summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorBen Dunbobbin <bd1976llvm@gmail.com>2017-09-29 09:08:26 +0000
committerBen Dunbobbin <bd1976llvm@gmail.com>2017-09-29 09:08:26 +0000
commit73eabf23a491c81bec790ce73414ba66bf0846f6 (patch)
treedc4b913291dc6b1128dac080d91679d6fa70b729
parent6150419d7161defbba157d0d92b98070f2a9d63b (diff)
downloadbcm5719-llvm-73eabf23a491c81bec790ce73414ba66bf0846f6.tar.gz
bcm5719-llvm-73eabf23a491c81bec790ce73414ba66bf0846f6.zip
[ELF] Simpler scheme for handling common symbols
Convert all common symbols to regular symbols after scan. This means that the downstream code does not to handle common symbols as a special case. Differential Revision: https://reviews.llvm.org/D38137 llvm-svn: 314495
-rw-r--r--lld/ELF/Driver.cpp8
-rw-r--r--lld/ELF/MarkLive.cpp11
-rw-r--r--lld/ELF/Symbols.cpp12
-rw-r--r--lld/ELF/Symbols.h5
-rw-r--r--lld/ELF/SyntheticSections.cpp35
-rw-r--r--lld/ELF/SyntheticSections.cpp~RF2791d30b.TMP2451
-rw-r--r--lld/ELF/SyntheticSections.h2
-rw-r--r--lld/ELF/Writer.cpp7
8 files changed, 2486 insertions, 45 deletions
diff --git a/lld/ELF/Driver.cpp b/lld/ELF/Driver.cpp
index 9aab6fd3d3a..e272f00fd80 100644
--- a/lld/ELF/Driver.cpp
+++ b/lld/ELF/Driver.cpp
@@ -1086,6 +1086,14 @@ template <class ELFT> void LinkerDriver::link(opt::InputArgList &Args) {
if (!Config->Relocatable)
InputSections.push_back(createCommentSection<ELFT>());
+ // Create a .bss section for each common symbol and then replace the common
+ // symbol with a DefinedRegular symbol. As a result, all common symbols are
+ // "instantiated" as regular defined symbols, so that we don't need to care
+ // about common symbols beyond this point. Note that if -r is given, we just
+ // need to pass through common symbols as-is.
+ if (Config->DefineCommon)
+ createCommonSections<ELFT>();
+
// Do size optimizations: garbage collection, merging of SHF_MERGE sections
// and identical code folding.
if (Config->GcSections)
diff --git a/lld/ELF/MarkLive.cpp b/lld/ELF/MarkLive.cpp
index f3438c86821..8579b148a1b 100644
--- a/lld/ELF/MarkLive.cpp
+++ b/lld/ELF/MarkLive.cpp
@@ -64,11 +64,6 @@ static void resolveReloc(InputSectionBase &Sec, RelT &Rel,
std::function<void(InputSectionBase *, uint64_t)> Fn) {
SymbolBody &B = Sec.getFile<ELFT>()->getRelocTargetSym(Rel);
- if (auto *Sym = dyn_cast<DefinedCommon>(&B)) {
- Sym->Live = true;
- return;
- }
-
if (auto *D = dyn_cast<DefinedRegular>(&B)) {
if (!D->Section)
return;
@@ -223,13 +218,9 @@ template <class ELFT> void elf::markLive() {
};
auto MarkSymbol = [&](SymbolBody *Sym) {
- if (auto *D = dyn_cast_or_null<DefinedRegular>(Sym)) {
+ if (auto *D = dyn_cast_or_null<DefinedRegular>(Sym))
if (auto *IS = cast_or_null<InputSectionBase>(D->Section))
Enqueue(IS, D->Value);
- return;
- }
- if (auto *S = dyn_cast_or_null<DefinedCommon>(Sym))
- S->Live = true;
};
// Add GC root symbols.
diff --git a/lld/ELF/Symbols.cpp b/lld/ELF/Symbols.cpp
index 9cfe6f4701e..934358f6da4 100644
--- a/lld/ELF/Symbols.cpp
+++ b/lld/ELF/Symbols.cpp
@@ -99,14 +99,8 @@ static uint64_t getSymVA(const SymbolBody &Body, int64_t &Addend) {
}
return VA;
}
- case SymbolBody::DefinedCommonKind: {
- if (!Config->DefineCommon)
- return 0;
- auto DC = cast<DefinedCommon>(Body);
- if (!DC.Live)
- return 0;
- return DC.Section->getParent()->Addr + DC.Section->OutSecOff;
- }
+ case SymbolBody::DefinedCommonKind:
+ llvm_unreachable("common are converted to bss");
case SymbolBody::SharedKind: {
auto &SS = cast<SharedSymbol>(Body);
if (SS.CopyRelSec)
@@ -286,7 +280,7 @@ DefinedCommon::DefinedCommon(StringRef Name, uint64_t Size, uint32_t Alignment,
uint8_t StOther, uint8_t Type)
: Defined(SymbolBody::DefinedCommonKind, Name, /*IsLocal=*/false, StOther,
Type),
- Live(!Config->GcSections), Alignment(Alignment), Size(Size) {}
+ Alignment(Alignment), Size(Size) {}
// If a shared symbol is referred via a copy relocation, its alignment
// becomes part of the ABI. This function returns a symbol alignment.
diff --git a/lld/ELF/Symbols.h b/lld/ELF/Symbols.h
index 798325e377e..6c95968c8ca 100644
--- a/lld/ELF/Symbols.h
+++ b/lld/ELF/Symbols.h
@@ -167,11 +167,6 @@ public:
return S->kind() == SymbolBody::DefinedCommonKind;
}
- // True if this symbol is not GC'ed. Liveness is usually a notion of
- // input sections and not of symbols, but since common symbols don't
- // belong to any input section, their liveness is managed by this bit.
- bool Live;
-
// The maximum alignment we have seen for this symbol.
uint32_t Alignment;
diff --git a/lld/ELF/SyntheticSections.cpp b/lld/ELF/SyntheticSections.cpp
index ec3b9b7a404..4f94755b027 100644
--- a/lld/ELF/SyntheticSections.cpp
+++ b/lld/ELF/SyntheticSections.cpp
@@ -54,24 +54,28 @@ uint64_t SyntheticSection::getVA() const {
return 0;
}
-std::vector<InputSection *> elf::createCommonSections() {
- if (!Config->DefineCommon)
- return {};
-
- std::vector<InputSection *> Ret;
+// Create a .bss section for each common section and replace the common symbol
+// with a DefinedRegular symbol.
+template <class ELFT> void elf::createCommonSections() {
for (Symbol *S : Symtab->getSymbols()) {
auto *Sym = dyn_cast<DefinedCommon>(S->body());
- if (!Sym || !Sym->Live)
+
+ if (!Sym)
continue;
- Sym->Section = make<BssSection>("COMMON");
- size_t Pos = Sym->Section->reserveSpace(Sym->Size, Sym->Alignment);
- assert(Pos == 0);
- (void)Pos;
- Sym->Section->File = Sym->getFile();
- Ret.push_back(Sym->Section);
+ // Create a synthetic section for the common data.
+ auto *Section = make<BssSection>("COMMON");
+ Section->File = Sym->getFile();
+ Section->Live = !Config->GcSections;
+ Section->reserveSpace(Sym->Size, Sym->Alignment);
+ InputSections.push_back(Section);
+
+ // Replace all DefinedCommon symbols with DefinedRegular symbols so that we
+ // don't have to care about DefinedCommon symbols beyond this point.
+ replaceBody<DefinedRegular>(S, Sym->getFile(), Sym->getName(),
+ static_cast<bool>(Sym->IsLocal), Sym->StOther,
+ Sym->Type, 0, Sym->getSize<ELFT>(), Section);
}
- return Ret;
}
// Returns an LLD version string.
@@ -2378,6 +2382,11 @@ template void PltSection::addEntry<ELF32BE>(SymbolBody &Sym);
template void PltSection::addEntry<ELF64LE>(SymbolBody &Sym);
template void PltSection::addEntry<ELF64BE>(SymbolBody &Sym);
+template void elf::createCommonSections<ELF32LE>();
+template void elf::createCommonSections<ELF32BE>();
+template void elf::createCommonSections<ELF64LE>();
+template void elf::createCommonSections<ELF64BE>();
+
template MergeInputSection *elf::createCommentSection<ELF32LE>();
template MergeInputSection *elf::createCommentSection<ELF32BE>();
template MergeInputSection *elf::createCommentSection<ELF64LE>();
diff --git a/lld/ELF/SyntheticSections.cpp~RF2791d30b.TMP b/lld/ELF/SyntheticSections.cpp~RF2791d30b.TMP
new file mode 100644
index 00000000000..1790134f8fd
--- /dev/null
+++ b/lld/ELF/SyntheticSections.cpp~RF2791d30b.TMP
@@ -0,0 +1,2451 @@
+//===- SyntheticSections.cpp ----------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains linker-synthesized sections. Currently,
+// synthetic sections are created either output sections or input sections,
+// but we are rewriting code so that all synthetic sections are created as
+// input sections.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SyntheticSections.h"
+#include "Config.h"
+#include "Error.h"
+#include "InputFiles.h"
+#include "LinkerScript.h"
+#include "Memory.h"
+#include "OutputSections.h"
+#include "Strings.h"
+#include "SymbolTable.h"
+#include "Target.h"
+#include "Threads.h"
+#include "Writer.h"
+#include "lld/Config/Version.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
+#include "llvm/Object/Decompressor.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/RandomNumberGenerator.h"
+#include "llvm/Support/SHA1.h"
+#include "llvm/Support/xxhash.h"
+#include <cstdlib>
+
+using namespace llvm;
+using namespace llvm::dwarf;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support;
+using namespace llvm::support::endian;
+
+using namespace lld;
+using namespace lld::elf;
+
+uint64_t SyntheticSection::getVA() const {
+ if (OutputSection *Sec = getParent())
+ return Sec->Addr + OutSecOff;
+ return 0;
+}
+
+// Create a .bss section for each common section and replace the common symbol
+// with a DefinedRegular symbol.
+template <class ELFT> void elf::createCommonSections() {
+ for (Symbol *S : Symtab->getSymbols()) {
+ auto *Sym = dyn_cast<DefinedCommon>(S->body());
+
+ if (!Sym)
+ continue;
+
+ // Create a synthetic section for the common data.
+ auto *Section = make<BssSection>("COMMON");
+ Section->File = Sym->getFile();
+ Section->Live = !Config->GcSections;
+ Section->reserveSpace(Sym->Size, Sym->Alignment);
+ InputSections.push_back(Section);
+
+ // Replace all DefinedCommon symbols with DefinedRegular symbols so that we
+ // don't have to care about DefinedCommon symbols beyond this point.
+ replaceBody<DefinedRegular>(S, Sym->getFile(), Sym->getName(), Sym->IsLocal,
+ Sym->StOther, Sym->Type, 0,
+ Sym->getSize<ELFT>(), Section);
+ }
+}
+
+// Returns an LLD version string.
+static ArrayRef<uint8_t> getVersion() {
+ // Check LLD_VERSION first for ease of testing.
+ // You can get consitent output by using the environment variable.
+ // This is only for testing.
+ StringRef S = getenv("LLD_VERSION");
+ if (S.empty())
+ S = Saver.save(Twine("Linker: ") + getLLDVersion());
+
+ // +1 to include the terminating '\0'.
+ return {(const uint8_t *)S.data(), S.size() + 1};
+}
+
+// Creates a .comment section containing LLD version info.
+// With this feature, you can identify LLD-generated binaries easily
+// by "readelf --string-dump .comment <file>".
+// The returned object is a mergeable string section.
+template <class ELFT> MergeInputSection *elf::createCommentSection() {
+ typename ELFT::Shdr Hdr = {};
+ Hdr.sh_flags = SHF_MERGE | SHF_STRINGS;
+ Hdr.sh_type = SHT_PROGBITS;
+ Hdr.sh_entsize = 1;
+ Hdr.sh_addralign = 1;
+
+ auto *Ret =
+ make<MergeInputSection>((ObjFile<ELFT> *)nullptr, &Hdr, ".comment");
+ Ret->Data = getVersion();
+ return Ret;
+}
+
+// .MIPS.abiflags section.
+template <class ELFT>
+MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags)
+ : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
+ Flags(Flags) {
+ this->Entsize = sizeof(Elf_Mips_ABIFlags);
+}
+
+template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *Buf) {
+ memcpy(Buf, &Flags, sizeof(Flags));
+}
+
+template <class ELFT>
+MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
+ Elf_Mips_ABIFlags Flags = {};
+ bool Create = false;
+
+ for (InputSectionBase *Sec : InputSections) {
+ if (Sec->Type != SHT_MIPS_ABIFLAGS)
+ continue;
+ Sec->Live = false;
+ Create = true;
+
+ std::string Filename = toString(Sec->getFile<ELFT>());
+ const size_t Size = Sec->Data.size();
+ // Older version of BFD (such as the default FreeBSD linker) concatenate
+ // .MIPS.abiflags instead of merging. To allow for this case (or potential
+ // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
+ if (Size < sizeof(Elf_Mips_ABIFlags)) {
+ error(Filename + ": invalid size of .MIPS.abiflags section: got " +
+ Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
+ return nullptr;
+ }
+ auto *S = reinterpret_cast<const Elf_Mips_ABIFlags *>(Sec->Data.data());
+ if (S->version != 0) {
+ error(Filename + ": unexpected .MIPS.abiflags version " +
+ Twine(S->version));
+ return nullptr;
+ }
+
+ // LLD checks ISA compatibility in getMipsEFlags(). Here we just
+ // select the highest number of ISA/Rev/Ext.
