diff options
| author | Owen Anderson <resistor@mac.com> | 2008-05-29 08:45:13 +0000 | 
|---|---|---|
| committer | Owen Anderson <resistor@mac.com> | 2008-05-29 08:45:13 +0000 | 
| commit | 7686b555e26c31b52471f67536053e5f73e2991c (patch) | |
| tree | 16c813763cc596bffa49af82b87c3a94b5da4962 | |
| parent | 5e28227dbd2902be4f5b1604ca3fd4fa2481c1e7 (diff) | |
| download | bcm5719-llvm-7686b555e26c31b52471f67536053e5f73e2991c.tar.gz bcm5719-llvm-7686b555e26c31b52471f67536053e5f73e2991c.zip  | |
Replace the old ADCE implementation with a new one that more simply solves
the one case that ADCE catches that normal DCE doesn't: non-induction variable
loop computations.
This implementation handles this problem without using postdominators.
llvm-svn: 51668
| -rw-r--r-- | llvm/lib/Transforms/Scalar/ADCE.cpp | 519 | ||||
| -rw-r--r-- | llvm/test/Transforms/ADCE/2003-12-19-MergeReturn.ll | 27 | ||||
| -rw-r--r-- | llvm/test/Transforms/ADCE/dead-phi-edge.ll | 17 | 
3 files changed, 62 insertions, 501 deletions
diff --git a/llvm/lib/Transforms/Scalar/ADCE.cpp b/llvm/lib/Transforms/Scalar/ADCE.cpp index 11fb1e33242..5c3b833452b 100644 --- a/llvm/lib/Transforms/Scalar/ADCE.cpp +++ b/llvm/lib/Transforms/Scalar/ADCE.cpp @@ -1,4 +1,4 @@ -//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// +//===- DCE.cpp - Code to perform dead code elimination --------------------===//  //  //                     The LLVM Compiler Infrastructure  // @@ -7,481 +7,86 @@  //  //===----------------------------------------------------------------------===//  // -// This file implements "aggressive" dead code elimination.  ADCE is DCe where -// values are assumed to be dead until proven otherwise.  This is similar to -// SCCP, except applied to the liveness of values. +// This file implements the Aggressive Dead Code Elimination pass.  This pass +// optimistically assumes that all instructions are dead until proven otherwise, +// allowing it to eliminate dead computations that other DCE passes do not  +// catch, particularly involving loop computations.  //  //===----------------------------------------------------------------------===//  #define DEBUG_TYPE "adce"  #include "llvm/Transforms/Scalar.h" -#include "llvm/Constants.h"  #include "llvm/Instructions.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/Support/CFG.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" +#include "llvm/Pass.h"  #include "llvm/Support/Compiler.h" -#include <algorithm> +#include "llvm/Support/InstIterator.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/SmallPtrSet.h" +  using namespace llvm; -STATISTIC(NumBlockRemoved, "Number of basic blocks removed"); -STATISTIC(NumInstRemoved , "Number of instructions removed"); -STATISTIC(NumCallRemoved , "Number of calls removed"); +STATISTIC(NumRemoved, "Number of instructions removed");  namespace { -//===----------------------------------------------------------------------===// -// ADCE Class -// -// This class does all of the work of Aggressive Dead Code Elimination. -// It's public interface consists of a constructor and a doADCE() method. -// -class VISIBILITY_HIDDEN ADCE : public FunctionPass { -  Function *Func;                       // The function that we are working on -  std::vector<Instruction*> WorkList;   // Instructions that just became live -  std::set<Instruction*>    LiveSet;    // The set of live instructions - -  //===--------------------------------------------------------------------===// -  // The public interface for this class -  // -public: -  static char ID; // Pass identification, replacement for typeid -  ADCE() : FunctionPass((intptr_t)&ID) {} - -  // Execute the Aggressive Dead Code Elimination Algorithm -  // -  virtual bool runOnFunction(Function &F) { -    Func = &F; -    bool Changed = doADCE(); -    assert(WorkList.empty()); -    LiveSet.clear(); -    return Changed; -  } -  // getAnalysisUsage - We require post dominance frontiers (aka Control -  // Dependence Graph) -  virtual void getAnalysisUsage(AnalysisUsage &AU) const { -    // We require that all function nodes are unified, because otherwise code -    // can be marked live that wouldn't necessarily be otherwise. -    AU.addRequired<UnifyFunctionExitNodes>(); -    AU.addRequired<AliasAnalysis>(); -    AU.addRequired<PostDominatorTree>(); -    AU.addRequired<PostDominanceFrontier>(); -  } - - -  //===--------------------------------------------------------------------===// -  // The implementation of this class -  // -private: -  // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning -  // true if the function was modified. -  // -  bool doADCE(); - -  void markBlockAlive(BasicBlock *BB); - - -  // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in -  // the specified basic block, deleting ones that are dead according to -  // LiveSet. -  bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB); - -  TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI); - -  inline void markInstructionLive(Instruction *I) { -    if (!LiveSet.insert(I).second) return; -    DOUT << "Insn Live: " << *I; -    WorkList.push_back(I); -  } - -  inline void markTerminatorLive(const BasicBlock *BB) { -    DOUT << "Terminator Live: " << *BB->getTerminator(); -    markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator())); -  } -}; -} // End of anonymous namespace - -char ADCE::ID = 0; -static RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); - -FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); } - -void ADCE::markBlockAlive(BasicBlock *BB) { -  // Mark the basic block as being newly ALIVE... and mark all branches that -  // this block is control dependent on as being alive also... -  // -  PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>(); - -  PostDominanceFrontier::const_iterator It = CDG.find(BB); -  if (It != CDG.end()) { -    // Get the blocks that this node is control dependent on... -    const PostDominanceFrontier::DomSetType &CDB = It->second; -    for (PostDominanceFrontier::DomSetType::const_iterator I = -           CDB.begin(), E = CDB.end(); I != E; ++I) -      markTerminatorLive(*I);   // Mark all their terminators as live -  } - -  // If this basic block is live, and it ends in an unconditional branch, then -  // the branch is alive as well... -  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) -    if (BI->isUnconditional()) -      markTerminatorLive(BB); -} - -// deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the -// specified basic block, deleting ones that are dead according to LiveSet. -bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) { -  bool Changed = false; -  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) { -    Instruction *I = II++; -    if (!LiveSet.count(I)) {              // Is this instruction alive? -      if (!I->use_empty()) -        I->replaceAllUsesWith(UndefValue::get(I->getType())); - -      // Nope... remove the instruction from it's basic block... -      if (isa<CallInst>(I)) -        ++NumCallRemoved; -      else -        ++NumInstRemoved; -      BB->getInstList().erase(I); -      Changed = true; +  struct VISIBILITY_HIDDEN ADCE : public FunctionPass { +    static char ID; // Pass identification, replacement for typeid +    ADCE() : FunctionPass((intptr_t)&ID) {} +     +    virtual bool runOnFunction(Function& F); +     +    virtual void getAnalysisUsage(AnalysisUsage& AU) const { +      AU.setPreservesCFG();      } -  } -  return Changed; -} - - -/// convertToUnconditionalBranch - Transform this conditional terminator -/// instruction into an unconditional branch because we don't care which of the -/// successors it goes to.  This eliminate a use of the condition as well. -/// -TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) { -  BranchInst *NB = BranchInst::Create(TI->getSuccessor(0), TI); -  BasicBlock *BB = TI->getParent(); - -  // Remove entries from PHI nodes to avoid confusing ourself later... -  for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) -    TI->getSuccessor(i)->removePredecessor(BB); - -  // Delete the old branch itself... -  BB->getInstList().erase(TI); -  return NB; +     +  };  } +char ADCE::ID = 0; +static RegisterPass<ADCE> X("adce", "Aggressive Dead Code Elimination"); -// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning -// true if the function was modified. -// -bool ADCE::doADCE() { -  bool MadeChanges = false; - -  AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); - -  // Iterate over all of the instructions in the function, eliminating trivially -  // dead instructions, and marking instructions live that are known to be -  // needed.  Perform the walk in depth first order so that we avoid marking any -  // instructions live in basic blocks that are unreachable.  These blocks will -  // be eliminated later, along with the instructions inside. -  // -  std::set<BasicBlock*> ReachableBBs; -  std::vector<BasicBlock*> Stack; -  Stack.push_back(&Func->getEntryBlock()); +bool ADCE::runOnFunction(Function& F) { +  SmallPtrSet<Instruction*, 32> alive; +  std::vector<Instruction*> worklist; -  while (!Stack.empty()) { -    BasicBlock* BB = Stack.back(); -    if (ReachableBBs.count(BB)) { -      Stack.pop_back(); -      continue; -    } else { -      ReachableBBs.insert(BB); -    } -     -    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { -      Instruction *I = II++; -      if (CallInst *CI = dyn_cast<CallInst>(I)) { -        if (AA.onlyReadsMemory(CI)) { -          if (CI->use_empty()) { -            BB->getInstList().erase(CI); -            ++NumCallRemoved; -          } -        } else { -          markInstructionLive(I); -        } -      } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) || -                 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) { -        // FIXME: Unreachable instructions