RTTI. + mlir::Value *mlirGen(ExprAST &expr) { + switch (expr.getKind()) { + case toy::ExprAST::Expr_BinOp: + return mlirGen(cast<BinaryExprAST>(expr)); + case toy::ExprAST::Expr_Var: + return mlirGen(cast<VariableExprAST>(expr)); + case toy::ExprAST::Expr_Literal: + return mlirGen(cast<LiteralExprAST>(expr)); + case toy::ExprAST::Expr_Call: + return mlirGen(cast<CallExprAST>(expr)); + case toy::ExprAST::Expr_Num: + return mlirGen(cast<NumberExprAST>(expr)); + default: + context.emitError( + loc(expr.loc()), + Twine("MLIR codegen encountered an unhandled expr kind '") + + Twine(expr.getKind()) + "'"); + return nullptr; + } + } + + // Handle a variable declaration, we'll codegen the expression that forms the + // initializer and record the value in the symbol table before returning it. + // Future expressions will be able to reference this variable through symbol + // table lookup. + mlir::Value *mlirGen(VarDeclExprAST &vardecl) { + mlir::Value *value = nullptr; + auto location = loc(vardecl.loc()); + if (auto init = vardecl.getInitVal()) { + value = mlirGen(*init); + if (!value) + return nullptr; + // We have the initializer value, but in case the variable was declared + // with specific shape, we emit a "reshape" operation. It will get + // optimized out later as needed. + if (!vardecl.getType().shape.empty()) { + value = builder + ->create<ReshapeOp>( + location, value, + getType(vardecl.getType()).cast<ToyArrayType>()) + .getResult(); + } + } else { + context.emitError(loc(vardecl.loc()), + "Missing initializer in variable declaration"); + return nullptr; + } + // Register the value in the symbol table + declare(vardecl.getName(), value); + return value; + } + + /// Codegen a list of expression, return false if one of them hit an error. + bool mlirGen(ExprASTList &blockAST) { + ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable); + for (auto &expr : blockAST) { + // Specific handling for variable declarations, return statement, and + // print. These can only appear in block list and not in nested + // expressions. + if (auto *vardecl = dyn_cast<VarDeclExprAST>(expr.get())) { + if (!mlirGen(*vardecl)) + return false; + continue; + } + if (auto *ret = dyn_cast<ReturnExprAST>(expr.get())) { + if (!mlirGen(*ret)) + return false; + return true; + } + if (auto *print = dyn_cast<PrintExprAST>(expr.get())) { + if (!mlirGen(*print)) + return false; + return true; + } + // Generic expression dispatch codegen. + if (!mlirGen(*expr)) + return false; + } + return true; + } + + /// Build a type from a list of shape dimensions. Types are `array` followed + /// by an optional dimension list, example: array<2, 2> + /// They are wrapped in a `toy` dialect (see next chapter) and get printed: + /// !toy<"array<2, 2>"> + template <typename T> mlir::Type getType(T shape) { + SmallVector<int64_t, 8> shape64(shape.begin(), shape.end()); + return ToyArrayType::get(&context, shape64); + } + + /// Build an MLIR type from a Toy AST variable type + /// (forward to the generic getType(T) above). + mlir::Type getType(const VarType &type) { return getType(type.shape); } +}; + +} // namespace + +namespace toy { + +// The public API for codegen. +std::unique_ptr<mlir::Module> mlirGen(mlir::MLIRContext &context, + ModuleAST &moduleAST) { + return MLIRGenImpl(context).mlirGen(moduleAST); +} + +} // namespace toy diff --git a/mlir/examples/toy/Ch3/mlir/ToyDialect.cpp b/mlir/examples/toy/Ch3/mlir/ToyDialect.cpp new file mode 100644 index 00000000000..7910842a51b --- /dev/null +++ b/mlir/examples/toy/Ch3/mlir/ToyDialect.cpp @@ -0,0 +1,393 @@ +//===- ToyDialect.cpp - Toy IR Dialect registration in MLIR ---------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the dialect for the Toy IR: custom type parsing and +// operation verification. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" + +#include "mlir/IR/Builders.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/Support/STLExtras.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Regex.h" +#include "llvm/Support/raw_ostream.h" + +using llvm::ArrayRef; +using llvm::raw_ostream; +using llvm::raw_string_ostream; +using llvm::SmallVector; +using llvm::StringRef; +using llvm::Twine; + +namespace toy { +namespace detail { + +/// This class holds the implementation of the ToyArrayType. +/// It is intended to be uniqued based on its content and owned by the context. +struct ToyArrayTypeStorage : public mlir::TypeStorage { + /// This defines how we unique this type in the context: our key contains + /// only the shape, a more complex type would have multiple entries in the + /// tuple here. + /// The element of the tuples usually matches 1-1 the arguments from the + /// public `get()` method arguments from the facade. + using KeyTy = std::tuple<ArrayRef<int64_t>>; + static unsigned hashKey(const KeyTy &key) { + return llvm::hash_combine(std::get<0>(key)); + } + /// When the key hash hits an existing type, we compare the shape themselves + /// to confirm we have the right type. + bool operator==(const KeyTy &key) const { return key == KeyTy(getShape()); } + + /// This is a factory method to create our type storage. It is only + /// invoked after looking up the type in the context using the key and not + /// finding it. + static ToyArrayTypeStorage *construct(mlir::TypeStorageAllocator &allocator, + const KeyTy &key) { + // Copy the shape array into the bumpptr allocator owned by the context. + ArrayRef<int64_t> shape = allocator.copyInto(std::get<0>(key)); + + // Allocate the instance for the ToyArrayTypeStorage itself + auto *storage = allocator.allocate<ToyArrayTypeStorage>(); + // Initialize the instance using placement new. + return new (storage) ToyArrayTypeStorage(shape); + } + + ArrayRef<int64_t> getShape() const { return shape; } + +private: + ArrayRef<int64_t> shape; + + /// Constructor is only invoked from the `construct()` method