+ Flags.isa_level = std::max(Flags.isa_level, S->isa_level);
+ Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev);
+ Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext);
+ Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size);
+ Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size);
+ Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size);
+ Flags.ases |= S->ases;
+ Flags.flags1 |= S->flags1;
+ Flags.flags2 |= S->flags2;
+ Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename);
+ };
+
+ if (Create)
+ return make<MipsAbiFlagsSection<ELFT>>(Flags);
+ return nullptr;
+}
+
+// .MIPS.options section.
+template <class ELFT>
+MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo Reginfo)
+ : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
+ Reginfo(Reginfo) {
+ this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
+}
+
+template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *Buf) {
+ auto *Options = reinterpret_cast<Elf_Mips_Options *>(Buf);
+ Options->kind = ODK_REGINFO;
+ Options->size = getSize();
+
+ if (!Config->Relocatable)
+ Reginfo.ri_gp_value = InX::MipsGot->getGp();
+ memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo));
+}
+
+template <class ELFT>
+MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
+ // N64 ABI only.
+ if (!ELFT::Is64Bits)
+ return nullptr;
+
+ Elf_Mips_RegInfo Reginfo = {};
+ bool Create = false;
+
+ for (InputSectionBase *Sec : InputSections) {
+ if (Sec->Type != SHT_MIPS_OPTIONS)
+ continue;
+ Sec->Live = false;
+ Create = true;
+
+ std::string Filename = toString(Sec->getFile<ELFT>());
+ ArrayRef<uint8_t> D = Sec->Data;
+
+ while (!D.empty()) {
+ if (D.size() < sizeof(Elf_Mips_Options)) {
+ error(Filename + ": invalid size of .MIPS.options section");
+ break;
+ }
+
+ auto *Opt = reinterpret_cast<const Elf_Mips_Options *>(D.data());
+ if (Opt->kind == ODK_REGINFO) {
+ if (Config->Relocatable && Opt->getRegInfo().ri_gp_value)
+ error(Filename + ": unsupported non-zero ri_gp_value");
+ Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask;
+ Sec->getFile<ELFT>()->MipsGp0 = Opt->getRegInfo().ri_gp_value;
+ break;
+ }
+
+ if (!Opt->size)
+ fatal(Filename + ": zero option descriptor size");
+ D = D.slice(Opt->size);
+ }
+ };
+
+ if (Create)
+ return make<MipsOptionsSection<ELFT>>(Reginfo);
+ return nullptr;
+}
+
+// MIPS .reginfo section.
+template <class ELFT>
+MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo Reginfo)
+ : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
+ Reginfo(Reginfo) {
+ this->Entsize = sizeof(Elf_Mips_RegInfo);
+}
+
+template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *Buf) {
+ if (!Config->Relocatable)
+ Reginfo.ri_gp_value = InX::MipsGot->getGp();
+ memcpy(Buf, &Reginfo, sizeof(Reginfo));
+}
+
+template <class ELFT>
+MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
+ // Section should be alive for O32 and N32 ABIs only.
+ if (ELFT::Is64Bits)
+ return nullptr;
+
+ Elf_Mips_RegInfo Reginfo = {};
+ bool Create = false;
+
+ for (InputSectionBase *Sec : InputSections) {
+ if (Sec->Type != SHT_MIPS_REGINFO)
+ continue;
+ Sec->Live = false;
+ Create = true;
+
+ if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) {
+ error(toString(Sec->getFile<ELFT>()) +
+ ": invalid size of .reginfo section");
+ return nullptr;
+ }
+ auto *R = reinterpret_cast<const Elf_Mips_RegInfo *>(Sec->Data.data());
+ if (Config->Relocatable && R->ri_gp_value)
+ error(toString(Sec->getFile<ELFT>()) +
+ ": unsupported non-zero ri_gp_value");
+
+ Reginfo.ri_gprmask |= R->ri_gprmask;
+ Sec->getFile<ELFT>()->MipsGp0 = R->ri_gp_value;
+ };
+
+ if (Create)
+ return make<MipsReginfoSection<ELFT>>(Reginfo);
+ return nullptr;
+}
+
+InputSection *elf::createInterpSection() {
+ // StringSaver guarantees that the returned string ends with '\0'.
+ StringRef S = Saver.save(Config->DynamicLinker);
+ ArrayRef<uint8_t> Contents = {(const uint8_t *)S.data(), S.size() + 1};
+
+ auto *Sec =
+ make<InputSection>(SHF_ALLOC, SHT_PROGBITS, 1, Contents, ".interp");
+ Sec->Live = true;
+ return Sec;
+}
+
+SymbolBody *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value,
+ uint64_t Size, InputSectionBase *Section) {
+ auto *S = make<DefinedRegular>(Name, /*IsLocal*/ true, STV_DEFAULT, Type,
+ Value, Size, Section);
+ if (InX::SymTab)
+ InX::SymTab->addSymbol(S);
+ return S;
+}
+
+static size_t getHashSize() {
+ switch (Config->BuildId) {
+ case BuildIdKind::Fast:
+ return 8;
+ case BuildIdKind::Md5:
+ case BuildIdKind::Uuid:
+ return 16;
+ case BuildIdKind::Sha1:
+ return 20;
+ case BuildIdKind::Hexstring:
+ return Config->BuildIdVector.size();
+ default:
+ llvm_unreachable("unknown BuildIdKind");
+ }
+}
+
+BuildIdSection::BuildIdSection()
+ : SyntheticSection(SHF_ALLOC, SHT_NOTE, 1, ".note.gnu.build-id"),
+ HashSize(getHashSize()) {}
+
+void BuildIdSection::writeTo(uint8_t *Buf) {
+ endianness E = Config->Endianness;
+ write32(Buf, 4, E); // Name size
+ write32(Buf + 4, HashSize, E); // Content size
+ write32(Buf + 8, NT_GNU_BUILD_ID, E); // Type
+ memcpy(Buf + 12, "GNU", 4); // Name string
+ HashBuf = Buf + 16;
+}
+
+// Split one uint8 array into small pieces of uint8 arrays.
+static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr,
+ size_t ChunkSize) {
+ std::vector<ArrayRef<uint8_t>> Ret;
+ while (Arr.size() > ChunkSize) {
+ Ret.push_back(Arr.take_front(ChunkSize));
+ Arr = Arr.drop_front(ChunkSize);
+ }
+ if (!Arr.empty())
+ Ret.push_back(Arr);
+ return Ret;
+}
+
+// Computes a hash value of Data using a given hash function.
+// In order to utilize multiple cores, we first split data into 1MB
+// chunks, compute a hash for each chunk, and then compute a hash value
+// of the hash values.
+void BuildIdSection::computeHash(
+ llvm::ArrayRef<uint8_t> Data,
+ std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) {
+ std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024);
+ std::vector<uint8_t> Hashes(Chunks.size() * HashSize);
+
+ // Compute hash values.
+ parallelForEachN(0, Chunks.size(), [&](size_t I) {
+ HashFn(Hashes.data() + I * HashSize, Chunks[I]);
+ });
+
+ // Write to the final output buffer.
+ HashFn(HashBuf, Hashes);
+}
+
+BssSection::BssSection(StringRef Name)
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 0, Name) {}
+
+size_t BssSection::reserveSpace(uint64_t Size, uint32_t Alignment) {
+ if (OutputSection *Sec = getParent())
+ Sec->updateAlignment(Alignment);
+ this->Size = alignTo(this->Size, Alignment) + Size;
+ this->Alignment = std::max(this->Alignment, Alignment);
+ return this->Size - Size;
+}
+
+void BuildIdSection::writeBuildId(ArrayRef<uint8_t> Buf) {
+ switch (Config->BuildId) {
+ case BuildIdKind::Fast:
+ computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
+ write64le(Dest, xxHash64(toStringRef(Arr)));
+ });
+ break;
+ case BuildIdKind::Md5:
+ computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
+ memcpy(Dest, MD5::hash(Arr).data(), 16);
+ });
+ break;
+ case BuildIdKind::Sha1:
+ computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
+ memcpy(Dest, SHA1::hash(Arr).data(), 20);
+ });
+ break;
+ case BuildIdKind::Uuid:
+ if (getRandomBytes(HashBuf, HashSize))
+ error("entropy source failure");
+ break;
+ case BuildIdKind::Hexstring:
+ memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size());
+ break;
+ default:
+ llvm_unreachable("unknown BuildIdKind");
+ }
+}
+
+template <class ELFT>
+EhFrameSection<ELFT>::EhFrameSection()
+ : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
+
+// Search for an existing CIE record or create a new one.
+// CIE records from input object files are uniquified by their contents
+// and where their relocations point to.
+template <class ELFT>
+template <class RelTy>
+CieRecord *EhFrameSection<ELFT>::addCie(EhSectionPiece &Cie,
+ ArrayRef<RelTy> Rels) {
+ auto *Sec = cast<EhInputSection>(Cie.Sec);
+ const endianness E = ELFT::TargetEndianness;
+ if (read32<E>(Cie.data().data() + 4) != 0)
+ fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame");
+
+ SymbolBody *Personality = nullptr;
+ unsigned FirstRelI = Cie.FirstRelocation;
+ if (FirstRelI != (unsigned)-1)
+ Personality =
+ &Sec->template getFile<ELFT>()->getRelocTargetSym(Rels[FirstRelI]);
+
+ // Search for an existing CIE by CIE contents/relocation target pair.
+ CieRecord *&Rec = CieMap[{Cie.data(), Personality}];
+
+ // If not found, create a new one.
+ if (!Rec) {
+ Rec = make<CieRecord>();
+ Rec->Cie = &Cie;
+ CieRecords.push_back(Rec);
+ }
+ return Rec;
+}
+
+// There is one FDE per function. Returns true if a given FDE
+// points to a live function.
+template <class ELFT>
+template <class RelTy>
+bool EhFrameSection<ELFT>::isFdeLive(EhSectionPiece &Fde,
+ ArrayRef<RelTy> Rels) {
+ auto *Sec = cast<EhInputSection>(Fde.Sec);
+ unsigned FirstRelI = Fde.FirstRelocation;
+
+ // An FDE should point to some function because FDEs are to describe
+ // functions. That's however not always the case due to an issue of
+ // ld.gold with -r. ld.gold may discard only functions and leave their
+ // corresponding FDEs, which results in creating bad .eh_frame sections.
+ // To deal with that, we ignore such FDEs.
+ if (FirstRelI == (unsigned)-1)
+ return false;
+
+ const RelTy &Rel = Rels[FirstRelI];
+ SymbolBody &B = Sec->template getFile<ELFT>()->getRelocTargetSym(Rel);
+ if (auto *D = dyn_cast<DefinedRegular>(&B))
+ if (D->Section)
+ return cast<InputSectionBase>(D->Section)->Repl->Live;
+ return false;
+}
+
+// .eh_frame is a sequence of CIE or FDE records. In general, there
+// is one CIE record per input object file which is followed by
+// a list of FDEs. This function searches an existing CIE or create a new
+// one and associates FDEs to the CIE.
+template <class ELFT>
+template <class RelTy>
+void EhFrameSection<ELFT>::addSectionAux(EhInputSection *Sec,
+ ArrayRef<RelTy> Rels) {
+ const endianness E = ELFT::TargetEndianness;
+
+ DenseMap<size_t, CieRecord *> OffsetToCie;
+ for (EhSectionPiece &Piece : Sec->Pieces) {
+ // The empty record is the end marker.
+ if (Piece.Size == 4)
+ return;
+
+ size_t Offset = Piece.InputOff;
+ uint32_t ID = read32<E>(Piece.data().data() + 4);
+ if (ID == 0) {
+ OffsetToCie[Offset] = addCie(Piece, Rels);
+ continue;
+ }
+
+ uint32_t CieOffset = Offset + 4 - ID;
+ CieRecord *Rec = OffsetToCie[CieOffset];
+ if (!Rec)
+ fatal(toString(Sec) + ": invalid CIE reference");
+
+ if (!isFdeLive(Piece, Rels))
+ continue;
+ Rec->Fdes.push_back(&Piece);
+ NumFdes++;
+ }
+}
+
+template <class ELFT>
+void EhFrameSection<ELFT>::addSection(InputSectionBase *C) {
+ auto *Sec = cast<EhInputSection>(C);
+ Sec->Parent = this;
+ updateAlignment(Sec->Alignment);
+ Sections.push_back(Sec);
+ for (auto *DS : Sec->DependentSections)
+ DependentSections.push_back(DS);
+
+ // .eh_frame is a sequence of CIE or FDE records. This function
+ // splits it into pieces so that we can call
+ // SplitInputSection::getSectionPiece on the section.