should not be marked intrinsically -        // live here. -        markInstructionLive(I); -      } else if (isInstructionTriviallyDead(I)) { -        // Remove the instruction from it's basic block... -        BB->getInstList().erase(I); -        ++NumInstRemoved; -      } +  // Collect the set of "root" instructions that are known live. +  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) +    if (isa<TerminatorInst>(I.getInstructionIterator()) || +        I->mayWriteToMemory()) { +      alive.insert(I.getInstructionIterator()); +      worklist.push_back(I.getInstructionIterator());      } -    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { -      // Back edges (as opposed to cross edges) indicate loops, so implicitly -      // mark them live. -      if (std::find(Stack.begin(), Stack.end(), *SI) != Stack.end()) -        markInstructionLive(BB->getTerminator()); -      if (!ReachableBBs.count(*SI)) -        Stack.push_back(*SI); -    } -  } - -  // Check to ensure we have an exit node for this CFG.  If we don't, we won't -  // have any post-dominance information, thus we cannot perform our -  // transformations safely. -  // -  PostDominatorTree &DT = getAnalysis<PostDominatorTree>(); -  if (DT[&Func->getEntryBlock()] == 0) { -    WorkList.clear(); -    return MadeChanges; -  } - -  // Scan the function marking blocks without post-dominance information as -  // live.  Blocks without post-dominance information occur when there is an -  // infinite loop in the program.  Because the infinite loop could contain a -  // function which unwinds, exits or has side-effects, we don't want to delete -  // the infinite loop or those blocks leading up to it. -  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) -    if (DT[I] == 0 && ReachableBBs.count(I)) -      for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI) -        markInstructionLive((*PI)->getTerminator()); - -  DOUT << "Processing work list\n"; - -  // AliveBlocks - Set of basic blocks that we know have instructions that are -  // alive in them... -  // -  std::set<BasicBlock*> AliveBlocks; - -  // Process the work list of instructions that just became live... if they -  // became live, then that means that all of their operands are necessary as -  // well... make them live as well. -  // -  while (!WorkList.empty()) { -    Instruction *I = WorkList.back(); // Get an instruction that became live... -    WorkList.pop_back(); - -    BasicBlock *BB = I->getParent(); -    if (!ReachableBBs.count(BB)) continue; -    if (AliveBlocks.insert(BB).second)     // Basic block not alive yet. -      markBlockAlive(BB);             // Make it so now! - -    // PHI nodes are a special case, because the incoming values are actually -    // defined in the predecessor nodes of this block, meaning that the PHI -    // makes the predecessors alive. -    // -    if (PHINode *PN = dyn_cast<PHINode>(I)) { -      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { -        // If the incoming edge is clearly dead, it won't have control -        // dependence information.  Do not mark it live. -        BasicBlock *PredBB = PN->getIncomingBlock(i); -        if (ReachableBBs.count(PredBB)) { -          // FIXME: This should mark the control dependent edge as live, not -          // necessarily the predecessor itself! -          if (AliveBlocks.insert(PredBB).second) -            markBlockAlive(PN->getIncomingBlock(i));   // Block is newly ALIVE! -          if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i))) -            markInstructionLive(Op); -        } -      } -    } else { -      // Loop over all of the operands of the live instruction, making sure that -      // they are known to be alive as well. -      // -      for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) -        if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op))) -          markInstructionLive(Operand); -    } +  // Propagate liveness backwards to operands. +  while (!worklist.empty()) { +    Instruction* curr = worklist.back(); +    worklist.pop_back(); +     +    for (Instruction::op_iterator OI = curr->op_begin(), OE = curr->op_end(); +         OI != OE; ++OI) +      if (Instruction* Inst = dyn_cast<Instruction>(OI)) +        if (alive.insert(Inst)) +          worklist.push_back(Inst);    } - -  DEBUG( -    DOUT << "Current Function: X = Live\n"; -    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){ -      DOUT << I->getName() << ":\t" -           << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n"); -      for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){ -        if (LiveSet.count(BI)) DOUT << "X "; -        DOUT << *BI; -      } -    }); - -  // All blocks being live is a common case, handle it specially. -  if (AliveBlocks.size() == Func->size()) {  // No dead blocks? -    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) { -      // Loop over all of the instructions in the function deleting instructions -      // to drop their references. -      deleteDeadInstructionsInLiveBlock(I); - -      // Check to make sure the terminator instruction is live.  