above. + ToyArrayTypeStorage(ArrayRef<int64_t> shape) : shape(shape) {} +}; + +} // namespace detail + +mlir::Type ToyArrayType::getElementType() { + return mlir::FloatType::getF64(getContext()); +} + +ToyArrayType ToyArrayType::get(mlir::MLIRContext *context, + ArrayRef<int64_t> shape) { + return Base::get(context, ToyTypeKind::TOY_ARRAY, shape); +} + +ArrayRef<int64_t> ToyArrayType::getShape() { return getImpl()->getShape(); } + +/// Dialect creation, the instance will be owned by the context. This is the +/// point of registration of custom types and operations for the dialect. +ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) { + addOperations<ConstantOp, GenericCallOp, PrintOp, TransposeOp, ReshapeOp, + MulOp, AddOp, ReturnOp>(); + addTypes<ToyArrayType>(); +} + +/// Parse a type registered to this dialect, we expect only Toy arrays. +mlir::Type ToyDialect::parseType(StringRef tyData, mlir::Location loc) const { + // Sanity check: we only support array or array<...> + if (!tyData.startswith("array")) { + getContext()->emitError(loc, "Invalid Toy type '" + tyData + + "', array expected"); + return nullptr; + } + // Drop the "array" prefix from the type name, we expect either an empty + // string or just the shape. + tyData = tyData.drop_front(StringRef("array").size()); + // This is the generic array case without shape, early return it. + if (tyData.empty()) + return ToyArrayType::get(getContext()); + + // Use a regex to parse the shape (for efficient we should store this regex in + // the dialect itself). + SmallVector<StringRef, 4> matches; + auto shapeRegex = llvm::Regex("^<([0-9]+)(, ([0-9]+))*>$"); + if (!shapeRegex.match(tyData, &matches)) { + getContext()->emitError(loc, "Invalid toy array shape '" + tyData + "'"); + return nullptr; + } + SmallVector<int64_t, 4> shape; + // Iterate through the captures, skip the first one which is the full string. + for (auto dimStr : + llvm::make_range(std::next(matches.begin()), matches.end())) { + if (dimStr.startswith(",")) + continue; // POSIX misses non-capturing groups. + if (dimStr.empty()) + continue; // '*' makes it an optional group capture + // Convert the capture to an integer + unsigned long long dim; + if (getAsUnsignedInteger(dimStr, /* Radix = */ 10, dim)) { + getContext()->emitError( + loc, "Couldn't parse dimension as integer, matched: " + dimStr); + return mlir::Type(); + } + shape.push_back(dim); + } + // Finally we collected all the dimensions in the shape, + // create the array type. + return ToyArrayType::get(getContext(), shape); +} + +/// Print a Toy array type, for example `array<2, 3, 4>` +void ToyDialect::printType(mlir::Type type, raw_ostream &os) const { + auto arrayTy = type.dyn_cast<ToyArrayType>(); + if (!arrayTy) { + os << "unknown toy type"; + return; + } + os << "array"; + if (!arrayTy.getShape().empty()) { + os << "<"; + mlir::interleaveComma(arrayTy.getShape(), os); + os << ">"; + } +} + +//////////////////////////////////////////////////////////////////////////////// +//////////////////// Custom Operations for the Dialect ///////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +/// Helper to verify that the result of an operation is a Toy array type. +template <typename T> static mlir::LogicalResult verifyToyReturnArray(T *op) { + if (!op->getResult()->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its argument, got " + << op->getResult()->getType(); + return op->emitOpError(os.str()); + } + return mlir::success(); +} + +/// Helper to verify that the two operands of a binary operation are Toy +/// arrays.. +template <typename T> static mlir::LogicalResult verifyToyBinOperands(T *op) { + if (!op->getOperand(0)->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its LHS, got " + << op->getOperand(0)->getType(); + return op->emitOpError(os.str()); + } + if (!op->getOperand(1)->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its LHS, got " + << op->getOperand(0)->getType(); + return op->emitOpError(os.str()); + } + return mlir::success(); +} + +/// Build a constant operation. +/// The builder is passed as an argument, so is the state that this method is +/// expected to fill in order to build the operation. +void ConstantOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + ArrayRef<int64_t> shape, mlir::DenseElementsAttr value) { + state->types.push_back(ToyArrayType::get(builder->getContext(), shape)); + auto dataAttribute = builder->getNamedAttr("value", value); + state->attributes.push_back(dataAttribute); +} + +/// Build a constant operation. +/// The builder is passed as an argument, so is the state that this method is +/// expected to fill in order to build the operation. +void ConstantOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::FloatAttr value) { + // Broadcast and forward to the other build factory + mlir::Type elementType = mlir::FloatType::getF64(builder->getContext()); + auto dataType = builder->getTensorType({1}, elementType); + auto dataAttribute = builder->getDenseElementsAttr(dataType, {value}) + .cast<mlir::DenseElementsAttr>(); + + ConstantOp::build(builder, state, {1}, dataAttribute); +} + +/// Verifier for constant operation. +mlir::LogicalResult ConstantOp::verify() { + // Ensure that the return type is a Toy array + if (failed(verifyToyReturnArray(this))) + return mlir::failure(); + + // We expect the constant itself to be stored as an attribute. + auto dataAttr = getAttr("value").dyn_cast<mlir::DenseElementsAttr>(); + if (!dataAttr) { + return emitOpError( + "missing valid `value` DenseElementsAttribute on toy.constant()"); + } + auto attrType = dataAttr.getType().dyn_cast<mlir::TensorType>(); + if (!attrType) { + return emitOpError( + "missing valid `value` DenseElementsAttribute on toy.constant()"); + } + + // If the return type of the constant is not a generic array, the shape must + // match the shape of the attribute holding the data. + auto resultType = getResult()->getType().cast<ToyArrayType>(); + if (!resultType.isGeneric()) { + if (attrType.getRank() != resultType.getRank()) { + return emitOpError("The rank of the toy.constant return type must match " + "the one of the attached value attribute: " + + Twine(attrType.getRank()) + + " != " + Twine(resultType.getRank())); + } + for (int dim = 0; dim < attrType.getRank(); ++dim) { + if (attrType.getShape()[dim] != resultType.getShape()[dim]) { + std::string msg; + raw_string_ostream os(msg); + return emitOpError( + "Shape mismatch between toy.constant return type and its " + "attribute at dimension " + + Twine(dim) + ": " + Twine(attrType.getShape()[dim]) + + " != " + Twine(resultType.getShape()[dim])); + } + } + } + return mlir::success(); +} + +void GenericCallOp::build(mlir::FuncBuilder *builder, + mlir::OperationState *state, StringRef callee, + ArrayRef<mlir::Value *> arguments) { + // Generic call always returns a generic ToyArray initially + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.assign(arguments.begin(), arguments.end()); + auto calleeAttr = builder->getStringAttr(callee); + state->attributes.push_back(builder->getNamedAttr("callee", calleeAttr)); +} + +mlir::LogicalResult GenericCallOp::verify() { + // Verify that every operand is a Toy Array + for (int opId = 0, num = getNumOperands(); opId < num; ++opId) { + if (!getOperand(opId)->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its " << opId << " operand, got " + << getOperand(opId)->getType(); + return emitOpError(os.str()); + } + } + return mlir::success(); +} + +/// Return the name of the callee. +StringRef GenericCallOp::getCalleeName() { + return getAttr("callee").cast<mlir::StringAttr>().getValue(); +} + +template <typename T> static mlir::LogicalResult verifyToySingleOperand(T *op) { + if (!op->getOperand()->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its argument, got " + << op->getOperand()->getType(); + return op->emitOpError(msg); + } + return mlir::success(); +} + +void ReturnOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value) { + // Return does not return any value and has an optional single argument + if (value) + state->operands.push_back(value); +} + +mlir::LogicalResult ReturnOp::verify() { + if (getNumOperands() > 1) { + std::string msg; + raw_string_ostream os(msg); + os << "expects zero or one operand, got " << getNumOperands(); + return emitOpError(os.str()); + } + if (hasOperand() && failed(verifyToySingleOperand(this))) + return mlir::failure(); + return mlir::success(); +} + +void PrintOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value) { + // Print does not return any value and has a single argument + state->operands.push_back(value); +} + +mlir::LogicalResult PrintOp::verify() { + if (failed(verifyToySingleOperand(this))) + return mlir::failure(); + return mlir::success(); +} + +void TransposeOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value) { + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.push_back(value); +} + +mlir::LogicalResult TransposeOp::verify() { + if (failed(verifyToySingleOperand(this))) + return mlir::failure(); + return mlir::success(); +} + +void ReshapeOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *value, ToyArrayType reshapedType) { + state->types.push_back(reshapedType); + state->operands.push_back(value); +} + +mlir::LogicalResult ReshapeOp::verify() { + if (failed(verifyToySingleOperand(this))) + return mlir::failure(); + auto retTy = getResult()->getType().dyn_cast<ToyArrayType>(); + if (!retTy) + return emitOpError("toy.reshape is expected to produce a Toy array"); + if (retTy.isGeneric()) + return emitOpError("toy.reshape is expected to produce a shaped Toy array, " + "got a generic one."); + return mlir::success(); +} + +void AddOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs) { + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.push_back(lhs); + state->operands.push_back(rhs); +} + +mlir::LogicalResult AddOp::verify() { + if (failed(verifyToyBinOperands(this))) + return mlir::failure(); + return mlir::success(); +} + +void MulOp::build(mlir::FuncBuilder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs) { + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.push_back(lhs); + state->operands.push_back(rhs); +} + +mlir::LogicalResult MulOp::verify() { + if (failed(verifyToyBinOperands(this))) + return mlir::failure(); + return mlir::success(); +} + +} // namespace toy diff --git a/mlir/examples/toy/Ch3/parser/AST.cpp b/mlir/examples/toy/Ch3/parser/AST.cpp new file mode 100644 index 00000000000..869f2ef2013 --- /dev/null +++ b/mlir/examples/toy/Ch3/parser/AST.cpp @@ -0,0 +1,263 @@ +//===- AST.cpp - Helper for printing out the Toy AST ----------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the AST dump for the Toy language. +// +//===----------------------------------------------------------------------===// + +#include "toy/AST.h" + +#include "llvm/ADT/Twine.h" +#include "llvm/Support/raw_ostream.h" + +using namespace toy; + +namespace { + +// RAII helper to manage increasing/decreasing the indentation as we traverse +// the AST +struct Indent { + Indent(int &level) : level(level) { ++level; } + ~Indent() { --level; } + int &level; +}; + +/// Helper class that implement the AST tree traversal and print the nodes along +/// the way. The only data member is the current indentation level. +class ASTDumper { +public: + void dump(ModuleAST *Node); + +private: + void dump(VarType &type); + void dump(VarDeclExprAST *varDecl); + void dump(ExprAST *expr); + void dump(ExprASTList *exprList); + void dump(NumberExprAST *num); + void dump(LiteralExprAST *Node); + void dump(VariableExprAST *Node); + void dump(ReturnExprAST *Node); + void dump(BinaryExprAST *Node); + void dump(CallExprAST *Node); + void dump(PrintExprAST *Node); + void dump(PrototypeAST *Node); + void dump(FunctionAST *Node); + + // Actually print