+ Sec->split<ELFT>();
+ if (Sec->Pieces.empty())
+ return;
+
+ if (Sec->NumRelocations == 0)
+ addSectionAux(Sec, makeArrayRef<Elf_Rela>(nullptr, nullptr));
+ else if (Sec->AreRelocsRela)
+ addSectionAux(Sec, Sec->template relas<ELFT>());
+ else
+ addSectionAux(Sec, Sec->template rels<ELFT>());
+}
+
+template <class ELFT>
+static void writeCieFde(uint8_t *Buf, ArrayRef<uint8_t> D) {
+ memcpy(Buf, D.data(), D.size());
+
+ size_t Aligned = alignTo(D.size(), sizeof(typename ELFT::uint));
+
+ // Zero-clear trailing padding if it exists.
+ memset(Buf + D.size(), 0, Aligned - D.size());
+
+ // Fix the size field. -4 since size does not include the size field itself.
+ const endianness E = ELFT::TargetEndianness;
+ write32<E>(Buf, Aligned - 4);
+}
+
+template <class ELFT> void EhFrameSection<ELFT>::finalizeContents() {
+ if (this->Size)
+ return; // Already finalized.
+
+ size_t Off = 0;
+ for (CieRecord *Rec : CieRecords) {
+ Rec->Cie->OutputOff = Off;
+ Off += alignTo(Rec->Cie->Size, Config->Wordsize);
+
+ for (EhSectionPiece *Fde : Rec->Fdes) {
+ Fde->OutputOff = Off;
+ Off += alignTo(Fde->Size, Config->Wordsize);
+ }
+ }
+
+ // The LSB standard does not allow a .eh_frame section with zero
+ // Call Frame Information records. Therefore add a CIE record length
+ // 0 as a terminator if this .eh_frame section is empty.
+ if (Off == 0)
+ Off = 4;
+
+ this->Size = Off;
+}
+
+template <class ELFT> static uint64_t readFdeAddr(uint8_t *Buf, int Size) {
+ const endianness E = ELFT::TargetEndianness;
+ switch (Size) {
+ case DW_EH_PE_udata2:
+ return read16<E>(Buf);
+ case DW_EH_PE_udata4:
+ return read32<E>(Buf);
+ case DW_EH_PE_udata8:
+ return read64<E>(Buf);
+ case DW_EH_PE_absptr:
+ if (ELFT::Is64Bits)
+ return read64<E>(Buf);
+ return read32<E>(Buf);
+ }
+ fatal("unknown FDE size encoding");
+}
+
+// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
+// We need it to create .eh_frame_hdr section.
+template <class ELFT>
+uint64_t EhFrameSection<ELFT>::getFdePc(uint8_t *Buf, size_t FdeOff,
+ uint8_t Enc) {
+ // The starting address to which this FDE applies is
+ // stored at FDE + 8 byte.
+ size_t Off = FdeOff + 8;
+ uint64_t Addr = readFdeAddr<ELFT>(Buf + Off, Enc & 0x7);
+ if ((Enc & 0x70) == DW_EH_PE_absptr)
+ return Addr;
+ if ((Enc & 0x70) == DW_EH_PE_pcrel)
+ return Addr + getParent()->Addr + Off;
+ fatal("unknown FDE size relative encoding");
+}
+
+template <class ELFT> void EhFrameSection<ELFT>::writeTo(uint8_t *Buf) {
+ const endianness E = ELFT::TargetEndianness;
+ for (CieRecord *Rec : CieRecords) {
+ size_t CieOffset = Rec->Cie->OutputOff;
+ writeCieFde<ELFT>(Buf + CieOffset, Rec->Cie->data());
+
+ for (EhSectionPiece *Fde : Rec->Fdes) {
+ size_t Off = Fde->OutputOff;
+ writeCieFde<ELFT>(Buf + Off, Fde->data());
+
+ // FDE's second word should have the offset to an associated CIE.
+ // Write it.
+ write32<E>(Buf + Off + 4, Off + 4 - CieOffset);
+ }
+ }
+
+ for (EhInputSection *S : Sections)
+ S->relocateAlloc(Buf, nullptr);
+
+ // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table
+ // to get a FDE from an address to which FDE is applied. So here
+ // we obtain two addresses and pass them to EhFrameHdr object.
+ if (In<ELFT>::EhFrameHdr) {
+ for (CieRecord *Rec : CieRecords) {
+ uint8_t Enc = getFdeEncoding<ELFT>(Rec->Cie);
+ for (EhSectionPiece *Fde : Rec->Fdes) {
+ uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc);
+ uint64_t FdeVA = getParent()->Addr + Fde->OutputOff;
+ In<ELFT>::EhFrameHdr->addFde(Pc, FdeVA);
+ }
+ }
+ }
+}
+
+GotSection::GotSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ Target->GotEntrySize, ".got") {}
+
+void GotSection::addEntry(SymbolBody &Sym) {
+ Sym.GotIndex = NumEntries;
+ ++NumEntries;
+}
+
+bool GotSection::addDynTlsEntry(SymbolBody &Sym) {
+ if (Sym.GlobalDynIndex != -1U)
+ return false;
+ Sym.GlobalDynIndex = NumEntries;
+ // Global Dynamic TLS entries take two GOT slots.
+ NumEntries += 2;
+ return true;
+}
+
+// Reserves TLS entries for a TLS module ID and a TLS block offset.
+// In total it takes two GOT slots.
+bool GotSection::addTlsIndex() {
+ if (TlsIndexOff != uint32_t(-1))
+ return false;
+ TlsIndexOff = NumEntries * Config->Wordsize;
+ NumEntries += 2;
+ return true;
+}
+
+uint64_t GotSection::getGlobalDynAddr(const SymbolBody &B) const {
+ return this->getVA() + B.GlobalDynIndex * Config->Wordsize;
+}
+
+uint64_t GotSection::getGlobalDynOffset(const SymbolBody &B) const {
+ return B.GlobalDynIndex * Config->Wordsize;
+}
+
+void GotSection::finalizeContents() { Size = NumEntries * Config->Wordsize; }
+
+bool GotSection::empty() const {
+ // We need to emit a GOT even if it's empty if there's a relocation that is
+ // relative to GOT(such as GOTOFFREL) or there's a symbol that points to a GOT
+ // (i.e. _GLOBAL_OFFSET_TABLE_).
+ return NumEntries == 0 && !HasGotOffRel && !ElfSym::GlobalOffsetTable;
+}
+
+void GotSection::writeTo(uint8_t *Buf) {
+ // Buf points to the start of this section's buffer,
+ // whereas InputSectionBase::relocateAlloc() expects its argument
+ // to point to the start of the output section.
+ relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + Size);
+}
+
+MipsGotSection::MipsGotSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
+ ".got") {}
+
+void MipsGotSection::addEntry(SymbolBody &Sym, int64_t Addend, RelExpr Expr) {
+ // For "true" local symbols which can be referenced from the same module
+ // only compiler creates two instructions for address loading:
+ //
+ // lw $8, 0($gp) # R_MIPS_GOT16
+ // addi $8, $8, 0 # R_MIPS_LO16
+ //
+ // The first instruction loads high 16 bits of the symbol address while
+ // the second adds an offset. That allows to reduce number of required
+ // GOT entries because only one global offset table entry is necessary
+ // for every 64 KBytes of local data. So for local symbols we need to
+ // allocate number of GOT entries to hold all required "page" addresses.
+ //
+ // All global symbols (hidden and regular) considered by compiler uniformly.
+ // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
+ // to load address of the symbol. So for each such symbol we need to
+ // allocate dedicated GOT entry to store its address.
+ //
+ // If a symbol is preemptible we need help of dynamic linker to get its
+ // final address. The corresponding GOT entries are allocated in the
+ // "global" part of GOT. Entries for non preemptible global symbol allocated
+ // in the "local" part of GOT.
+ //
+ // See "Global Offset Table" in Chapter 5:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (Expr == R_MIPS_GOT_LOCAL_PAGE) {
+ // At this point we do not know final symbol value so to reduce number
+ // of allocated GOT entries do the following trick. Save all output
+ // sections referenced by GOT relocations. Then later in the `finalize`
+ // method calculate number of "pages" required to cover all saved output
+ // section and allocate appropriate number of GOT entries.
+ PageIndexMap.insert({Sym.getOutputSection(), 0});
+ return;
+ }
+ if (Sym.isTls()) {
+ // GOT entries created for MIPS TLS relocations behave like
+ // almost GOT entries from other ABIs. They go to the end
+ // of the global offset table.
+ Sym.GotIndex = TlsEntries.size();
+ TlsEntries.push_back(&Sym);
+ return;
+ }
+ auto AddEntry = [&](SymbolBody &S, uint64_t A, GotEntries &Items) {
+ if (S.isInGot() && !A)
+ return;
+ size_t NewIndex = Items.size();
+ if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second)
+ return;
+ Items.emplace_back(&S, A);
+ if (!A)
+ S.GotIndex = NewIndex;
+ };
+ if (Sym.isPreemptible()) {
+ // Ignore addends for preemptible symbols. They got single GOT entry anyway.
+ AddEntry(Sym, 0, GlobalEntries);
+ Sym.IsInGlobalMipsGot = true;
+ } else if (Expr == R_MIPS_GOT_OFF32) {
+ AddEntry(Sym, Addend, LocalEntries32);
+ Sym.Is32BitMipsGot = true;
+ } else {
+ // Hold local GOT entries accessed via a 16-bit index separately.
+ // That allows to write them in the beginning of the GOT and keep
+ // their indexes as less as possible to escape relocation's overflow.
+ AddEntry(Sym, Addend, LocalEntries);
+ }
+}
+
+bool MipsGotSection::addDynTlsEntry(SymbolBody &Sym) {
+ if (Sym.GlobalDynIndex != -1U)
+ return false;
+ Sym.GlobalDynIndex = TlsEntries.size();
+ // Global Dynamic TLS entries take two GOT slots.
+ TlsEntries.push_back(nullptr);
+ TlsEntries.push_back(&Sym);
+ return true;
+}
+
+// Reserves TLS entries for a TLS module ID and a TLS block offset.
+// In total it takes two GOT slots.
+bool MipsGotSection::addTlsIndex() {
+ if (TlsIndexOff != uint32_t(-1))
+ return false;
+ TlsIndexOff = TlsEntries.size() * Config->Wordsize;
+ TlsEntries.push_back(nullptr);
+ TlsEntries.push_back(nullptr);
+ return true;
+}
+
+static uint64_t getMipsPageAddr(uint64_t Addr) {
+ return (Addr + 0x8000) & ~0xffff;
+}
+
+static uint64_t getMipsPageCount(uint64_t Size) {
+ return (Size + 0xfffe) / 0xffff + 1;
+}
+
+uint64_t MipsGotSection::getPageEntryOffset(const SymbolBody &B,
+ int64_t Addend) const {
+ const OutputSection *OutSec = B.getOutputSection();
+ uint64_t SecAddr = getMipsPageAddr(OutSec->Addr);
+ uint64_t SymAddr = getMipsPageAddr(B.getVA(Addend));
+ uint64_t Index = PageIndexMap.lookup(OutSec) + (SymAddr - SecAddr) / 0xffff;
+ assert(Index < PageEntriesNum);
+ return (HeaderEntriesNum + Index) * Config->Wordsize;
+}
+
+uint64_t MipsGotSection::getBodyEntryOffset(const SymbolBody &B,
+ int64_t Addend) const {
+ // Calculate offset of the GOT entries block: TLS, global, local.
+ uint64_t Index = HeaderEntriesNum + PageEntriesNum;
+ if (B.isTls())
+ Index += LocalEntries.size() + LocalEntries32.size() + GlobalEntries.size();
+ else if (B.IsInGlobalMipsGot)
+ Index += LocalEntries.size() + LocalEntries32.size();
+ else if (B.Is32BitMipsGot)
+ Index += LocalEntries.size();
+ // Calculate offset of the GOT entry in the block.
+ if (B.isInGot())
+ Index += B.GotIndex;
+ else {
+ auto It = EntryIndexMap.find({&B, Addend});
+ assert(It != EntryIndexMap.end());
+ Index += It->second;
+ }
+ return Index * Config->Wordsize;
+}
+
+uint64_t MipsGotSection::getTlsOffset() const {
+ return (getLocalEntriesNum() + GlobalEntries.size()) * Config->Wordsize;
+}
+
+uint64_t MipsGotSection::getGlobalDynOffset(const SymbolBody &B) const {
+ return B.GlobalDynIndex * Config->Wordsize;
+}
+
+const SymbolBody *MipsGotSection::getFirstGlobalEntry() const {
+ return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first;
+}
+
+unsigned MipsGotSection::getLocalEntriesNum() const {
+ return HeaderEntriesNum + PageEntriesNum + LocalEntries.size() +
+ LocalEntries32.size();
+}
+
+void MipsGotSection::finalizeContents() { updateAllocSize(); }
+
+void MipsGotSection::updateAllocSize() {
+ PageEntriesNum = 0;
+ for (std::pair<const OutputSection *, size_t> &P : PageIndexMap) {
+ // For each output section referenced by GOT page relocations calculate
+ // and save into PageIndexMap an upper bound of MIPS GOT entries required
+ // to store page addresses of local symbols. We assume the worst case -
+ // each 64kb page of the output section has at least one GOT relocation
+ // against it. And take in account the case when the section intersects
+ // page boundaries.