If it isn't, -      // this means that the condition that it branches on (we know it is not an -      // unconditional branch), is not needed to make the decision of where to -      // go to, because all outgoing edges go to the same place.  We must remove -      // the use of the condition (because it's probably dead), so we convert -      // the terminator to an unconditional branch. -      // -      TerminatorInst *TI = I->getTerminator(); -      if (!LiveSet.count(TI)) -        convertToUnconditionalBranch(TI); +   +  // The inverse of the live set is the dead set.  These are those instructions +  // which have no side effects and do not influence the control flow or return +  // value of the function, and may therefore be deleted safely. +  SmallPtrSet<Instruction*, 32> dead; +  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) +    if (!alive.count(I.getInstructionIterator())) { +      dead.insert(I.getInstructionIterator()); +      I->dropAllReferences();      } - -    return MadeChanges; -  } - - -  // If the entry node is dead, insert a new entry node to eliminate the entry -  // node as a special case. -  // -  if (!AliveBlocks.count(&Func->front())) { -    BasicBlock *NewEntry = BasicBlock::Create(); -    BranchInst::Create(&Func->front(), NewEntry); -    Func->getBasicBlockList().push_front(NewEntry); -    AliveBlocks.insert(NewEntry);    // This block is always alive! -    LiveSet.insert(NewEntry->getTerminator());  // The branch is live +   +  for (SmallPtrSet<Instruction*, 32>::iterator I = dead.begin(), +       E = dead.end(); I != E; ++I) { +    NumRemoved++; +    (*I)->eraseFromParent();    } - -  // Loop over all of the alive blocks in the function.  If any successor -  // blocks are not alive, we adjust the outgoing branches to branch to the -  // first live postdominator of the live block, adjusting any PHI nodes in -  // the block to reflect this. -  // -  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) -    if (AliveBlocks.count(I)) { -      BasicBlock *BB = I; -      TerminatorInst *TI = BB->getTerminator(); - -      // If the terminator instruction is alive, but the block it is contained -      // in IS alive, this means that this terminator is a conditional branch on -      // a condition that doesn't matter.  Make it an unconditional branch to -      // ONE of the successors.  This has the side effect of dropping a use of -      // the conditional value, which may also be dead. -      if (!LiveSet.count(TI)) -        TI = convertToUnconditionalBranch(TI); - -      // Loop over all of the successors, looking for ones that are not alive. -      // We cannot save the number of successors in the terminator instruction -      // here because we may remove them if we don't have a postdominator. -      // -      for (unsigned i = 0; i != TI->getNumSuccessors(); ++i) -        if (!AliveBlocks.count(TI->getSuccessor(i))) { -          // Scan up the postdominator tree, looking for the first -          // postdominator that is alive, and the last postdominator that is -          // dead... -          // -          DomTreeNode *LastNode = DT[TI->getSuccessor(i)]; -          DomTreeNode *NextNode = 0; - -          if (LastNode) { -            NextNode = LastNode->getIDom(); -            while (!AliveBlocks.count(NextNode->getBlock())) { -              LastNode = NextNode; -              NextNode = NextNode->getIDom(); -              if (NextNode == 0) { -                LastNode = 0; -                break; -              } -            } -          } - -          // There is a special case here... if there IS no post-dominator for -          // the block we have nowhere to point our branch to.  Instead, convert -          // it to a return.  This can only happen if the code branched into an -          // infinite loop.  Note that this may not be desirable, because we -          // _are_ altering the behavior of the code.  This is a well known -          // drawback of ADCE, so in the future if we choose to revisit the -          // decision, this is where it should be. -          // -          if (LastNode == 0) {        // No postdominator! -            if (!isa<InvokeInst>(TI)) { -              // Call RemoveSuccessor to transmogrify the terminator instruction -              // to not contain the outgoing branch, or to create a new -              // terminator if the form fundamentally changes (i.e., -              // unconditional branch to return).  