spaces matching the current indentation level + void indent() { + for (int i = 0; i < curIndent; i++) + llvm::errs() << " "; + } + int curIndent = 0; +}; + +} // namespace + +/// Return a formatted string for the location of any node +template <typename T> static std::string loc(T *Node) { + const auto &loc = Node->loc(); + return (llvm::Twine("@") + *loc.file + ":" + llvm::Twine(loc.line) + ":" + + llvm::Twine(loc.col)) + .str(); +} + +// Helper Macro to bump the indentation level and print the leading spaces for +// the current indentations +#define INDENT() \ + Indent level_(curIndent); \ + indent(); + +/// Dispatch to a generic expressions to the appropriate subclass using RTTI +void ASTDumper::dump(ExprAST *expr) { +#define dispatch(CLASS) \ + if (CLASS *node = llvm::dyn_cast<CLASS>(expr)) \ + return dump(node); + dispatch(VarDeclExprAST); + dispatch(LiteralExprAST); + dispatch(NumberExprAST); + dispatch(VariableExprAST); + dispatch(ReturnExprAST); + dispatch(BinaryExprAST); + dispatch(CallExprAST); + dispatch(PrintExprAST); + // No match, fallback to a generic message + INDENT(); + llvm::errs() << "<unknown Expr, kind " << expr->getKind() << ">\n"; +} + +/// A variable declaration is printing the variable name, the type, and then +/// recurse in the initializer value. +void ASTDumper::dump(VarDeclExprAST *varDecl) { + INDENT(); + llvm::errs() << "VarDecl " << varDecl->getName(); + dump(varDecl->getType()); + llvm::errs() << " " << loc(varDecl) << "\n"; + dump(varDecl->getInitVal()); +} + +/// A "block", or a list of expression +void ASTDumper::dump(ExprASTList *exprList) { + INDENT(); + llvm::errs() << "Block {\n"; + for (auto &expr : *exprList) + dump(expr.get()); + indent(); + llvm::errs() << "} // Block\n"; +} + +/// A literal number, just print the value. +void ASTDumper::dump(NumberExprAST *num) { + INDENT(); + llvm::errs() << num->getValue() << " " << loc(num) << "\n"; +} + +/// Helper to print recurisvely a literal. This handles nested array like: +/// [ [ 1, 2 ], [ 3, 4 ] ] +/// We print out such array with the dimensions spelled out at every level: +/// <2,2>[<2>[ 1, 2 ], <2>[ 3, 4 ] ] +void printLitHelper(ExprAST *lit_or_num) { + // Inside a literal expression we can have either a number or another literal + if (auto num = llvm::dyn_cast<NumberExprAST>(lit_or_num)) { + llvm::errs() << num->getValue(); + return; + } + auto *literal = llvm::cast<LiteralExprAST>(lit_or_num); + + // Print the dimension for this literal first + llvm::errs() << "<"; + { + const char *sep = ""; + for (auto dim : literal->getDims()) { + llvm::errs() << sep << dim; + sep = ", "; + } + } + llvm::errs() << ">"; + + // Now print the content, recursing on every element of the list + llvm::errs() << "[ "; + const char *sep = ""; + for (auto &elt : literal->getValues()) { + llvm::errs() << sep; + printLitHelper(elt.get()); + sep = ", "; + } + llvm::errs() << "]"; +} + +/// Print a literal, see the recursive helper above for the implementation. +void ASTDumper::dump(LiteralExprAST *Node) { + INDENT(); + llvm::errs() << "Literal: "; + printLitHelper(Node); + llvm::errs() << " " << loc(Node) << "\n"; +} + +/// Print a variable reference (just a name). +void ASTDumper::dump(VariableExprAST *Node) { + INDENT(); + llvm::errs() << "var: " << Node->getName() << " " << loc(Node) << "\n"; +} + +/// Return statement print the return and its (optional) argument. +void ASTDumper::dump(ReturnExprAST *Node) { + INDENT(); + llvm::errs() << "Return\n"; + if (Node->getExpr().hasValue()) + return dump(*Node->getExpr()); + { + INDENT(); + llvm::errs() << "(void)\n"; + } +} + +/// Print a binary operation, first the operator, then recurse into LHS and RHS. +void ASTDumper::dump(BinaryExprAST *Node) { + INDENT(); + llvm::errs() << "BinOp: " << Node->getOp() << " " << loc(Node) << "\n"; + dump(Node->getLHS()); + dump(Node->getRHS()); +} + +/// Print a call expression, first the callee name and the list of args by +/// recursing into each individual argument. +void ASTDumper::dump(CallExprAST *Node) { + INDENT(); + llvm::errs() << "Call '" << Node->getCallee() << "' [ " << loc(Node) << "\n"; + for (auto &arg : Node->getArgs()) + dump(arg.get()); + indent(); + llvm::errs() << "]\n"; +} + +/// Print a builtin print call, first the builtin name and then the argument. +void ASTDumper::dump(PrintExprAST *Node) { + INDENT(); + llvm::errs() << "Print [ " << loc(Node) << "\n"; + dump(Node->getArg()); + indent(); + llvm::errs() << "]\n"; +} + +/// Print type: only the shape is printed in between '<' and '>' +void ASTDumper::dump(VarType &type) { + llvm::errs() << "<"; + const char *sep = ""; + for (auto shape : type.shape) { + llvm::errs() << sep << shape; + sep = ", "; + } + llvm::errs() << ">"; +} + +/// Print a function prototype, first the function name, and then the list of +/// parameters names. +void ASTDumper::dump(PrototypeAST *Node) { + INDENT(); + llvm::errs() << "Proto '" << Node->getName() << "' " << loc(Node) << "'\n"; + indent(); + llvm::errs() << "Params: ["; + const char *sep = ""; + for (auto &arg : Node->getArgs()) { + llvm::errs() << sep << arg->getName(); + sep = ", "; + } + llvm::errs() << "]\n"; +} + +/// Print a function, first the prototype and then the body. +void ASTDumper::dump(FunctionAST *Node) { + INDENT(); + llvm::errs() << "Function \n"; + dump(Node->getProto()); + dump(Node->getBody()); +} + +/// Print a module, actually loop over the functions and print them in sequence. +void ASTDumper::dump(ModuleAST *Node) { + INDENT(); + llvm::errs() << "Module:\n"; + for (auto &F : *Node) + dump(&F); +} + +namespace toy { + +// Public API +void dump(ModuleAST &module) { ASTDumper().dump(&module); } + +} // namespace toy diff --git a/mlir/examples/toy/Ch3/toyc.cpp b/mlir/examples/toy/Ch3/toyc.cpp new file mode 100644 index 00000000000..3d18417dc8a --- /dev/null +++ b/mlir/examples/toy/Ch3/toyc.cpp @@ -0,0 +1,139 @@ +//===- toyc.cpp - The Toy Compiler ----------------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the entry point for the Toy compiler. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" +#include "toy/MLIRGen.h" +#include "toy/Parser.h" +#include <memory> + +#include "mlir/IR/MLIRContext.h" +#include "mlir/IR/Module.h" +#include "mlir/Parser.h" + +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorOr.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/raw_ostream.h" + +using namespace toy; +namespace cl = llvm::cl; + +static cl::opt<std::string> inputFilename(cl::Positional, + cl::desc("<input toy file>"), + cl::init("-"), + cl::value_desc("filename")); + +namespace { +enum InputType { Toy, MLIR }; +} +static cl::opt<enum InputType> inputType( + "x", cl::init(Toy), cl::desc("Decided the kind of output desired"), + cl::values(clEnumValN(Toy, "toy", "load the input file as a Toy source.")), + cl::values(clEnumValN(MLIR, "mlir", + "load the input file as an MLIR file"))); + +namespace { +enum Action { None, DumpAST, DumpMLIR }; +} +static cl::opt<enum Action> emitAction( + "emit", cl::desc("Select the kind of output desired"), + cl::values(clEnumValN(DumpAST, "ast", "output the AST dump")), + cl::values(clEnumValN(DumpMLIR, "mlir", "output the MLIR dump"))); + +/// Returns a Toy AST resulting from parsing the file or a nullptr on error. +std::unique_ptr<toy::ModuleAST> parseInputFile(llvm::StringRef filename) { + llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileOrErr = + llvm::MemoryBuffer::getFileOrSTDIN(filename); + if (std::error_code EC = FileOrErr.getError()) { + llvm::errs() << "Could not open input file: " << EC.message() << "\n"; + return nullptr; + } + auto buffer = FileOrErr.get()->getBuffer(); + LexerBuffer lexer(buffer.begin(), buffer.end(), filename); + Parser parser(lexer); + return parser.ParseModule(); +} + +int dumpMLIR() { + // Register our Dialect with MLIR + mlir::registerDialect<ToyDialect>(); + + mlir::MLIRContext context; + std::unique_ptr<mlir::Module> module; + if (inputType == InputType::MLIR || + llvm::StringRef(inputFilename).endswith(".mlir")) { + llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr = + llvm::MemoryBuffer::getFileOrSTDIN(inputFilename); + if (std::error_code EC = fileOrErr.getError()) { + llvm::errs() << "Could not open input file: " << EC.message() << "\n"; + return -1; + } + llvm::SourceMgr sourceMgr; + sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), llvm::SMLoc()); + module.reset(mlir::parseSourceFile(sourceMgr, &context)); + if (!module) { + llvm::errs() << "Error can't load file " << inputFilename << "\n"; + return 3; + } + if (failed(module->verify())) { + llvm::errs() << "Error verifying MLIR module\n"; + return 4; + } + } else { + auto moduleAST = parseInputFile(inputFilename); + module = mlirGen(context, *moduleAST); + } + if (!module) + return 1; + module->dump(); + return 0; +} + +int dumpAST() { + if (inputType == InputType::MLIR) { + llvm::errs() << "Can't dump a Toy AST when the input is MLIR\n"; + return 5; + } + + auto moduleAST = parseInputFile(inputFilename); + if (!moduleAST) + return 1; + + dump(*moduleAST); + return 0; +} + +int main(int argc, char **argv) { + cl::ParseCommandLineOptions(argc, argv, "toy compiler\n"); + + switch (emitAction) { + case Action::DumpAST: + return dumpAST(); + case Action::DumpMLIR: + return dumpMLIR(); + default: + llvm::errs() << "No action specified (parsing only?), use -emit=<action>\n"; + } + + return 0; +} diff --git a/mlir/g3doc/Tutorials/Toy/Ch-3.md b/mlir/g3doc/Tutorials/Toy/Ch-3.md new file mode 100644 index 00000000000..b3d79d05eb8 --- /dev/null +++ b/mlir/g3doc/Tutorials/Toy/Ch-3.md @@ -0,0 +1,297 @@ +# Chapter 3: Defining and Registering a Dialect in MLIR + +In the previous chapter, we saw how to emit a custom IR for Toy in MLIR using +opaque operations. In this chapter we will register our Dialect with MLIR to +start making the Toy IR more robust and friendly to use. + +Dialects in MLIR allow for registering operations and types with an MLIRContext. +They also must reserve a "namespace" to avoid collision with other registered +dialects. These registered operations are no longer opaque to MLIR: for example +we can teach the MLIR verifier to enforce some invariants on the IR. + +```c++ +/// This is the definition of the Toy dialect. A dialect inherits from +/// mlir::Dialect and registers custom operations and types (in its constructor). +/// It can also overridde general behavior of dialects exposed as virtual +/// methods, for example regarding verification and parsing/printing. +class ToyDialect : public mlir::Dialect { + public: + explicit ToyDialect(mlir::MLIRContext *ctx); + + /// Parse a type registered to this dialect. Overridding this method is + /// required for dialects that have custom types. + /// Technically this is only needed to be able to round-trip to textual IR. + mlir::Type parseType(llvm::StringRef tyData, + mlir::Location loc) const override; + + /// Print a type registered to this dialect. Overridding this method is + /// only required for dialects that have custom types. + /// Technically this is only needed to be able to round-trip to textual IR. + void printType(mlir::Type type, llvm::raw_ostream &os) const override; +}; +``` + +The dialect can now be registered in the global registry: + +```c++ + mlir::registerDialect<ToyDialect>(); +``` + +Any new `MLIRContext` created from now on will recognize the `toy` prefix when +parsing new types and invoke our `parseType` method. We will see later how to +enable custom operations, but first let's define a custom type to handle Toy +arrays. + +# Custom Type Handling + +As you may have noticed in the previous chapter, dialect specific types in MLIR +are serialized as strings. In the case of Toy, an example would be +`!toy<"array<2, 3>">`. MLIR will find the ToyDialect from the `!toy` prefix