+ P.second = PageEntriesNum;
+ PageEntriesNum += getMipsPageCount(P.first->Size);
+ }
+ Size = (getLocalEntriesNum() + GlobalEntries.size() + TlsEntries.size()) *
+ Config->Wordsize;
+}
+
+bool MipsGotSection::empty() const {
+ // We add the .got section to the result for dynamic MIPS target because
+ // its address and properties are mentioned in the .dynamic section.
+ return Config->Relocatable;
+}
+
+uint64_t MipsGotSection::getGp() const { return ElfSym::MipsGp->getVA(0); }
+
+static uint64_t readUint(uint8_t *Buf) {
+ if (Config->Is64)
+ return read64(Buf, Config->Endianness);
+ return read32(Buf, Config->Endianness);
+}
+
+static void writeUint(uint8_t *Buf, uint64_t Val) {
+ if (Config->Is64)
+ write64(Buf, Val, Config->Endianness);
+ else
+ write32(Buf, Val, Config->Endianness);
+}
+
+void MipsGotSection::writeTo(uint8_t *Buf) {
+ // Set the MSB of the second GOT slot. This is not required by any
+ // MIPS ABI documentation, though.
+ //
+ // There is a comment in glibc saying that "The MSB of got[1] of a
+ // gnu object is set to identify gnu objects," and in GNU gold it
+ // says "the second entry will be used by some runtime loaders".
+ // But how this field is being used is unclear.
+ //
+ // We are not really willing to mimic other linkers behaviors
+ // without understanding why they do that, but because all files
+ // generated by GNU tools have this special GOT value, and because
+ // we've been doing this for years, it is probably a safe bet to
+ // keep doing this for now. We really need to revisit this to see
+ // if we had to do this.
+ writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1));
+ Buf += HeaderEntriesNum * Config->Wordsize;
+ // Write 'page address' entries to the local part of the GOT.
+ for (std::pair<const OutputSection *, size_t> &L : PageIndexMap) {
+ size_t PageCount = getMipsPageCount(L.first->Size);
+ uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr);
+ for (size_t PI = 0; PI < PageCount; ++PI) {
+ uint8_t *Entry = Buf + (L.second + PI) * Config->Wordsize;
+ writeUint(Entry, FirstPageAddr + PI * 0x10000);
+ }
+ }
+ Buf += PageEntriesNum * Config->Wordsize;
+ auto AddEntry = [&](const GotEntry &SA) {
+ uint8_t *Entry = Buf;
+ Buf += Config->Wordsize;
+ const SymbolBody *Body = SA.first;
+ uint64_t VA = Body->getVA(SA.second);
+ writeUint(Entry, VA);
+ };
+ std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry);
+ std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry);
+ std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry);
+ // Initialize TLS-related GOT entries. If the entry has a corresponding
+ // dynamic relocations, leave it initialized by zero. Write down adjusted
+ // TLS symbol's values otherwise. To calculate the adjustments use offsets
+ // for thread-local storage.
+ // https://www.linux-mips.org/wiki/NPTL
+ if (TlsIndexOff != -1U && !Config->Pic)
+ writeUint(Buf + TlsIndexOff, 1);
+ for (const SymbolBody *B : TlsEntries) {
+ if (!B || B->isPreemptible())
+ continue;
+ uint64_t VA = B->getVA();
+ if (B->GotIndex != -1U) {
+ uint8_t *Entry = Buf + B->GotIndex * Config->Wordsize;
+ writeUint(Entry, VA - 0x7000);
+ }
+ if (B->GlobalDynIndex != -1U) {
+ uint8_t *Entry = Buf + B->GlobalDynIndex * Config->Wordsize;
+ writeUint(Entry, 1);
+ Entry += Config->Wordsize;
+ writeUint(Entry, VA - 0x8000);
+ }
+ }
+}
+
+GotPltSection::GotPltSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ Target->GotPltEntrySize, ".got.plt") {}
+
+void GotPltSection::addEntry(SymbolBody &Sym) {
+ Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
+ Entries.push_back(&Sym);
+}
+
+size_t GotPltSection::getSize() const {
+ return (Target->GotPltHeaderEntriesNum + Entries.size()) *
+ Target->GotPltEntrySize;
+}
+
+void GotPltSection::writeTo(uint8_t *Buf) {
+ Target->writeGotPltHeader(Buf);
+ Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize;
+ for (const SymbolBody *B : Entries) {
+ Target->writeGotPlt(Buf, *B);
+ Buf += Config->Wordsize;
+ }
+}
+
+// On ARM the IgotPltSection is part of the GotSection, on other Targets it is
+// part of the .got.plt
+IgotPltSection::IgotPltSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ Target->GotPltEntrySize,
+ Config->EMachine == EM_ARM ? ".got" : ".got.plt") {}
+
+void IgotPltSection::addEntry(SymbolBody &Sym) {
+ Sym.IsInIgot = true;
+ Sym.GotPltIndex = Entries.size();
+ Entries.push_back(&Sym);
+}
+
+size_t IgotPltSection::getSize() const {
+ return Entries.size() * Target->GotPltEntrySize;
+}
+
+void IgotPltSection::writeTo(uint8_t *Buf) {
+ for (const SymbolBody *B : Entries) {
+ Target->writeIgotPlt(Buf, *B);
+ Buf += Config->Wordsize;
+ }
+}
+
+StringTableSection::StringTableSection(StringRef Name, bool Dynamic)
+ : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name),
+ Dynamic(Dynamic) {
+ // ELF string tables start with a NUL byte.
+ addString("");
+}
+
+// Adds a string to the string table. If HashIt is true we hash and check for
+// duplicates. It is optional because the name of global symbols are already
+// uniqued and hashing them again has a big cost for a small value: uniquing
+// them with some other string that happens to be the same.
+unsigned StringTableSection::addString(StringRef S, bool HashIt) {
+ if (HashIt) {
+ auto R = StringMap.insert(std::make_pair(S, this->Size));
+ if (!R.second)
+ return R.first->second;
+ }
+ unsigned Ret = this->Size;
+ this->Size = this->Size + S.size() + 1;
+ Strings.push_back(S);
+ return Ret;
+}
+
+void StringTableSection::writeTo(uint8_t *Buf) {
+ for (StringRef S : Strings) {
+ memcpy(Buf, S.data(), S.size());
+ Buf[S.size()] = '\0';
+ Buf += S.size() + 1;
+ }
+}
+
+// Returns the number of version definition entries. Because the first entry
+// is for the version definition itself, it is the number of versioned symbols
+// plus one. Note that we don't support multiple versions yet.
+static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }
+
+template <class ELFT>
+DynamicSection<ELFT>::DynamicSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize,
+ ".dynamic") {
+ this->Entsize = ELFT::Is64Bits ? 16 : 8;
+
+ // .dynamic section is not writable on MIPS and on Fuchsia OS
+ // which passes -z rodynamic.
+ // See "Special Section" in Chapter 4 in the following document:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (Config->EMachine == EM_MIPS || Config->ZRodynamic)
+ this->Flags = SHF_ALLOC;
+
+ addEntries();
+}
+
+// There are some dynamic entries that don't depend on other sections.
+// Such entries can be set early.
+template <class ELFT> void DynamicSection<ELFT>::addEntries() {
+ // Add strings to .dynstr early so that .dynstr's size will be
+ // fixed early.
+ for (StringRef S : Config->FilterList)
+ add({DT_FILTER, InX::DynStrTab->addString(S)});
+ for (StringRef S : Config->AuxiliaryList)
+ add({DT_AUXILIARY, InX::DynStrTab->addString(S)});
+ if (!Config->Rpath.empty())
+ add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
+ InX::DynStrTab->addString(Config->Rpath)});
+ for (InputFile *File : SharedFiles) {
+ SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File);
+ if (F->isNeeded())
+ add({DT_NEEDED, InX::DynStrTab->addString(F->SoName)});
+ }
+ if (!Config->SoName.empty())
+ add({DT_SONAME, InX::DynStrTab->addString(Config->SoName)});
+
+ // Set DT_FLAGS and DT_FLAGS_1.
+ uint32_t DtFlags = 0;
+ uint32_t DtFlags1 = 0;
+ if (Config->Bsymbolic)
+ DtFlags |= DF_SYMBOLIC;
+ if (Config->ZNodelete)
+ DtFlags1 |= DF_1_NODELETE;
+ if (Config->ZNodlopen)
+ DtFlags1 |= DF_1_NOOPEN;
+ if (Config->ZNow) {
+ DtFlags |= DF_BIND_NOW;
+ DtFlags1 |= DF_1_NOW;
+ }
+ if (Config->ZOrigin) {
+ DtFlags |= DF_ORIGIN;
+ DtFlags1 |= DF_1_ORIGIN;
+ }
+
+ if (DtFlags)
+ add({DT_FLAGS, DtFlags});
+ if (DtFlags1)
+ add({DT_FLAGS_1, DtFlags1});
+
+ // DT_DEBUG is a pointer to debug informaion used by debuggers at runtime. We
+ // need it for each process, so we don't write it for DSOs. The loader writes
+ // the pointer into this entry.
+ //
+ // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
+ // systems (currently only Fuchsia OS) provide other means to give the
+ // debugger this information. Such systems may choose make .dynamic read-only.
+ // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
+ if (!Config->Shared && !Config->Relocatable && !Config->ZRodynamic)
+ add({DT_DEBUG, (uint64_t)0});
+}
+
+// Add remaining entries to complete .dynamic contents.
+template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
+ if (this->Size)
+ return; // Already finalized.
+
+ this->Link = InX::DynStrTab->getParent()->SectionIndex;
+ if (In<ELFT>::RelaDyn->getParent() && !In<ELFT>::RelaDyn->empty()) {
+ bool IsRela = Config->IsRela;
+ add({IsRela ? DT_RELA : DT_REL, In<ELFT>::RelaDyn});
+ add({IsRela ? DT_RELASZ : DT_RELSZ, In<ELFT>::RelaDyn->getParent(),
+ Entry::SecSize});
+ add({IsRela ? DT_RELAENT : DT_RELENT,
+ uint64_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
+
+ // MIPS dynamic loader does not support RELCOUNT tag.
+ // The problem is in the tight relation between dynamic
+ // relocations and GOT. So do not emit this tag on MIPS.
