diff options
author | Anna Thomas <anna@azul.com> | 2017-09-12 16:32:45 +0000 |
---|---|---|
committer | Anna Thomas <anna@azul.com> | 2017-09-12 16:32:45 +0000 |
commit | 9f1be02fa333f7d9d4a6b3021181d15df847c03c (patch) | |
tree | 85fe6d52eeb65d5a691e69796489555e1167fa5d | |
parent | a54ed0a4074d255665b3ffcc6602244800e13f2c (diff) | |
download | bcm5719-llvm-9f1be02fa333f7d9d4a6b3021181d15df847c03c.tar.gz bcm5719-llvm-9f1be02fa333f7d9d4a6b3021181d15df847c03c.zip |
[LV] Clamp the VF to the trip count
Summary:
When the MaxVectorSize > ConstantTripCount, we should just clamp the
vectorization factor to be the ConstantTripCount.
This vectorizes loops where the TinyTripCountThreshold >= TripCount < MaxVF.
Earlier we were finding the maximum vector width, which could be greater than
the trip count itself. The Loop vectorizer does all the work for generating a
vectorizable loop, but in the end we would always choose the scalar loop (since
the VF > trip count). This allows us to choose the VF keeping in mind the trip
count if available.
This is a fix on top of rL312472.
Reviewers: Ayal, zvi, hfinkel, dneilson
Reviewed by: Ayal
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37702
llvm-svn: 313046
-rw-r--r-- | llvm/lib/Transforms/Vectorize/LoopVectorize.cpp | 19 | ||||
-rw-r--r-- | llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll | 26 |
2 files changed, 38 insertions, 7 deletions
diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp index fac76ba643c..5267a2a3f19 100644 --- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -1960,7 +1960,7 @@ public: private: /// \return An upper bound for the vectorization factor, larger than zero. /// One is returned if vectorization should best be avoided due to cost. - unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount = 0); + unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); /// The vectorization cost is a combination of the cost itself and a boolean /// indicating whether any of the contributing operations will actually @@ -6161,8 +6161,9 @@ Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { return None; } + unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. - return computeFeasibleMaxVF(OptForSize); + return computeFeasibleMaxVF(OptForSize, TC); if (Legal->getRuntimePointerChecking()->Need) { ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") @@ -6175,7 +6176,6 @@ Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { } // If we optimize the program for size, avoid creating the tail loop. - unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); // If we don't know the precise trip count, don't try to vectorize. @@ -6236,15 +6236,20 @@ LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister << " bits.\n"); + assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" + " into one vector!"); if (MaxVectorSize == 0) { DEBUG(dbgs() << "LV: The target has no vector registers.\n"); MaxVectorSize = 1; } else if (ConstTripCount && ConstTripCount < MaxVectorSize && - isPowerOf2_32(ConstTripCount)) + isPowerOf2_32(ConstTripCount)) { + // We need to clamp the VF to be the ConstTripCount. There is no point in + // choosing a higher viable VF as done in the loop below. + DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " + << ConstTripCount << "\n"); MaxVectorSize = ConstTripCount; - - assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" - " into one vector!"); + return MaxVectorSize; + } unsigned MaxVF = MaxVectorSize; if (MaximizeBandwidth && !OptForSize) { diff --git a/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll b/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll index a32cc46e913..4e7880d09d6 100644 --- a/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll +++ b/llvm/test/Transforms/LoopVectorize/X86/vector_max_bandwidth.ll @@ -46,3 +46,29 @@ for.body: %exitcond = icmp eq i64 %indvars.iv.next, 1000 br i1 %exitcond, label %for.cond.cleanup, label %for.body } + +; We should not choose a VF larger than the constant TC. +; VF chosen should be atmost 16 (not the max possible vector width = 32 for AVX2) +define void @not_too_small_tc(i8* noalias nocapture %A, i8* noalias nocapture readonly %B) { +; CHECK-LABEL: not_too_small_tc +; CHECK-AVX2: LV: Selecting VF: 16. +entry: + br label %for.body + +for.body: + %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] + %arrayidx = getelementptr inbounds i8, i8* %B, i64 %indvars.iv + %l1 = load i8, i8* %arrayidx, align 4, !llvm.mem.parallel_loop_access !3 + %arrayidx2 = getelementptr inbounds i8, i8* %A, i64 %indvars.iv + %l2 = load i8, i8* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !3 + %add = add i8 %l1, %l2 + store i8 %add, i8* %arrayidx2, align 4, !llvm.mem.parallel_loop_access !3 + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 + %exitcond = icmp eq i64 %indvars.iv.next, 16 + br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !4 + +for.end: + ret void +} +!3 = !{!3} +!4 = !{!4} |