but +it is up to the dialect itself to translate the content of the string into a +proper type. + +First we need to define the class representing our type. In MLIR, types are +references to immutable and uniqued objects owned by the MLIRContext. As such, +our `ToyArrayType` will only be a wrapper around a pointer to an uniqued +instance of `ToyArrayTypeStorage` in the Context and provide the public facade +API to interact with the type. + +```c++ +class ToyArrayType : public mlir::Type::TypeBase<ToyArrayType, mlir::Type, + detail::ToyArrayTypeStorage> { + public: + /// Returns the dimensions for this Toy array, or an empty range for a generic array. + llvm::ArrayRef<int64_t> getShape(); + + /// Predicate to test if this array is generic (shape haven't been inferred yet). + bool isGeneric() { return getShape().empty(); } + + /// Return the rank of this array (0 if it is generic) + int getRank() { return getShape().size(); } + + /// Get the unique instance of this Type from the context. + /// A ToyArrayType is only defined by the shape of the array. + static ToyArrayType get(mlir::MLIRContext *context, + llvm::ArrayRef<int64_t> shape = {}); + + /// Support method to enable LLVM-style RTTI type casting. + static bool kindof(unsigned kind) { return kind == ToyTypeKind::TOY_ARRAY; } +}; +``` + +Implementing `getShape()` for example is just about retrieving the pointer to +the uniqued instance and forwarding: + +```c++ +llvm::ArrayRef<int64_t> ToyArrayType::getShape() { + return getImpl()->getShape(); +} +``` + +The calls to `getImpl()` give access to the `ToyArrayTypeStorage` that holds the +information for this type. For details about how the storage of the type works, +we'll refer you to `Ch3/mlir/ToyDialect.cpp`. + +Finally, the Toy dialect can register the type with MLIR, and implement some +custom parsing for our types: + +```c++ +ToyDialect::ToyDialect(mlir::MLIRContext *ctx) + // note the `toy` prefix that we reserve here. + : mlir::Dialect("toy", ctx) { + // Register our custom type with MLIR. + addTypes<ToyArrayType>(); +} + +/// Parse a type registered to this dialect, we expect only Toy arrays. +mlir::Type ToyDialect::parseType(StringRef tyData, + mlir::Location loc) const { + // Sanity check: we only support array or array<...> + if (!tyData.startswith("array")) { + getContext()->emitError(loc, "Invalid Toy type '" + tyData + + "', array expected"); + return nullptr; + } + // Drop the "array" prefix from the type name, we expect either an empty + // string or just the shape. + tyData = tyData.drop_front(StringRef("array").size()); + // This is the generic array case without shape, early return it. + if (tyData.empty()) + return ToyArrayType::get(getContext()); + + // Use a regex to parse the shape (for efficient we should store this regex in + // the dialect itself). + SmallVector<StringRef, 4> matches; + auto shapeRegex = llvm::Regex("^<([0-9]+)(, ([0-9]+))*>$"); + if (!shapeRegex.match(tyData, &matches)) { + getContext()->emitError(loc, "Invalid toy array shape '" + tyData + "'"); + return nullptr; + } + SmallVector<int64_t, 4> shape; + // Iterate through the captures, skip the first one which is the full string. + for (auto dimStr : + llvm::make_range(std::next(matches.begin()), matches.end())) { + if (dimStr.startswith(",")) + continue; // POSIX misses non-capturing groups. + if (dimStr.empty()) + continue; // '*' makes it an optional group capture + // Convert the capture to an integer + unsigned long long dim; + if (getAsUnsignedInteger(dimStr, /* Radix = */ 10, dim)) { + getContext()->emitError(loc, Twine("Couldn't parse dimension as integer, matched: ") + dimStr); + return mlir::Type(); + } + shape.push_back(dim); + } + // Finally we collected all the dimensions in the shape, + // create the array type. + return ToyArrayType::get(getContext(), shape); +} +``` + +And we also update our IR generation from the Toy AST to use our new type +instead of an opaque one: + +```c++ +template <typename T> mlir::Type getType(T shape) { + SmallVector<int64_t, 8> shape64(shape.begin(), shape.end()); + return ToyArrayType::get(&context, shape64); +} +``` + +From now on, MLIR knows how to parse types that are wrapped in `!toy<...>` and +these won't be opaque anymore. The first consequence is that bogus IR with +respect to our type won't be loaded anymore: + +```bash(.sh) +$ echo 'func @foo() -> !toy<"bla">' | toyc -emit=mlir -x mlir - +loc("<stdin>":1:21): error: Invalid Toy type 'bla', array expected +$ echo 'func @foo() -> !toy<"array<>">' | toyc -emit=mlir -x mlir - +loc("<stdin>":1:21): error: Invalid toy array shape '<>' +$ echo 'func @foo() -> !toy<"array<1, >">' | toyc -emit=mlir -x mlir - +loc("<stdin>":1:21): error: Invalid toy array shape '<1, >' +$ echo 'func @foo() -> !toy<"array<1, 2, 3>">' | toyc -emit=mlir -x mlir - +func @foo() -> !toy<"array<1, 3>"> +``` + +## Defining a C++ Class for an Operation + +After defining our custom type, we will register all the operations for the Toy +language. Let's walk through the creation of the `toy.generic_call` operation: + +```MLIR(.mlir) + %4 = "toy.generic_call"(%1, %3) {callee: "my_func"} + : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +``` + +This operation takes a variable number of operands, all of which are expected to +be Toy arrays, and return a single result. An operation inherit from `mlir::Op` +and add some optional *traits* to customize its behavior. + +```c++ +class GenericCallOp + : public mlir::Op<GenericCallOp, mlir::OpTrait::VariadicOperands, + mlir::OpTrait::OneResult> { + + public: + /// MLIR will use this to register the operation with the parser/printer. + static llvm::StringRef getOperationName() { return "toy.generic_call"; } + + /// Operations can add custom verification beyond the traits they define. + /// We will ensure that all the operands are Toy arrays. + bool verify(); + + /// Interface to the