+ if (Config->EMachine != EM_MIPS) {
+ size_t NumRelativeRels = In<ELFT>::RelaDyn->getRelativeRelocCount();
+ if (Config->ZCombreloc && NumRelativeRels)
+ add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels});
+ }
+ }
+ if (In<ELFT>::RelaPlt->getParent() && !In<ELFT>::RelaPlt->empty()) {
+ add({DT_JMPREL, In<ELFT>::RelaPlt});
+ add({DT_PLTRELSZ, In<ELFT>::RelaPlt->getParent(), Entry::SecSize});
+ switch (Config->EMachine) {
+ case EM_MIPS:
+ add({DT_MIPS_PLTGOT, In<ELFT>::GotPlt});
+ break;
+ case EM_SPARCV9:
+ add({DT_PLTGOT, In<ELFT>::Plt});
+ break;
+ default:
+ add({DT_PLTGOT, In<ELFT>::GotPlt});
+ break;
+ }
+ add({DT_PLTREL, uint64_t(Config->IsRela ? DT_RELA : DT_REL)});
+ }
+
+ add({DT_SYMTAB, InX::DynSymTab});
+ add({DT_SYMENT, sizeof(Elf_Sym)});
+ add({DT_STRTAB, InX::DynStrTab});
+ add({DT_STRSZ, InX::DynStrTab->getSize()});
+ if (!Config->ZText)
+ add({DT_TEXTREL, (uint64_t)0});
+ if (InX::GnuHashTab)
+ add({DT_GNU_HASH, InX::GnuHashTab});
+ if (In<ELFT>::HashTab)
+ add({DT_HASH, In<ELFT>::HashTab});
+
+ if (Out::PreinitArray) {
+ add({DT_PREINIT_ARRAY, Out::PreinitArray});
+ add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize});
+ }
+ if (Out::InitArray) {
+ add({DT_INIT_ARRAY, Out::InitArray});
+ add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize});
+ }
+ if (Out::FiniArray) {
+ add({DT_FINI_ARRAY, Out::FiniArray});
+ add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize});
+ }
+
+ if (SymbolBody *B = Symtab->find(Config->Init))
+ if (B->isInCurrentDSO())
+ add({DT_INIT, B});
+ if (SymbolBody *B = Symtab->find(Config->Fini))
+ if (B->isInCurrentDSO())
+ add({DT_FINI, B});
+
+ bool HasVerNeed = In<ELFT>::VerNeed->getNeedNum() != 0;
+ if (HasVerNeed || In<ELFT>::VerDef)
+ add({DT_VERSYM, In<ELFT>::VerSym});
+ if (In<ELFT>::VerDef) {
+ add({DT_VERDEF, In<ELFT>::VerDef});
+ add({DT_VERDEFNUM, getVerDefNum()});
+ }
+ if (HasVerNeed) {
+ add({DT_VERNEED, In<ELFT>::VerNeed});
+ add({DT_VERNEEDNUM, In<ELFT>::VerNeed->getNeedNum()});
+ }
+
+ if (Config->EMachine == EM_MIPS) {
+ add({DT_MIPS_RLD_VERSION, 1});
+ add({DT_MIPS_FLAGS, RHF_NOTPOT});
+ add({DT_MIPS_BASE_ADDRESS, Config->ImageBase});
+ add({DT_MIPS_SYMTABNO, InX::DynSymTab->getNumSymbols()});
+ add({DT_MIPS_LOCAL_GOTNO, InX::MipsGot->getLocalEntriesNum()});
+ if (const SymbolBody *B = InX::MipsGot->getFirstGlobalEntry())
+ add({DT_MIPS_GOTSYM, B->DynsymIndex});
+ else
+ add({DT_MIPS_GOTSYM, InX::DynSymTab->getNumSymbols()});
+ add({DT_PLTGOT, InX::MipsGot});
+ if (InX::MipsRldMap)
+ add({DT_MIPS_RLD_MAP, InX::MipsRldMap});
+ }
+
+ getParent()->Link = this->Link;
+
+ // +1 for DT_NULL
+ this->Size = (Entries.size() + 1) * this->Entsize;
+}
+
+template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
+ auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
+
+ for (const Entry &E : Entries) {
+ P->d_tag = E.Tag;
+ switch (E.Kind) {
+ case Entry::SecAddr:
+ P->d_un.d_ptr = E.OutSec->Addr;
+ break;
+ case Entry::InSecAddr:
+ P->d_un.d_ptr = E.InSec->getParent()->Addr + E.InSec->OutSecOff;
+ break;
+ case Entry::SecSize:
+ P->d_un.d_val = E.OutSec->Size;
+ break;
+ case Entry::SymAddr:
+ P->d_un.d_ptr = E.Sym->getVA();
+ break;
+ case Entry::PlainInt:
+ P->d_un.d_val = E.Val;
+ break;
+ }
+ ++P;
+ }
+}
+
+uint64_t DynamicReloc::getOffset() const {
+ return InputSec->getOutputSection()->Addr + InputSec->getOffset(OffsetInSec);
+}
+
+int64_t DynamicReloc::getAddend() const {
+ if (UseSymVA)
+ return Sym->getVA(Addend);
+ return Addend;
+}
+
+uint32_t DynamicReloc::getSymIndex() const {
+ if (Sym && !UseSymVA)
+ return Sym->DynsymIndex;
+ return 0;
+}
+
+template <class ELFT>
+RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
+ : SyntheticSection(SHF_ALLOC, Config->IsRela ? SHT_RELA : SHT_REL,
+ Config->Wordsize, Name),
+ Sort(Sort) {
+ this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
+}
+
+template <class ELFT>
+void RelocationSection<ELFT>::addReloc(const DynamicReloc &Reloc) {
+ if (Reloc.Type == Target->RelativeRel)
+ ++NumRelativeRelocs;
+ Relocs.push_back(Reloc);
+}
+
+template <class ELFT, class RelTy>
+static bool compRelocations(const RelTy &A, const RelTy &B) {
+ bool AIsRel = A.getType(Config->IsMips64EL) == Target->RelativeRel;
+ bool BIsRel = B.getType(Config->IsMips64EL) == Target->RelativeRel;
+ if (AIsRel != BIsRel)
+ return AIsRel;
+
+ return A.getSymbol(Config->IsMips64EL) < B.getSymbol(Config->IsMips64EL);
+}
+
+template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
+ uint8_t *BufBegin = Buf;
+ for (const DynamicReloc &Rel : Relocs) {
+ auto *P = reinterpret_cast<Elf_Rela *>(Buf);
+ Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
+
+ if (Config->IsRela)
+ P->r_addend = Rel.getAddend();
+ P->r_offset = Rel.getOffset();
+ if (Config->EMachine == EM_MIPS && Rel.getInputSec() == InX::MipsGot)
+ // Dynamic relocation against MIPS GOT section make deal TLS entries
+ // allocated in the end of the GOT. We need to adjust the offset to take
+ // in account 'local' and 'global' GOT entries.
+ P->r_offset += InX::MipsGot->getTlsOffset();
+ P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL);
+ }
+
+ if (Sort) {
+ if (Config->IsRela)
+ std::stable_sort((Elf_Rela *)BufBegin,
+ (Elf_Rela *)BufBegin + Relocs.size(),
+ compRelocations<ELFT, Elf_Rela>);
+ else
+ std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
+ compRelocations<ELFT, Elf_Rel>);
+ }
+}
+
+template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
+ return this->Entsize * Relocs.size();
+}
+
+template <class ELFT> void RelocationSection<ELFT>::finalizeContents() {
+ this->Link = InX::DynSymTab ? InX::DynSymTab->getParent()->SectionIndex
+ : InX::SymTab->getParent()->SectionIndex;
+
+ // Set required output section properties.
+ getParent()->Link = this->Link;
+}
+
+SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &StrTabSec)
+ : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
+ StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
+ Config->Wordsize,
+ StrTabSec.isDynamic() ? ".dynsym" : ".symtab"),
+ StrTabSec(StrTabSec) {}
+
+// Orders symbols according to their positions in the GOT,
+// in compliance with MIPS ABI rules.
+// See "Global Offset Table" in Chapter 5 in the following document
+// for detailed description:
+// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+static bool sortMipsSymbols(const SymbolTableEntry &L,
+ const SymbolTableEntry &R) {
+ // Sort entries related to non-local preemptible symbols by GOT indexes.
+ // All other entries go to the first part of GOT in arbitrary order.
+ bool LIsInLocalGot = !L.Symbol->IsInGlobalMipsGot;
+ bool RIsInLocalGot = !R.Symbol->IsInGlobalMipsGot;
+ if (LIsInLocalGot || RIsInLocalGot)
+ return !RIsInLocalGot;
+ return L.Symbol->GotIndex < R.Symbol->GotIndex;
+}
+
+// Finalize a symbol table. The ELF spec requires that all local
+// symbols precede global symbols, so we sort symbol entries in this
+// function. (For .dynsym, we don't do that because symbols for
+// dynamic linking are inherently all globals.)
+void SymbolTableBaseSection::finalizeContents() {
+ getParent()->Link = StrTabSec.getParent()->SectionIndex;
+
+ // If it is a .dynsym, there should be no local symbols, but we need
+ // to do a few things for the dynamic linker.
+ if (this->Type == SHT_DYNSYM) {
+ // Section's Info field has the index of the first non-local symbol.
+ // Because the first symbol entry is a null entry, 1 is the first.
+ getParent()->Info = 1;
+
+ if (InX::GnuHashTab) {
+ // NB: It also sorts Symbols to meet the GNU hash table requirements.
+ InX::GnuHashTab->addSymbols(Symbols);
+ } else if (Config->EMachine == EM_MIPS) {
+ std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols);
+ }
+
+ size_t I = 0;
+ for (const SymbolTableEntry &S : Symbols)
+ S.Symbol->DynsymIndex = ++I;
+ return;
+ }
+}
+
+void SymbolTableBaseSection::postThunkContents() {
+ if (this->Type == SHT_DYNSYM)
+ return;
+ // move all local symbols before global symbols.
+ auto It = std::stable_partition(
+ Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) {
+ return S.Symbol->isLocal() ||
+ S.Symbol->symbol()->computeBinding() == STB_LOCAL;
+ });
+ size_t NumLocals = It - Symbols.begin();
+ getParent()->Info = NumLocals + 1;
+}
+
+void SymbolTableBaseSection::addSymbol(SymbolBody *B) {
+ // Adding a local symbol to a .dynsym is a bug.
+ assert(this->Type != SHT_DYNSYM || !B->isLocal());
+
+ bool HashIt = B->isLocal();
+ Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)});
+}
+
+size_t SymbolTableBaseSection::getSymbolIndex(SymbolBody *Body) {
+ auto I = llvm::find_if(Symbols, [&](const SymbolTableEntry &E) {
+ if (E.Symbol == Body)
+ return true;
+ // This is used for -r, so we have to handle multiple section
+ // symbols being combined.
+ if (Body->Type == STT_SECTION && E.Symbol->Type == STT_SECTION)
+ return Body->getOutputSection() == E.Symbol->getOutputSection();
+ return false;
+ });
+ if (I == Symbols.end())
+ return 0;
+ return I - Symbols.begin() + 1;
+}
+
+template <class ELFT>
+SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &StrTabSec)
+ : SymbolTableBaseSection(StrTabSec) {
+ this->Entsize = sizeof(Elf_Sym);
+}
+
+// Write the internal symbol table contents to the output symbol table.
+template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ // The first entry is a null entry as per the ELF spec.
+ Buf += sizeof(Elf_Sym);
+
+ auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
+
+ for (SymbolTableEntry &Ent : Symbols) {
+ SymbolBody *Body = Ent.Symbol;
+
+ // Set st_info and st_other.
+ if (Body->isLocal()) {
+ ESym->setBindingAndType(STB_LOCAL, Body->Type);
+ } else {
+ ESym->setBindingAndType(Body->symbol()->computeBinding(), Body->Type);
+ ESym->setVisibility(Body->symbol()->Visibility);
+ }
+
+ ESym->st_name = Ent.StrTabOffset;
+
+ // Set a section index.
+ if (const OutputSection *OutSec = Body->getOutputSection())
+ ESym->st_shndx = OutSec->SectionIndex;
+ else if (isa<DefinedRegular>(Body))
+ ESym->st_shndx = SHN_ABS;
+ else if (isa<DefinedCommon>(Body))
+ ESym->st_shndx = SHN_COMMON;
+
+ // Copy symbol size if it is a defined symbol. st_size is not significant
+ // for undefined symbols, so whether copying it or not is up to us if that's
+ // the case. We'll leave it as zero because by not setting a value, we can
+ // get the exact same outputs for two sets of input files that differ only
+ // in undefined symbol size in DSOs.
+ if (ESym->st_shndx != SHN_UNDEF)
+ ESym->st_size = Body->getSize<ELFT>();
+
+ // st_value is usually an address of a symbol, but that has a
+ // special meaining for uninstantiated common symbols (this can
+ // occur if -r is given).
+ if (!Config->DefineCommon && isa<DefinedCommon>(Body))
+ ESym->st_value = cast<DefinedCommon>(Body)->Alignment;
+ else
+ ESym->st_value = Body->getVA();
+
+ ++ESym;
+ }
+
+ // On MIPS we need to mark symbol which has a PLT entry and requires
+ // pointer equality by STO_MIPS_PLT flag. That is necessary to help
+ // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
+ // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
+ if (Config->EMachine == EM_MIPS) {
+ auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
+
+ for (SymbolTableEntry &Ent : Symbols) {
+ SymbolBody *Body = Ent.Symbol;
+ if (Body->isInPlt() && Body->NeedsPltAddr)
+ ESym->st_other |= STO_MIPS_PLT;
+
+ if (Config->Relocatable)
+ if (auto *D = dyn_cast<DefinedRegular>(Body))
+ if (D->isMipsPIC<ELFT>())
+ ESym->st_other |= STO_MIPS_PIC;
+ ++ESym;
+ }
+ }
+}
+
+// .hash and .gnu.hash sections contain on-disk hash tables that map
+// symbol names to their dynamic symbol table indices. Their purpose
+// is to help the dynamic linker resolve symbols quickly. If ELF files
+// don't have them, the dynamic linker has to do linear search on all
+// dynamic symbols, which makes programs slower. Therefore, a .hash
+// section is added to a DSO by default. A .gnu.hash is added if you
+// give the -hash-style=gnu or -hash-style=both option.
+//
+// The Unix semantics of resolving dynamic symbols is somewhat expensive.
+// Each ELF file has a list of DSOs that the ELF file depends on and a
+// list of dynamic symbols that need to be resolved from any of the
+// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
+// where m is the number of DSOs and n is the number of dynamic
+// symbols. For modern large programs, both m and n are large. So
+// making each step faster by using hash tables substiantially
+// improves time to load programs.
+//
+// (Note that this is not the only way to design the shared library.
+// For instance, the Windows DLL takes a different approach. On
+// Windows, each dynamic symbol has a name of DLL from which the symbol
+// has to be resolved. That makes the cost of symbol resolution O(n).
+// This disables some hacky techniques you can use on Unix such as
+// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
+//
+// Due to historical reasons, we have two different hash tables, .hash
+// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
+// and better version of .hash. .hash is just an on-disk hash table, but
+// .gnu.hash has a bloom filter in addition to a hash table to skip
+// DSOs very quickly. If you are sure that your dynamic linker knows
+// about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a
+// safe bet is to specify -hash-style=both for backward compatibilty.
+GnuHashTableSection::GnuHashTableSection()
+ : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") {
+}
+
+void GnuHashTableSection::finalizeContents() {
+ getParent()->Link = InX::DynSymTab->getParent()->SectionIndex;
+
+ // Computes bloom filter size in word size. We want to allocate 8
+ // bits for each symbol. It must be a power of two.