Note that this will change a -              // branch into an infinite loop into a return instruction! -              // -              RemoveSuccessor(TI, i); - -              // RemoveSuccessor may replace TI... make sure we have a fresh -              // pointer. -              // -              TI = BB->getTerminator(); - -              // Rescan this successor... -              --i; -            } else { - -            } -          } else { -            // Get the basic blocks that we need... -            BasicBlock *LastDead = LastNode->getBlock(); -            BasicBlock *NextAlive = NextNode->getBlock(); - -            // Make the conditional branch now go to the next alive block... -            TI->getSuccessor(i)->removePredecessor(BB); -            TI->setSuccessor(i, NextAlive); - -            // If there are PHI nodes in NextAlive, we need to add entries to -            // the PHI nodes for the new incoming edge.  The incoming values -            // should be identical to the incoming values for LastDead. -            // -            for (BasicBlock::iterator II = NextAlive->begin(); -                 isa<PHINode>(II); ++II) { -              PHINode *PN = cast<PHINode>(II); -              if (LiveSet.count(PN)) {  // Only modify live phi nodes -                // Get the incoming value for LastDead... -                int OldIdx = PN->getBasicBlockIndex(LastDead); -                assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!"); -                Value *InVal = PN->getIncomingValue(OldIdx); - -                // Add an incoming value for BB now... -                PN->addIncoming(InVal, BB); -              } -            } -          } -        } - -      // Now loop over all of the instructions in the basic block, deleting -      // dead instructions.  This is so that the next sweep over the program -      // can safely delete dead instructions without other dead instructions -      // still referring to them. -      // -      deleteDeadInstructionsInLiveBlock(BB); -    } - -  // Loop over all of the basic blocks in the function, dropping references of -  // the dead basic blocks.  We must do this after the previous step to avoid -  // dropping references to PHIs which still have entries... -  // -  std::vector<BasicBlock*> DeadBlocks; -  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB) -    if (!AliveBlocks.count(BB)) { -      // Remove PHI node entries for this block in live successor blocks. -      for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) -        if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI)) -          (*SI)->removePredecessor(BB); - -      BB->dropAllReferences(); -      MadeChanges = true; -      DeadBlocks.push_back(BB); -    } - -  NumBlockRemoved += DeadBlocks.size(); - -  // Now loop through all of the blocks and delete the dead ones.  We can safely -  // do this now because we know that there are no references to dead blocks -  // (because they have dropped all of their references). -  for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(), -         E = DeadBlocks.end(); I != E; ++I) -    Func->getBasicBlockList().erase(*I); - -  return MadeChanges; +     +  return !dead.empty();  } + +FunctionPass *llvm::createAggressiveDCEPass() { +  return new ADCE(); +}
\ No newline at end of file diff --git a/llvm/test/Transforms/ADCE/2003-12-19-MergeReturn.ll b/llvm/test/Transforms/ADCE/2003-12-19-MergeReturn.ll deleted file mode 100644 index b2c294b1df0..00000000000 --- a/llvm/test/Transforms/ADCE/2003-12-19-MergeReturn.ll +++ /dev/null @@ -1,27 +0,0 @@ -; This testcase was failing because without merging the return blocks, ADCE -; didn't know that it could get rid of the then.0 block. - -; RUN: llvm-as < %s | opt -adce | llvm-dis | not grep load - - -define void @main(i32 %argc, i8** %argv) { -entry: -        call void @__main( ) -        %tmp.1 = icmp ule i32 %argc, 5          ; <i1> [#uses=1] -        br i1 %tmp.1, label %then.0, label %return - -then.0:         ; preds = %entry -        %tmp.8 = load i8** %argv                ; <i8*> [#uses=1] -        %tmp.10 = load i8* %tmp.8               ; <i8> [#uses=1] -        %tmp.11 = icmp eq i8 %tmp.10, 98                ; <i1> [#uses=1] -        br i1 %tmp.11, label %then.1, label %return - -then.1:         ; preds = %then.0 -        ret void - -return:         ; preds = %then.0, %entry -        ret void -} - -declare void @__main() - diff --git a/llvm/test/Transforms/ADCE/dead-phi-edge.ll b/llvm/test/Transforms/ADCE/dead-phi-edge.ll deleted file mode 100644 index 844560181a2..00000000000 --- a/llvm/test/Transforms/ADCE/dead-phi-edge.ll +++ /dev/null @@ -1,17 +0,0 @@ -; RUN: llvm-as < %s | opt -adce | llvm-dis | not grep call - -; The call is not live just because the PHI uses the call retval! - -define i32 @test(i32 %X) { -; <label>:0 -        br label %Done - -DeadBlock:              ; No predecessors! -        %Y = call i32 @test( i32 0 )            ; <i32> [#uses=1] -        br label %Done - -Done:           ; preds = %DeadBlock, %0 -        %Z = phi i32 [ %X, %0 ], [ %Y, %DeadBlock ]             ; <i32> [#uses=1] -        ret i32 %Z -} -  | 