builder to allow: + /// mlir::FuncBuilder::create<GenericCallOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.generic_call` operation accepts a callee name and a list of + /// arguments for the call. + static void build(mlir::FuncBuilder *builder, mlir::OperationState *state, + llvm::StringRef callee, + llvm::ArrayRef<mlir::Value *> arguments); + + /// Return the name of the callee by fetching it from the attribute. + llvm::StringRef getCalleeName(); + + private: + friend class mlir::Operation; + using Op::Op; +}; +``` + +and we register this operation in the `ToyDialect` constructor: + +```c++ +ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) { + addOperations<GenericCallOp>(); + addTypes<ToyArrayType>(); +} +``` + +After creating classes for each of our operations, our dialect is ready and we +have now better invariants enforced in our IR, and nicer API to implement +analyses and transformations in the [next chapter](Ch-4.md). + +## Using TableGen + +FIXME: complete + +## Revisiting the Builder API + +We can now update `MLIRGen.cpp`, previously our use of the builder was very +generic and creating a call operation looked like: + +``` + // Calls to user-defined function are mapped to a custom call that takes + // the callee name as an attribute. + mlir::OperationState result(&context, location, "toy.generic_call"); + result.types.push_back(getType(VarType{})); + result.operands = std::move(operands); + for (auto &expr : call.getArgs()) { + auto *arg = mlirGen(*expr); + if (!arg) + return nullptr; + result.operands.push_back(arg); + } + auto calleeAttr = builder->getStringAttr(call.getCallee()); + result.attributes.push_back(builder->getNamedAttr("callee", calleeAttr)); + return builder->createOperation(result)->getResult(0); +``` + +We replace it with this new version: + +```c++ + for (auto &expr : call.getArgs()) { + auto *arg = mlirGen(*expr); + if (!arg) + return nullptr; + operands.push_back(arg); + } + return builder->create<GenericCallOp>(location, call.getCallee(), operands)->getResult(); +``` + +This interface offers better type safety, with some invariant enforced at the +API level. For instance the `GenericCallOp` exposes now a `getResult()` method +that does not take any argument, while before MLIR assumed the general cases and +left open the possibility to have multiple returned values. The API was +`getResult(int resultNum)`. + +# Putting It All Together + +After writing a class for each of our operation and implementing custom +verifier, we try again the same example of invalid IR from the previous chapter: + +```bash(.sh) +$ cat test/invalid.mlir +func @main() { + %0 = "toy.print"() : () -> !toy<"array<2, 3>"> +} +$ toyc test/invalid.mlir -emit=mlir +loc("test/invalid.mlir":2:8): error: 'toy.print' op requires a single operand +``` + +This time the IR is correctly rejected by the verifier! + +In the [next chapter](Ch-4.md) we will leverage our new dialect to implement +some high-level language-specific analyses and transformations for the Toy +language. diff --git a/mlir/include/mlir/IR/DialectTypeRegistry.def b/mlir/include/mlir/IR/DialectTypeRegistry.def index b212a572aa6..c664241ab5e 100644 --- a/mlir/include/mlir/IR/DialectTypeRegistry.def +++ b/mlir/include/mlir/IR/DialectTypeRegistry.def @@ -27,6 +27,7 @@ DEFINE_TYPE_KIND_RANGE(LLVM) DEFINE_TYPE_KIND_RANGE(QUANTIZATION) DEFINE_TYPE_KIND_RANGE(IREE) // IREE stands for IR Execution Engine DEFINE_TYPE_KIND_RANGE(LINALG) // Linear Algebra Dialect +DEFINE_TYPE_KIND_RANGE(TOY) // Toy language (tutorial) Dialect // The following ranges are reserved for experimenting with MLIR dialects in a // private context without having to register them here. diff --git a/mlir/test/Examples/Toy/Ch2/codegen.toy b/mlir/test/Examples/Toy/Ch2/codegen.toy index f2397e63ff0..e361a09528a 100644 --- a/mlir/test/Examples/Toy/Ch2/codegen.toy +++ b/mlir/test/Examples/Toy/Ch2/codegen.toy @@ -25,8 +25,8 @@ def main() { # CHECK-NEXT: %1 = "toy.reshape"(%0) : (!toy<"array<2, 3>">) -> !toy<"array<2, 3>"> # CHECK-NEXT: %2 = "toy.constant"() {value: dense<tensor<6xf64>, [1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]>} : () -> !toy<"array<6>"> # CHECK-NEXT: %3 = "toy.reshape"(%2) : (!toy<"array<6>">) -> !toy<"array<2, 3>"> -# CHECK-NEXT: %4 = "toy.generic_call"(%1, %3, %1, %3) {callee: "multiply_transpose"} : (!toy<"array<2, 3>">, !toy<"array<2, 3>">, !toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> -# CHECK-NEXT: %5 = "toy.generic_call"(%3, %1, %3, %1) {callee: "multiply_transpose"} : (!toy<"array<2, 3>">, !toy<"array<2, 3>">, !toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +# CHECK-NEXT: %4 = "toy.generic_call"(%1, %3) {callee: "multiply_transpose"} : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +# CHECK-NEXT: %5 = "toy.generic_call"(%3, %1) {callee: "multiply_transpose"} : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> # CHECK-NEXT: "toy.print"(%5) : (!toy<"array">) -> () # CHECK-NEXT: "toy.return"() : () -> () diff --git a/mlir/test/Examples/Toy/Ch2/invalid.mlir b/mlir/test/Examples/Toy/Ch2/invalid.mlir index 324d4ca2717..fe8369be982 100644 --- a/mlir/test/Examples/Toy/Ch2/invalid.mlir +++ b/mlir/test/Examples/Toy/Ch2/invalid.mlir @@ -1,4 +1,4 @@ -// RUN: toyc-ch2 %s -emit=mlir 2>&1 +// RUN: toyc-ch2 %s -emit=mlir 2>&1 // This IR is not "valid": diff --git a/mlir/test/Examples/Toy/Ch3/ast.toy b/mlir/test/Examples/Toy/Ch3/ast.toy new file mode 100644 index 00000000000..0c904216757 --- /dev/null +++ b/mlir/test/Examples/Toy/Ch3/ast.toy @@ -0,0 +1,73 @@ +# RUN: toyc-ch3 %s -emit=ast 2>&1 | FileCheck %s + + +# User defined generic function that operates solely on +def multiply_transpose(a, b) { + return a * transpose(b); +} + +def main() { + # Define a variable `a` with shape <2, 3>, initialized with the literal value. + # The shape is inferred from the supplied literal. + var a = [[1, 2, 3], [4, 5, 6]]; + # b