+ if (Symbols.empty())
+ MaskWords = 1;
+ else
+ MaskWords = NextPowerOf2((Symbols.size() - 1) / Config->Wordsize);
+
+ Size = 16; // Header
+ Size += Config->Wordsize * MaskWords; // Bloom filter
+ Size += NBuckets * 4; // Hash buckets
+ Size += Symbols.size() * 4; // Hash values
+}
+
+void GnuHashTableSection::writeTo(uint8_t *Buf) {
+ // Write a header.
+ write32(Buf, NBuckets, Config->Endianness);
+ write32(Buf + 4, InX::DynSymTab->getNumSymbols() - Symbols.size(),
+ Config->Endianness);
+ write32(Buf + 8, MaskWords, Config->Endianness);
+ write32(Buf + 12, getShift2(), Config->Endianness);
+ Buf += 16;
+
+ // Write a bloom filter and a hash table.
+ writeBloomFilter(Buf);
+ Buf += Config->Wordsize * MaskWords;
+ writeHashTable(Buf);
+}
+
+// This function writes a 2-bit bloom filter. This bloom filter alone
+// usually filters out 80% or more of all symbol lookups [1].
+// The dynamic linker uses the hash table only when a symbol is not
+// filtered out by a bloom filter.
+//
+// [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
+// p.9, https://www.akkadia.org/drepper/dsohowto.pdf
+void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) {
+ const unsigned C = Config->Wordsize * 8;
+ for (const Entry &Sym : Symbols) {
+ size_t I = (Sym.Hash / C) & (MaskWords - 1);
+ uint64_t Val = readUint(Buf + I * Config->Wordsize);
+ Val |= uint64_t(1) << (Sym.Hash % C);
+ Val |= uint64_t(1) << ((Sym.Hash >> getShift2()) % C);
+ writeUint(Buf + I * Config->Wordsize, Val);
+ }
+}
+
+void GnuHashTableSection::writeHashTable(uint8_t *Buf) {
+ // Group symbols by hash value.
+ std::vector<std::vector<Entry>> Syms(NBuckets);
+ for (const Entry &Ent : Symbols)
+ Syms[Ent.Hash % NBuckets].push_back(Ent);
+
+ // Write hash buckets. Hash buckets contain indices in the following
+ // hash value table.
+ uint32_t *Buckets = reinterpret_cast<uint32_t *>(Buf);
+ for (size_t I = 0; I < NBuckets; ++I)
+ if (!Syms[I].empty())
+ write32(Buckets + I, Syms[I][0].Body->DynsymIndex, Config->Endianness);
+
+ // Write a hash value table. It represents a sequence of chains that
+ // share the same hash modulo value. The last element of each chain
+ // is terminated by LSB 1.
+ uint32_t *Values = Buckets + NBuckets;
+ size_t I = 0;
+ for (std::vector<Entry> &Vec : Syms) {
+ if (Vec.empty())
+ continue;
+ for (const Entry &Ent : makeArrayRef(Vec).drop_back())
+ write32(Values + I++, Ent.Hash & ~1, Config->Endianness);
+ write32(Values + I++, Vec.back().Hash | 1, Config->Endianness);
+ }
+}
+
+static uint32_t hashGnu(StringRef Name) {
+ uint32_t H = 5381;
+ for (uint8_t C : Name)
+ H = (H << 5) + H + C;
+ return H;
+}
+
+// Returns a number of hash buckets to accomodate given number of elements.
+// We want to choose a moderate number that is not too small (which
+// causes too many hash collisions) and not too large (which wastes
+// disk space.)
+//
+// We return a prime number because it (is believed to) achieve good
+// hash distribution.
+static size_t getBucketSize(size_t NumSymbols) {
+ // List of largest prime numbers that are not greater than 2^n + 1.
+ for (size_t N : {131071, 65521, 32749, 16381, 8191, 4093, 2039, 1021, 509,
+ 251, 127, 61, 31, 13, 7, 3, 1})
+ if (N <= NumSymbols)
+ return N;
+ return 0;
+}
+
+// Add symbols to this symbol hash table. Note that this function
+// destructively sort a given vector -- which is needed because
+// GNU-style hash table places some sorting requirements.
+void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &V) {
+ // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
+ // its type correctly.
+ std::vector<SymbolTableEntry>::iterator Mid =
+ std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) {
+ return S.Symbol->isUndefined();
+ });
+ if (Mid == V.end())
+ return;
+
+ for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) {
+ SymbolBody *B = Ent.Symbol;
+ Symbols.push_back({B, Ent.StrTabOffset, hashGnu(B->getName())});
+ }
+
+ NBuckets = getBucketSize(Symbols.size());
+ std::stable_sort(Symbols.begin(), Symbols.end(),
+ [&](const Entry &L, const Entry &R) {
+ return L.Hash % NBuckets < R.Hash % NBuckets;
+ });
+
+ V.erase(Mid, V.end());
+ for (const Entry &Ent : Symbols)
+ V.push_back({Ent.Body, Ent.StrTabOffset});
+}
+
+template <class ELFT>
+HashTableSection<ELFT>::HashTableSection()
+ : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
+ this->Entsize = 4;
+}
+
+template <class ELFT> void HashTableSection<ELFT>::finalizeContents() {
+ getParent()->Link = InX::DynSymTab->getParent()->SectionIndex;
+
+ unsigned NumEntries = 2; // nbucket and nchain.
+ NumEntries += InX::DynSymTab->getNumSymbols(); // The chain entries.
+
+ // Create as many buckets as there are symbols.
+ // FIXME: This is simplistic. We can try to optimize it, but implementing
+ // support for SHT_GNU_HASH is probably even more profitable.
+ NumEntries += InX::DynSymTab->getNumSymbols();
+ this->Size = NumEntries * 4;
+}
+
+template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ // A 32-bit integer type in the target endianness.
+ typedef typename ELFT::Word Elf_Word;
+
+ unsigned NumSymbols = InX::DynSymTab->getNumSymbols();
+
+ auto *P = reinterpret_cast<Elf_Word *>(Buf);
+ *P++ = NumSymbols; // nbucket
+ *P++ = NumSymbols; // nchain
+
+ Elf_Word *Buckets = P;
+ Elf_Word *Chains = P + NumSymbols;
+
+ for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) {
+ SymbolBody *Body = S.Symbol;
+ StringRef Name = Body->getName();
+ unsigned I = Body->DynsymIndex;
+ uint32_t Hash = hashSysV(Name) % NumSymbols;
+ Chains[I] = Buckets[Hash];
+ Buckets[Hash] = I;
+ }
+}
+
+PltSection::PltSection(size_t S)
+ : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
+ HeaderSize(S) {
+ // The PLT needs to be writable on SPARC as the dynamic linker will
+ // modify the instructions in the PLT entries.
+ if (Config->EMachine == EM_SPARCV9)
+ this->Flags |= SHF_WRITE;
+}
+
+void PltSection::writeTo(uint8_t *Buf) {
+ // At beginning of PLT but not the IPLT, we have code to call the dynamic
+ // linker to resolve dynsyms at runtime. Write such code.
+ if (HeaderSize != 0)
+ Target->writePltHeader(Buf);
+ size_t Off = HeaderSize;
+ // The IPlt is immediately after the Plt, account for this in RelOff
+ unsigned PltOff = getPltRelocOff();
+
+ for (auto &I : Entries) {
+ const SymbolBody *B = I.first;
+ unsigned RelOff = I.second + PltOff;
+ uint64_t Got = B->getGotPltVA();
+ uint64_t Plt = this->getVA() + Off;
+ Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
+ Off += Target->PltEntrySize;
+ }
+}
+
+template <class ELFT> void PltSection::addEntry(SymbolBody &Sym) {
+ Sym.PltIndex = Entries.size();
+ RelocationSection<ELFT> *PltRelocSection = In<ELFT>::RelaPlt;
+ if (HeaderSize == 0) {
+ PltRelocSection = In<ELFT>::RelaIplt;
+ Sym.IsInIplt = true;
+ }
+ unsigned RelOff = PltRelocSection->getRelocOffset();
+ Entries.push_back(std::make_pair(&Sym, RelOff));
+}
+
+size_t PltSection::getSize() const {
+ return HeaderSize + Entries.size() * Target->PltEntrySize;
+}
+
+// Some architectures such as additional symbols in the PLT section. For
+// example ARM uses mapping symbols to aid disassembly
+void PltSection::addSymbols() {
+ // The PLT may have symbols defined for the Header, the IPLT has no header
+ if (HeaderSize != 0)
+ Target->addPltHeaderSymbols(this);
+ size_t Off = HeaderSize;
+ for (size_t I = 0; I < Entries.size(); ++I) {
+ Target->addPltSymbols(this, Off);
+ Off += Target->PltEntrySize;
+ }
+}
+
+unsigned PltSection::getPltRelocOff() const {
+ return (HeaderSize == 0) ? InX::Plt->getSize() : 0;
+}
+
+// The string hash function for .gdb_index.
+static uint32_t computeGdbHash(StringRef S) {
+ uint32_t H = 0;
+ for (uint8_t C : S)
+ H = H * 67 + tolower(C) - 113;
+ return H;
+}
+
+static std::vector<GdbIndexChunk::CuEntry> readCuList(DWARFContext &Dwarf) {
+ std::vector<GdbIndexChunk::CuEntry> Ret;
+ for (std::unique_ptr<DWARFCompileUnit> &Cu : Dwarf.compile_units())
+ Ret.push_back({Cu->getOffset(), Cu->getLength() + 4});
+ return Ret;
+}
+
+static std::vector<GdbIndexChunk::AddressEntry>
+readAddressAreas(DWARFContext &Dwarf, InputSection *Sec) {
+ std::vector<GdbIndexChunk::AddressEntry> Ret;
+
+ uint32_t CuIdx = 0;
+ for (std::unique_ptr<DWARFCompileUnit> &Cu : Dwarf.compile_units()) {
+ DWARFAddressRangesVector Ranges;
+ Cu->collectAddressRanges(Ranges);
+
+ ArrayRef<InputSectionBase *> Sections = Sec->File->getSections();
+ for (DWARFAddressRange &R : Ranges) {
+ InputSectionBase *S = Sections[R.SectionIndex];
+ if (!S || S == &InputSection::Discarded || !S->Live)
+ continue;
+ // Range list with zero size has no effect.
+ if (R.LowPC == R.HighPC)
+ continue;
+ auto *IS = cast<InputSection>(S);
+ uint64_t Offset = IS->getOffsetInFile();
+ Ret.push_back({IS, R.LowPC - Offset, R.HighPC - Offset, CuIdx});
+ }
+ ++CuIdx;
+ }
+ return Ret;
+}
+
+static std::vector<GdbIndexChunk::NameTypeEntry>
+readPubNamesAndTypes(DWARFContext &Dwarf) {
+ StringRef Sec1 = Dwarf.getDWARFObj().getGnuPubNamesSection();
+ StringRef Sec2 = Dwarf.getDWARFObj().getGnuPubTypesSection();
+
+ std::vector<GdbIndexChunk::NameTypeEntry> Ret;
+ for (StringRef Sec : {Sec1, Sec2}) {
+ DWARFDebugPubTable Table(Sec, Config->IsLE, true);
+ for (const DWARFDebugPubTable::Set &Set : Table.getData()) {
+ for (const DWARFDebugPubTable::Entry &Ent : Set.Entries) {
+ CachedHashStringRef S(Ent.Name, computeGdbHash(Ent.Name));
+ Ret.push_back({S, Ent.Descriptor.toBits()});
+ }
+ }
+ }
+ return Ret;
+}
+
+static std::vector<InputSection *> getDebugInfoSections() {
+ std::vector<InputSection *> Ret;
+ for (InputSectionBase *S : InputSections)
+ if (InputSection *IS = dyn_cast<InputSection>(S))
+ if (IS->Name == ".debug_info")
+ Ret.push_back(IS);
+ return Ret;
+}
+
+void GdbIndexSection::fixCuIndex() {
+ uint32_t Idx = 0;
+ for (GdbIndexChunk &Chunk : Chunks) {
+ for (GdbIndexChunk::AddressEntry &Ent : Chunk.AddressAreas)
+ Ent.CuIndex += Idx;
+ Idx += Chunk.CompilationUnits.size();
+ }
+}
+
+std::vector<std::vector<uint32_t>> GdbIndexSection::createCuVectors() {
+ std::vector<std::vector<uint32_t>> Ret;
+ uint32_t Idx = 0;
+ uint32_t Off = 0;
+
+ for (GdbIndexChunk &Chunk : Chunks) {
+ for (GdbIndexChunk::NameTypeEntry &Ent : Chunk.NamesAndTypes) {
+ GdbSymbol *&Sym = Symbols[Ent.Name];
+ if (!Sym) {
+ Sym = make<GdbSymbol>(GdbSymbol{Ent.Name.hash(), Off, Ret.size()});
+ Off += Ent.Name.size() + 1;
+ Ret.push_back({});
+ }
+
+ // gcc 5.4.1 produces a buggy .debug_gnu_pubnames that contains
+ // duplicate entries, so we want to dedup them.
