summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAnna Thomas <anna@azul.com>2017-09-12 16:32:45 +0000
committerAnna Thomas <anna@azul.com>2017-09-12 16:32:45 +0000
commit9f1be02fa333f7d9d4a6b3021181d15df847c03c (patch)
tree85fe6d52eeb65d5a691e69796489555e1167fa5d
parenta54ed0a4074d255665b3ffcc6602244800e13f2c (diff)
downloadbcm5719-llvm-9f1be02fa333f7d9d4a6b3021181d15df847c03c.tar.gz
bcm5719-llvm-9f1be02fa333f7d9d4a6b3021181d15df847c03c.zip
[LV] Clamp the VF to the trip count
Summary: When the MaxVectorSize > ConstantTripCount, we should just clamp the vectorization factor to be the ConstantTripCount. This vectorizes loops where the TinyTripCountThreshold >= TripCount < MaxVF. Earlier we were finding the maximum vector width, which could be greater than the trip count itself. The Loop vectorizer does all the work for generating a vectorizable loop, but in the end we would always choose the scalar loop (since the VF > trip count). This allows us to choose the VF keeping in mind the trip count if available. This is a fix on top of rL312472. Reviewers: Ayal, zvi, hfinkel, dneilson Reviewed by: Ayal Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D37702 llvm-svn: 313046
-rw-r--r--llvm/lib/Transforms/Vectorize/LoopVectorize.cpp19
-rw-r--r--llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll26
2 files changed, 38 insertions, 7 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
index fac76ba643c..5267a2a3f19 100644
--- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -1960,7 +1960,7 @@ public:
private:
/// \return An upper bound for the vectorization factor, larger than zero.
/// One is returned if vectorization should best be avoided due to cost.
- unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount = 0);
+ unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
@@ -6161,8 +6161,9 @@ Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
return None;
}
+ unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
- return computeFeasibleMaxVF(OptForSize);
+ return computeFeasibleMaxVF(OptForSize, TC);
if (Legal->getRuntimePointerChecking()->Need) {
ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
@@ -6175,7 +6176,6 @@ Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
}
// If we optimize the program for size, avoid creating the tail loop.
- unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
// If we don't know the precise trip count, don't try to vectorize.
@@ -6236,15 +6236,20 @@ LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
<< " bits.\n");
+ assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
+ " into one vector!");
if (MaxVectorSize == 0) {
DEBUG(dbgs() << "LV: The target has no vector registers.\n");
MaxVectorSize = 1;
} else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
- isPowerOf2_32(ConstTripCount))
+ isPowerOf2_32(ConstTripCount)) {
+ // We need to clamp the VF to be the ConstTripCount. There is no point in
+ // choosing a higher viable VF as done in the loop below.
+ DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
+ << ConstTripCount << "\n");
MaxVectorSize = ConstTripCount;
-
- assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
- " into one vector!");
+ return MaxVectorSize;
+ }
unsigned MaxVF = MaxVectorSize;
if (MaximizeBandwidth && !OptForSize) {
diff --git a/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll b/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll
index a32cc46e913..4e7880d09d6 100644
--- a/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll
+++ b/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll
@@ -46,3 +46,29 @@ for.body:
%exitcond = icmp eq i64 %indvars.iv.next, 1000
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
+
+; We should not choose a VF larger than the constant TC.
+; VF chosen should be atmost 16 (not the max possible vector width = 32 for AVX2)
+define void @not_too_small_tc(i8* noalias nocapture %A, i8* noalias nocapture readonly %B) {
+; CHECK-LABEL: not_too_small_tc
+; CHECK-AVX2: LV: Selecting VF: 16.
+entry:
+ br label %for.body
+
+for.body:
+ %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
+ %arrayidx = getelementptr inbounds i8, i8* %B, i64 %indvars.iv
+ %l1 = load i8, i8* %arrayidx, align 4, !llvm.mem.parallel_loop_access !3
+ %arrayidx2 = getelementptr inbounds i8, i8* %A, i64 %indvars.iv
+ %l2 = load i8, i8* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !3
+ %add = add i8 %l1, %l2
+ store i8 %add, i8* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !3
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
+ %exitcond = icmp eq i64 %indvars.iv.next, 16
+ br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !4
+
+for.end:
+ ret void
+}
+!3 = !{!3}
+!4 = !{!4}
OpenPOWER on IntegriCloud