is identical to a, the literal array is implicitely reshaped: defining new + # variables is the way to reshape arrays (element count must match). + var b<2, 3> = [1, 2, 3, 4, 5, 6]; + # This call will specialize `multiply_transpose` with <2, 3> for both + # arguments and deduce a return type of <2, 2> in initialization of `c`. + var c = multiply_transpose(a, b); + # A second call to `multiply_transpose` with <2, 3> for both arguments will + # reuse the previously specialized and inferred version and return `<2, 2>` + var d = multiply_transpose(b, a); + # A new call with `<2, 2>` for both dimension will trigger another + # specialization of `multiply_transpose`. + var e = multiply_transpose(b, c); + # Finally, calling into `multiply_transpose` with incompatible shape will + # trigger a shape inference error. + var e = multiply_transpose(transpose(a), c); +} + + +# CHECK: Module: +# CHECK-NEXT: Function +# CHECK-NEXT: Proto 'multiply_transpose' @{{.*}}Toy/Ch3/ast.toy:5:1' +# CHECK-NEXT: Params: [a, b] +# CHECK-NEXT: Block { +# CHECK-NEXT: Retur +# CHECK-NEXT: BinOp: * @{{.*}}Toy/Ch3/ast.toy:6:14 +# CHECK-NEXT: var: a @{{.*}}Toy/Ch3/ast.toy:6:10 +# CHECK-NEXT: Call 'transpose' [ @{{.*}}Toy/Ch3/ast.toy:6:14 +# CHECK-NEXT: var: b @{{.*}}Toy/Ch3/ast.toy:6:24 +# CHECK-NEXT: ] +# CHECK-NEXT: } // Block +# CHECK-NEXT: Function +# CHECK-NEXT: Proto 'main' @{{.*}}Toy/Ch3/ast.toy:9:1' +# CHECK-NEXT: Params: [] +# CHECK-NEXT: Block { +# CHECK-NEXT: VarDecl a<> @{{.*}}Toy/Ch3/ast.toy:12:3 +# CHECK-NEXT: Literal: <2, 3>[ <3>[ 1.000000e+00, 2.000000e+00, 3.000000e+00], <3>[ 4.000000e+00, 5.000000e+00, 6.000000e+00]] @{{.*}}Toy/Ch3/ast.toy:12:11 +# CHECK-NEXT: VarDecl b<2, 3> @{{.*}}Toy/Ch3/ast.toy:15:3 +# CHECK-NEXT: Literal: <6>[ 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00] @{{.*}}Toy/Ch3/ast.toy:15:17 +# CHECK-NEXT: VarDecl c<> @{{.*}}Toy/Ch3/ast.toy:18:3 +# CHECK-NEXT: Call 'multiply_transpose' [ @{{.*}}Toy/Ch3/ast.toy:18:11 +# CHECK-NEXT: var: a @{{.*}}Toy/Ch3/ast.toy:18:30 +# CHECK-NEXT: var: b @{{.*}}Toy/Ch3/ast.toy:18:33 +# CHECK-NEXT: ] +# CHECK-NEXT: VarDecl d<> @{{.*}}Toy/Ch3/ast.toy:21:3 +# CHECK-NEXT: Call 'multiply_transpose' [ @{{.*}}Toy/Ch3/ast.toy:21:11 +# CHECK-NEXT: var: b @{{.*}}Toy/Ch3/ast.toy:21:30 +# CHECK-NEXT: var: a @{{.*}}Toy/Ch3/ast.toy:21:33 +# CHECK-NEXT: ] +# CHECK-NEXT: VarDecl e<> @{{.*}}Toy/Ch3/ast.toy:24:3 +# CHECK-NEXT: Call 'multiply_transpose' [ @{{.*}}Toy/Ch3/ast.toy:24:11 +# CHECK-NEXT: var: b @{{.*}}Toy/Ch3/ast.toy:24:30 +# CHECK-NEXT: var: c @{{.*}}Toy/Ch3/ast.toy:24:33 +# CHECK-NEXT: ] +# CHECK-NEXT: VarDecl e<> @{{.*}}Toy/Ch3/ast.toy:27:3 +# CHECK-NEXT: Call 'multiply_transpose' [ @{{.*}}Toy/Ch3/ast.toy:27:11 +# CHECK-NEXT: Call 'transpose' [ @{{.*}}Toy/Ch3/ast.toy:27:30 +# CHECK-NEXT: var: a @{{.*}}Toy/Ch3/ast.toy:27:40 +# CHECK-NEXT: ] +# CHECK-NEXT: var: c @{{.*}}Toy/Ch3/ast.toy:27:44 +# CHECK-NEXT: ] + diff --git a/mlir/test/Examples/Toy/Ch3/codegen.toy b/mlir/test/Examples/Toy/Ch3/codegen.toy new file mode 100644 index 00000000000..a4d7058f8f3 --- /dev/null +++ b/mlir/test/Examples/Toy/Ch3/codegen.toy @@ -0,0 +1,32 @@ +# RUN: toyc-ch3 %s -emit=mlir 2>&1 | FileCheck %s + +# User defined generic function that operates on unknown shaped arguments +def multiply_transpose(a, b) { + return a * transpose(b); +} + +def main() { + var a<2, 3> = [[1, 2, 3], [4, 5, 6]]; + var b<2, 3> = [1, 2, 3, 4, 5, 6]; + var c = multiply_transpose(a, b); + var d = multiply_transpose(b, a); + print(d); +} + +# CHECK-LABEL: func @multiply_transpose(%arg0: !toy<"array">, %arg1: !toy<"array">) +# CHECK-NEXT: attributes {toy.generic: true} { +# CHECK-NEXT: %0 = "toy.transpose"(%arg1) : (!toy<"array">) -> !toy<"array"> +# CHECK-NEXT: %1 = "toy.mul"(%arg0, %0) : (!toy<"array">, !toy<"array">) -> !toy<"array"> +# CHECK-NEXT: "toy.return"(%1) : (!toy<"array">) -> () +# CHECK-NEXT: } + +# CHECK-LABEL: func @main() { +# CHECK-NEXT: %0 = "toy.constant"() {value: dense<tensor<2x3xf64>, {{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> !toy<"array<2, 3>"> +# CHECK-NEXT: %1 = "toy.reshape"(%0) : (!toy<"array<2, 3>">) -> !toy<"array<2, 3>"> +# CHECK-NEXT: %2 = "toy.constant"() {value: dense<tensor<6xf64>, [1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00, 6.000000e+00]>} : () -> !toy<"array<6>"> +# CHECK-NEXT: %3 = "toy.reshape"(%2) : (!toy<"array<6>">) -> !toy<"array<2, 3>"> +# CHECK-NEXT: %4 = "toy.generic_call"(%1, %3) {callee: "multiply_transpose"} : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +# CHECK-NEXT: %5 = "toy.generic_call"(%3, %1) {callee: "multiply_transpose"} : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +# CHECK-NEXT: "toy.print"(%5) : (!toy<"array">) -> () +# CHECK-NEXT: "toy.return"() : () -> () + diff --git a/mlir/test/Examples/Toy/Ch3/invalid.mlir b/mlir/test/Examples/Toy/Ch3/invalid.mlir new file mode 100644 index 00000000000..2dd22280e76 --- /dev/null +++ b/mlir/test/Examples/Toy/Ch3/invalid.mlir @@ -0,0 +1,11 @@ +// RUN: not toyc-ch3 %s -emit=mlir 2>&1 + + +// This IR is not "valid": +// - toy.print should not return a value. +// - toy.print should take an argument. +// - There should be a block terminator. +// This all round-trip since this is opaque for MLIR. +func @main() { + %0 = "toy.print"() : () -> !toy<"array<2, 3>"> +} diff --git a/mlir/test/Examples/Toy/Ch3/scalar.toy b/mlir/test/Examples/Toy/Ch3/scalar.toy new file mode 100644 index 00000000000..41153ec92e1 --- /dev/null +++ b/mlir/test/Examples/Toy/Ch3/scalar.toy @@ -0,0 +1,12 @@ +def main() { + var a<2, 2> = 5.5; + print(a); +} + +# CHECK-LABEL: func @main() { +# CHECK-NEXT: %0 = "toy.constant"() {value: dense<tensor<1xf64>, [5.500000e+00]>} : () -> !toy<"array<1>"> +# CHECK-NEXT: %1 = "toy.reshape"(%0) : (!toy<"array<1>">) -> !toy<"array<2, 2>"> +# CHECK-NEXT: "toy.print"(%1) : (!toy<"array<2, 2>">) -> () +# CHECK-NEXT: "toy.return"() : () -> () +# CHECK-NEXT: } + |