+ std::vector<uint32_t> &Vec = Ret[Sym->CuVectorIndex];
+ uint32_t Val = (Ent.Type << 24) | Idx;
+ if (Vec.empty() || Vec.back() != Val)
+ Vec.push_back(Val);
+ }
+ Idx += Chunk.CompilationUnits.size();
+ }
+
+ StringPoolSize = Off;
+ return Ret;
+}
+
+template <class ELFT> GdbIndexSection *elf::createGdbIndex() {
+ std::vector<InputSection *> Sections = getDebugInfoSections();
+ std::vector<GdbIndexChunk> Chunks(Sections.size());
+
+ parallelForEachN(0, Chunks.size(), [&](size_t I) {
+ ObjFile<ELFT> *File = Sections[I]->getFile<ELFT>();
+ DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(File));
+
+ Chunks[I].DebugInfoSec = Sections[I];
+ Chunks[I].CompilationUnits = readCuList(Dwarf);
+ Chunks[I].AddressAreas = readAddressAreas(Dwarf, Sections[I]);
+ Chunks[I].NamesAndTypes = readPubNamesAndTypes(Dwarf);
+ });
+
+ return make<GdbIndexSection>(std::move(Chunks));
+}
+
+static size_t getCuSize(ArrayRef<GdbIndexChunk> Arr) {
+ size_t Ret = 0;
+ for (const GdbIndexChunk &D : Arr)
+ Ret += D.CompilationUnits.size();
+ return Ret;
+}
+
+static size_t getAddressAreaSize(ArrayRef<GdbIndexChunk> Arr) {
+ size_t Ret = 0;
+ for (const GdbIndexChunk &D : Arr)
+ Ret += D.AddressAreas.size();
+ return Ret;
+}
+
+std::vector<GdbSymbol *> GdbIndexSection::createGdbSymtab() {
+ uint32_t Size = NextPowerOf2(Symbols.size() * 4 / 3);
+ if (Size < 1024)
+ Size = 1024;
+
+ uint32_t Mask = Size - 1;
+ std::vector<GdbSymbol *> Ret(Size);
+
+ for (auto &KV : Symbols) {
+ GdbSymbol *Sym = KV.second;
+ uint32_t I = Sym->NameHash & Mask;
+ uint32_t Step = ((Sym->NameHash * 17) & Mask) | 1;
+
+ while (Ret[I])
+ I = (I + Step) & Mask;
+ Ret[I] = Sym;
+ }
+ return Ret;
+}
+
+GdbIndexSection::GdbIndexSection(std::vector<GdbIndexChunk> &&C)
+ : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index"), Chunks(std::move(C)) {
+ fixCuIndex();
+ CuVectors = createCuVectors();
+ GdbSymtab = createGdbSymtab();
+
+ // Compute offsets early to know the section size.
+ // Each chunk size needs to be in sync with what we write in writeTo.
+ CuTypesOffset = CuListOffset + getCuSize(Chunks) * 16;
+ SymtabOffset = CuTypesOffset + getAddressAreaSize(Chunks) * 20;
+ ConstantPoolOffset = SymtabOffset + GdbSymtab.size() * 8;
+
+ size_t Off = 0;
+ for (ArrayRef<uint32_t> Vec : CuVectors) {
+ CuVectorOffsets.push_back(Off);
+ Off += (Vec.size() + 1) * 4;
+ }
+ StringPoolOffset = ConstantPoolOffset + Off;
+}
+
+size_t GdbIndexSection::getSize() const {
+ return StringPoolOffset + StringPoolSize;
+}
+
+void GdbIndexSection::writeTo(uint8_t *Buf) {
+ // Write the section header.
+ write32le(Buf, 7);
+ write32le(Buf + 4, CuListOffset);
+ write32le(Buf + 8, CuTypesOffset);
+ write32le(Buf + 12, CuTypesOffset);
+ write32le(Buf + 16, SymtabOffset);
+ write32le(Buf + 20, ConstantPoolOffset);
+ Buf += 24;
+
+ // Write the CU list.
+ for (GdbIndexChunk &D : Chunks) {
+ for (GdbIndexChunk::CuEntry &Cu : D.CompilationUnits) {
+ write64le(Buf, D.DebugInfoSec->OutSecOff + Cu.CuOffset);
+ write64le(Buf + 8, Cu.CuLength);
+ Buf += 16;
+ }
+ }
+
+ // Write the address area.
+ for (GdbIndexChunk &D : Chunks) {
+ for (GdbIndexChunk::AddressEntry &E : D.AddressAreas) {
+ uint64_t BaseAddr =
+ E.Section->getParent()->Addr + E.Section->getOffset(0);
+ write64le(Buf, BaseAddr + E.LowAddress);
+ write64le(Buf + 8, BaseAddr + E.HighAddress);
+ write32le(Buf + 16, E.CuIndex);
+ Buf += 20;
+ }
+ }
+
+ // Write the symbol table.
+ for (GdbSymbol *Sym : GdbSymtab) {
+ if (Sym) {
+ write32le(Buf, Sym->NameOffset + StringPoolOffset - ConstantPoolOffset);
+ write32le(Buf + 4, CuVectorOffsets[Sym->CuVectorIndex]);
+ }
+ Buf += 8;
+ }
+
+ // Write the CU vectors.
+ for (ArrayRef<uint32_t> Vec : CuVectors) {
+ write32le(Buf, Vec.size());
+ Buf += 4;
+ for (uint32_t Val : Vec) {
+ write32le(Buf, Val);
+ Buf += 4;
+ }
+ }
+
+ // Write the string pool.
+ for (auto &KV : Symbols) {
+ CachedHashStringRef S = KV.first;
+ GdbSymbol *Sym = KV.second;
+ size_t Off = Sym->NameOffset;
+ memcpy(Buf + Off, S.val().data(), S.size());
+ Buf[Off + S.size()] = '\0';
+ }
+}
+
+bool GdbIndexSection::empty() const { return !Out::DebugInfo; }
+
+template <class ELFT>
+EhFrameHeader<ELFT>::EhFrameHeader()
+ : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame_hdr") {}
+
+// .eh_frame_hdr contains a binary search table of pointers to FDEs.
+// Each entry of the search table consists of two values,
+// the starting PC from where FDEs covers, and the FDE's address.
+// It is sorted by PC.
+template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
+ const endianness E = ELFT::TargetEndianness;
+
+ // Sort the FDE list by their PC and uniqueify. Usually there is only
+ // one FDE for a PC (i.e. function), but if ICF merges two functions
+ // into one, there can be more than one FDEs pointing to the address.
+ auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
+ std::stable_sort(Fdes.begin(), Fdes.end(), Less);
+ auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
+ Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());
+
+ Buf[0] = 1;
+ Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
+ Buf[2] = DW_EH_PE_udata4;
+ Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
+ write32<E>(Buf + 4, In<ELFT>::EhFrame->getParent()->Addr - this->getVA() - 4);
+ write32<E>(Buf + 8, Fdes.size());
+ Buf += 12;
+
+ uint64_t VA = this->getVA();
+ for (FdeData &Fde : Fdes) {
+ write32<E>(Buf, Fde.Pc - VA);
+ write32<E>(Buf + 4, Fde.FdeVA - VA);
+ Buf += 8;
+ }
+}
+
+template <class ELFT> size_t EhFrameHeader<ELFT>::getSize() const {
+ // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
+ return 12 + In<ELFT>::EhFrame->NumFdes * 8;
+}
+
+template <class ELFT>
+void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
+ Fdes.push_back({Pc, FdeVA});
+}
+
+template <class ELFT> bool EhFrameHeader<ELFT>::empty() const {
+ return In<ELFT>::EhFrame->empty();
+}
+
+template <class ELFT>
+VersionDefinitionSection<ELFT>::VersionDefinitionSection()
+ : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
+ ".gnu.version_d") {}
+
+static StringRef getFileDefName() {
+ if (!Config->SoName.empty())
+ return Config->SoName;
+ return Config->OutputFile;
+}
+
+template <class ELFT> void VersionDefinitionSection<ELFT>::finalizeContents() {
+ FileDefNameOff = InX::DynStrTab->addString(getFileDefName());
+ for (VersionDefinition &V : Config->VersionDefinitions)
+ V.NameOff = InX::DynStrTab->addString(V.Name);
+
+ getParent()->Link = InX::DynStrTab->getParent()->SectionIndex;
+
+ // sh_info should be set to the number of definitions. This fact is missed in
+ // documentation, but confirmed by binutils community:
+ // https://sourceware.org/ml/binutils/2014-11/msg00355.html
+ getParent()->Info = getVerDefNum();
+}
+
+template <class ELFT>
+void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
+ StringRef Name, size_t NameOff) {
+ auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
+ Verdef->vd_version = 1;
+ Verdef->vd_cnt = 1;
+ Verdef->vd_aux = sizeof(Elf_Verdef);
+ Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
+ Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
+ Verdef->vd_ndx = Index;
+ Verdef->vd_hash = hashSysV(Name);
+
+ auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
+ Verdaux->vda_name = NameOff;
+ Verdaux->vda_next = 0;
+}
+
+template <class ELFT>
+void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
+ writeOne(Buf, 1, getFileDefName(), FileDefNameOff);
+
+ for (VersionDefinition &V : Config->VersionDefinitions) {
+ Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
+ writeOne(Buf, V.Id, V.Name, V.NameOff);
+ }
+
+ // Need to terminate the last version definition.
+ Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
+ Verdef->vd_next = 0;
+}
+
+template <class ELFT> size_t VersionDefinitionSection<ELFT>::getSize() const {
+ return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
+}
+
+template <class ELFT>
+VersionTableSection<ELFT>::VersionTableSection()
+ : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
+ ".gnu.version") {
+ this->Entsize = sizeof(Elf_Versym);
+}
+
+template <class ELFT> void VersionTableSection<ELFT>::finalizeContents() {
+ // At the moment of june 2016 GNU docs does not mention that sh_link field
+ // should be set, but Sun docs do. Also readelf relies on this field.
+ getParent()->Link = InX::DynSymTab->getParent()->SectionIndex;
+}
+
+template <class ELFT> size_t VersionTableSection<ELFT>::getSize() const {
+ return sizeof(Elf_Versym) * (InX::DynSymTab->getSymbols().size() + 1);
+}
+
+template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
+ for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) {
+ OutVersym->vs_index = S.Symbol->symbol()->VersionId;
+ ++OutVersym;
+ }
+}
+
+template <class ELFT> bool VersionTableSection<ELFT>::empty() const {
+ return !In<ELFT>::VerDef && In<ELFT>::VerNeed->empty();
+}
+
+template <class ELFT>
+VersionNeedSection<ELFT>::VersionNeedSection()
+ : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
+ ".gnu.version_r") {
+ // Identifiers in verneed section start at 2 because 0 and 1 are reserved
+ // for VER_NDX_LOCAL and VER_NDX_GLOBAL.
+ // First identifiers are reserved by verdef section if it exist.
+ NextIndex = getVerDefNum() + 1;
+}
+
+template <class ELFT>
+void VersionNeedSection<ELFT>::addSymbol(SharedSymbol *SS) {
+ auto *Ver = reinterpret_cast<const typename ELFT::Verdef *>(SS->Verdef);
+ if (!Ver) {
+ SS->symbol()->VersionId = VER_NDX_GLOBAL;
+ return;
+ }
+
+ SharedFile<ELFT> *File = SS->getFile<ELFT>();
+
+ // If we don't already know that we need an Elf_Verneed for this DSO, prepare
+ // to create one by adding it to our needed list and creating a dynstr entry
+ // for the soname.
+ if (File->VerdefMap.empty())
+ Needed.push_back({File, InX::DynStrTab->addString(File->SoName)});
+ typename SharedFile<ELFT>::NeededVer &NV = File->VerdefMap[Ver];
+ // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
+ // prepare to create one by allocating a version identifier and creating a
+ // dynstr entry for the version name.
+ if (NV.Index == 0) {
+ NV.StrTab = InX::DynStrTab->addString(File->getStringTable().data() +
+ Ver->getAux()->vda_name);
+ NV.Index = NextIndex++;
+ }
+ SS->symbol()->VersionId = NV.Index;
+}
+
+template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
+ // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
+ auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
+ auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
+
+ for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
+ // Create an Elf_Verneed for this DSO.
+ Verneed->vn_version = 1;
+ Verneed->vn_cnt = P.first->VerdefMap.size();
+ Verneed->vn_file = P.second;
+ Verneed->vn_aux =
+ reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
+ Verneed->vn_next = sizeof(Elf_Verneed);
+ ++Verneed;
+
+ // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
+ // VerdefMap, which will only contain references to needed version
+ // definitions. Each Elf_Vernaux is based on the information contained in
+ // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
+ // pointers, but is deterministic because the pointers refer to Elf_Verdef
+ // data structures within a single input file.
+ for (auto &NV : P.first->VerdefMap) {
+ Vernaux->vna_hash = NV.first->vd_hash;
+ Vernaux->vna_flags = 0;
+ Vernaux->vna_other = NV.second.Index;
+ Vernaux->vna_name = NV.second.StrTab;
+ Vernaux->vna_next = sizeof(Elf_Vernaux);
+ ++Vernaux;
+ }
+
+ Vernaux[-1].vna_next = 0;
+ }
+ Verneed[-1].vn_next = 0;
+}
+
+template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
+ getParent()->Link = InX::DynStrTab->getParent()->SectionIndex;
+ getParent()->Info = Needed.size();
+}
+
+template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
+ unsigned Size = Needed.size() * sizeof(Elf_Verneed);
+ for (const std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
+ Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
+ return Size;
+}
+
+template <class ELFT> bool VersionNeedSection<ELFT>::empty() const {
+ return getNeedNum() == 0;
+}
+
+MergeSyntheticSection::MergeSyntheticSection(StringRef Name, uint32_t Type,
+ uint64_t Flags, uint32_t Alignment)
+ : SyntheticSection(Flags, Type, Alignment, Name),
+ Builder(StringTableBuilder::RAW, Alignment) {}
+
+void MergeSyntheticSection::addSection(MergeInputSection *MS) {
+ MS->Parent = this;
+ Sections.push_back(MS);
+}
+
+void MergeSyntheticSection::writeTo(uint8_t *Buf) { Builder.write(Buf); }
+
+bool MergeSyntheticSection::shouldTailMerge() const {
+ return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2;
+}
+
+void MergeSyntheticSection::finalizeTailMerge() {
+ // Add all string pieces to the string table builder to create section
+ // contents.
+ for (MergeInputSection *Sec : Sections)
+ for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
+ if (Sec->Pieces[I].Live)
+ Builder.add(Sec->getData(I));
+
+ // Fix the string table content. After this, the contents will never change.
+ Builder.finalize();
+
+ // finalize() fixed tail-optimized strings, so we can now get
+ // offsets of strings. Get an offset for each string and save it
+ // to a corresponding StringPiece for easy access.
+ for (MergeInputSection *Sec : Sections)
+ for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
+ if (Sec->Pieces[I].Live)
+ Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I));
+}
+
+void MergeSyntheticSection::finalizeNoTailMerge() {
+ // Add all string pieces to the string table builder to create section
+ // contents. Because we are not tail-optimizing, offsets of strings are
+ // fixed when they are added to the builder (string table builder contains
+ // a hash table from strings to offsets).
+ for (MergeInputSection *Sec : Sections)
+ for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I)
+ if (Sec->Pieces[I].Live)
+ Sec->Pieces[I].OutputOff = Builder.add(Sec->getData(I));
+
+ Builder.finalizeInOrder();
+}
+
+void MergeSyntheticSection::finalizeContents() {
+ if (shouldTailMerge())
+ finalizeTailMerge();
+ else
+ finalizeNoTailMerge();
+}
+
+size_t MergeSyntheticSection::getSize() const { return Builder.getSize(); }
+
+// This function decompresses compressed sections and scans over the input
+// sections to create mergeable synthetic sections. It removes
+// MergeInputSections from the input section array and adds new synthetic
+// sections at the location of the first input section that it replaces. It then
+// finalizes each synthetic section in order to compute an output offset for
+// each piece of each input section.
+void elf::decompressAndMergeSections() {
+ // splitIntoPieces needs to be called on each MergeInputSection before calling
+ // finalizeContents(). Do that first.
+ parallelForEach(InputSections, [](InputSectionBase *S) {
+ if (!S->Live)
+ return;
+ if (Decompressor::isCompressedELFSection(S->Flags, S->Name))
+ S->uncompress();
+ if (auto *MS = dyn_cast<MergeInputSection>(S))
+ MS->splitIntoPieces();
+ });
+
+ std::vector<MergeSyntheticSection *> MergeSections;
+ for (InputSectionBase *&S : InputSections) {
+ MergeInputSection *MS = dyn_cast<MergeInputSection>(S);
+ if (!MS)
+ continue;
+
+ // We do not want to handle sections that are not alive, so just remove
+ // them instead of trying to merge.
+ if (!MS->Live)
+ continue;
+
+ StringRef OutsecName = getOutputSectionName(MS->Name);
+ uint32_t Alignment = std::max<uint32_t>(MS->Alignment, MS->Entsize);
+
+ auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) {
+ return Sec->Name == OutsecName && Sec->Flags == MS->Flags &&
+ Sec->Alignment == Alignment;
+ });
+ if (I == MergeSections.end()) {
+ MergeSyntheticSection *Syn = make<MergeSyntheticSection>(
+ OutsecName, MS->Type, MS->Flags, Alignment);
+ MergeSections.push_back(Syn);
+ I = std::prev(MergeSections.end());
+ S = Syn;
+ } else {
+ S = nullptr;
+ }
+ (*I)->addSection(MS);
+ }
+ for (auto *MS : MergeSections)
+ MS->finalizeContents();
+
+ std::vector<InputSectionBase *> &V = InputSections;
+ V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
+}
+
+MipsRldMapSection::MipsRldMapSection()
+ : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize,
+ ".rld_map") {}
+
+ARMExidxSentinelSection::ARMExidxSentinelSection()
+ : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
+ Config->Wordsize, ".ARM.exidx") {}
+
+// Write a terminating sentinel entry to the end of the .ARM.exidx table.
+// This section will have been sorted last in the .ARM.exidx table.
+// This table entry will have the form:
+// | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND |
+// The sentinel must have the PREL31 value of an address higher than any
+// address described by any other table entry.
+void ARMExidxSentinelSection::writeTo(uint8_t *Buf) {
+ // The Sections are sorted in order of ascending PREL31 address with the
+ // sentinel last. We need to find the InputSection that precedes the
+ // sentinel. By construction the Sentinel is in the last
+ // InputSectionDescription as the InputSection that precedes it.
+ OutputSection *C = getParent();
+ auto ISD = std::find_if(C->Commands.rbegin(), C->Commands.rend(),
+ [](const BaseCommand *Base) {
+ return isa<InputSectionDescription>(Base);
+ });
+ auto L = cast<InputSectionDescription>(*ISD);
+ InputSection *Highest = L->Sections[L->Sections.size() - 2];
+ InputSection *LS = Highest->getLinkOrderDep();
+ uint64_t S = LS->getParent()->Addr + LS->getOffset(LS->getSize());
+ uint64_t P = getVA();
+ Target->relocateOne(Buf, R_ARM_PREL31, S - P);
+ write32le(Buf + 4, 0x1);
+}
+
+ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off)
+ : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
+ Config->Wordsize, ".text.thunk") {
+ this->Parent = OS;
+ this->OutSecOff = Off;
+}
+
+void ThunkSection::addThunk(Thunk *T) {
+ uint64_t Off = alignTo(Size, T->Alignment);
+ T->Offset = Off;
+ Thunks.push_back(T);
+ T->addSymbols(*this);
+ Size = Off + T->size();
+}
+
+void ThunkSection::writeTo(uint8_t *Buf) {
+ for (const Thunk *T : Thunks)
+ T->writeTo(Buf + T->Offset, *this);
+}
+
+InputSection *ThunkSection::getTargetInputSection() const {
+ const Thunk *T = Thunks.front();
+ return T->getTargetInputSection();
+}
+
+InputSection *InX::ARMAttributes;
+BssSection *InX::Bss;
+BssSection *InX::BssRelRo;
+BuildIdSection *InX::BuildId;
+SyntheticSection *InX::Dynamic;
+StringTableSection *InX::DynStrTab;
+SymbolTableBaseSection *InX::DynSymTab;
+InputSection *InX::Interp;
+GdbIndexSection *InX::GdbIndex;
+GotSection *InX::Got;
+GotPltSection *InX::GotPlt;
+GnuHashTableSection *InX::GnuHashTab;
+IgotPltSection *InX::IgotPlt;
+MipsGotSection *InX::MipsGot;
+MipsRldMapSection *InX::MipsRldMap;
+PltSection *InX::Plt;
+PltSection *InX::Iplt;
+StringTableSection *InX::ShStrTab;
+StringTableSection *InX::StrTab;
+SymbolTableBaseSection *InX::SymTab;
+
+template GdbIndexSection *elf::createGdbIndex<ELF32LE>();
+template GdbIndexSection *elf::createGdbIndex<ELF32BE>();
+template GdbIndexSection *elf::createGdbIndex<ELF64LE>();
+template GdbIndexSection *elf::createGdbIndex<ELF64BE>();
+
+template void PltSection::addEntry<ELF32LE>(SymbolBody &Sym);
+template void PltSection::addEntry<ELF32BE>(SymbolBody &Sym);
+template void PltSection::addEntry<ELF64LE>(SymbolBody &Sym);
+template void PltSection::addEntry<ELF64BE>(SymbolBody &Sym);
+
+template void elf::createCommonSections<ELF32LE>();
+template void elf::createCommonSections<ELF32BE>();
+template void elf::createCommonSections<ELF64LE>();
+template void elf::createCommonSections<ELF64BE>();
+
+template MergeInputSection *elf::createCommentSection<ELF32LE>();
+template MergeInputSection *elf::createCommentSection<ELF32BE>();
+template MergeInputSection *elf::createCommentSection<ELF64LE>();
+template MergeInputSection *elf::createCommentSection<ELF64BE>();
+
+template class elf::MipsAbiFlagsSection<ELF32LE>;
+template class elf::MipsAbiFlagsSection<ELF32BE>;
+template class elf::MipsAbiFlagsSection<ELF64LE>;
+template class elf::MipsAbiFlagsSection<ELF64BE>;
+
+template class elf::MipsOptionsSection<ELF32LE>;
+template class elf::MipsOptionsSection<ELF32BE>;
+template class elf::MipsOptionsSection<ELF64LE>;
+template class elf::MipsOptionsSection<ELF64BE>;
+
+template class elf::MipsReginfoSection<ELF32LE>;
+template class elf::MipsReginfoSection<ELF32BE>;
+template class elf::MipsReginfoSection<ELF64LE>;
+template class elf::MipsReginfoSection<ELF64BE>;
+
+template class elf::DynamicSection<ELF32LE>;
+template class elf::DynamicSection<ELF32BE>;
+template class elf::DynamicSection<ELF64LE>;
+template class elf::DynamicSection<ELF64BE>;
+
+template class elf::RelocationSection<ELF32LE>;
+template class elf::RelocationSection<ELF32BE>;
+template class elf::RelocationSection<ELF64LE>;
+template class elf::RelocationSection<ELF64BE>;
+
+template class elf::SymbolTableSection<ELF32LE>;
+template class elf::SymbolTableSection<ELF32BE>;
+template class elf::SymbolTableSection<ELF64LE>;
+template class elf::SymbolTableSection<ELF64BE>;
+
+template class elf::HashTableSection<ELF32LE>;
+template class elf::HashTableSection<ELF32BE>;
+template class elf::HashTableSection<ELF64LE>;
+template class elf::HashTableSection<ELF64BE>;
+
+template class elf::EhFrameHeader<ELF32LE>;
+template class elf::EhFrameHeader<ELF32BE>;
+template class elf::EhFrameHeader<ELF64LE>;
+template class elf::EhFrameHeader<ELF64BE>;
+
+template class elf::VersionTableSection<ELF32LE>;
+template class elf::VersionTableSection<ELF32BE>;
+template class elf::VersionTableSection<ELF64LE>;
+template class elf::VersionTableSection<ELF64BE>;
+
+template class elf::VersionNeedSection<ELF32LE>;
+template class elf::VersionNeedSection<ELF32BE>;
+template class elf::VersionNeedSection<ELF64LE>;
+template class elf::VersionNeedSection<ELF64BE>;
+
+template class elf::VersionDefinitionSection<ELF32LE>;
+template class elf::VersionDefinitionSection<ELF32BE>;
+template class elf::VersionDefinitionSection<ELF64LE>;
+template class elf::VersionDefinitionSection<ELF64BE>;
+
+template class elf::EhFrameSection<ELF32LE>;
+template class elf::EhFrameSection<ELF32BE>;
+template class elf::EhFrameSection<ELF64LE>;
+template class elf::EhFrameSection<ELF64BE>;
diff --git a/lld/ELF/SyntheticSections.h b/lld/ELF/SyntheticSections.h
index b807408e5c7..0b5b84e0b76 100644
--- a/lld/ELF/SyntheticSections.h
+++ b/lld/ELF/SyntheticSections.h
@@ -786,7 +786,7 @@ private:
size_t Size = 0;
};
-std::vector<InputSection *> createCommonSections();
+template <class ELFT> void createCommonSections();
InputSection *createInterpSection();
template <class ELFT> MergeInputSection *createCommentSection();
void decompressAndMergeSections();
diff --git a/lld/ELF/Writer.cpp b/lld/ELF/Writer.cpp
index 4442f44b0e2..1926f1bd7b0 100644
--- a/lld/ELF/Writer.cpp
+++ b/lld/ELF/Writer.cpp
@@ -290,9 +290,6 @@ template <class ELFT> void Writer<ELFT>::createSyntheticSections() {
Add(InX::BuildId);
}
- for (InputSection *S : createCommonSections())
- Add(S);
-
InX::Bss = make<BssSection>(".bss");
Add(InX::Bss);
InX::BssRelRo = make<BssSection>(".bss.rel.ro");
@@ -441,11 +438,7 @@ static bool includeInSymtab(const SymbolBody &B) {
if (auto *S = dyn_cast<MergeInputSection>(Sec))
if (!S->getSectionPiece(D->Value)->Live)
return false;
- return true;
}
-
- if (auto *Sym = dyn_cast<DefinedCommon>(&B))
- return Sym->Live;
return true;
}
OpenPOWER on IntegriCloud