diff options
author | Zachary Turner <zturner@google.com> | 2017-04-10 17:15:11 +0000 |
---|---|---|
committer | Zachary Turner <zturner@google.com> | 2017-04-10 17:15:11 +0000 |
commit | 52d95bcade906738e4c85886a27fb4a9d9cf34e6 (patch) | |
tree | 3456942a2d46e5bd7f7712d0b7857d31d94156bd | |
parent | 65f015ac7f26c80d48072e9ce35a96d7697b9209 (diff) | |
download | bcm5719-llvm-52d95bcade906738e4c85886a27fb4a9d9cf34e6.tar.gz bcm5719-llvm-52d95bcade906738e4c85886a27fb4a9d9cf34e6.zip |
Remove eol-style:native from BitVector.h
llvm-svn: 299855
-rw-r--r-- | llvm/include/llvm/ADT/BitVector.h | 1184 |
1 files changed, 592 insertions, 592 deletions
diff --git a/llvm/include/llvm/ADT/BitVector.h b/llvm/include/llvm/ADT/BitVector.h index cb318199ec7..3f299d9fc0f 100644 --- a/llvm/include/llvm/ADT/BitVector.h +++ b/llvm/include/llvm/ADT/BitVector.h @@ -1,592 +1,592 @@ -//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the BitVector class. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_ADT_BITVECTOR_H -#define LLVM_ADT_BITVECTOR_H - -#include "llvm/Support/MathExtras.h" -#include <algorithm> -#include <cassert> -#include <climits> -#include <cstdint> -#include <cstdlib> -#include <cstring> -#include <utility> - -namespace llvm { - -class BitVector { - typedef unsigned long BitWord; - - enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; - - static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, - "Unsupported word size"); - - BitWord *Bits; // Actual bits. - unsigned Size; // Size of bitvector in bits. - unsigned Capacity; // Number of BitWords allocated in the Bits array. - -public: - typedef unsigned size_type; - // Encapsulation of a single bit. - class reference { - friend class BitVector; - - BitWord *WordRef; - unsigned BitPos; - - public: - reference(BitVector &b, unsigned Idx) { - WordRef = &b.Bits[Idx / BITWORD_SIZE]; - BitPos = Idx % BITWORD_SIZE; - } - - reference() = delete; - reference(const reference&) = default; - - reference &operator=(reference t) { - *this = bool(t); - return *this; - } - - reference& operator=(bool t) { - if (t) - *WordRef |= BitWord(1) << BitPos; - else - *WordRef &= ~(BitWord(1) << BitPos); - return *this; - } - - operator bool() const { - return ((*WordRef) & (BitWord(1) << BitPos)) != 0; - } - }; - - - /// BitVector default ctor - Creates an empty bitvector. - BitVector() : Size(0), Capacity(0) { - Bits = nullptr; - } - - /// BitVector ctor - Creates a bitvector of specified number of bits. All - /// bits are initialized to the specified value. - explicit BitVector(unsigned s, bool t = false) : Size(s) { - Capacity = NumBitWords(s); - Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); - init_words(Bits, Capacity, t); - if (t) - clear_unused_bits(); - } - - /// BitVector copy ctor. - BitVector(const BitVector &RHS) : Size(RHS.size()) { - if (Size == 0) { - Bits = nullptr; - Capacity = 0; - return; - } - - Capacity = NumBitWords(RHS.size()); - Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); - std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); - } - - BitVector(BitVector &&RHS) - : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) { - RHS.Bits = nullptr; - RHS.Size = RHS.Capacity = 0; - } - - ~BitVector() { - std::free(Bits); - } - - /// empty - Tests whether there are no bits in this bitvector. - bool empty() const { return Size == 0; } - - /// size - Returns the number of bits in this bitvector. - size_type size() const { return Size; } - - /// count - Returns the number of bits which are set. - size_type count() const { - unsigned NumBits = 0; - for (unsigned i = 0; i < NumBitWords(size()); ++i) - NumBits += countPopulation(Bits[i]); - return NumBits; - } - - /// any - Returns true if any bit is set. - bool any() const { - for (unsigned i = 0; i < NumBitWords(size()); ++i) - if (Bits[i] != 0) - return true; - return false; - } - - /// all - Returns true if all bits are set. - bool all() const { - for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) - if (Bits[i] != ~0UL) - return false; - - // If bits remain check that they are ones. The unused bits are always zero. - if (unsigned Remainder = Size % BITWORD_SIZE) - return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; - - return true; - } - - /// none - Returns true if none of the bits are set. - bool none() const { - return !any(); - } - - /// find_first - Returns the index of the first set bit, -1 if none - /// of the bits are set. - int find_first() const { - for (unsigned i = 0; i < NumBitWords(size()); ++i) - if (Bits[i] != 0) - return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); - return -1; - } - - /// find_next - Returns the index of the next set bit following the - /// "Prev" bit. Returns -1 if the next set bit is not found. - int find_next(unsigned Prev) const { - ++Prev; - if (Prev >= Size) - return -1; - - unsigned WordPos = Prev / BITWORD_SIZE; - unsigned BitPos = Prev % BITWORD_SIZE; - BitWord Copy = Bits[WordPos]; - // Mask off previous bits. - Copy &= ~0UL << BitPos; - - if (Copy != 0) - return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); - - // Check subsequent words. - for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i) - if (Bits[i] != 0) - return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); - return -1; - } - - /// clear - Clear all bits. - void clear() { - Size = 0; - } - - /// resize - Grow or shrink the bitvector. - void resize(unsigned N, bool t = false) { - if (N > Capacity * BITWORD_SIZE) { - unsigned OldCapacity = Capacity; - grow(N); - init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t); - } - - // Set any old unused bits that are now included in the BitVector. This - // may set bits that are not included in the new vector, but we will clear - // them back out below. - if (N > Size) - set_unused_bits(t); - - // Update the size, and clear out any bits that are now unused - unsigned OldSize = Size; - Size = N; - if (t || N < OldSize) - clear_unused_bits(); - } - - void reserve(unsigned N) { - if (N > Capacity * BITWORD_SIZE) - grow(N); - } - - // Set, reset, flip - BitVector &set() { - init_words(Bits, Capacity, true); - clear_unused_bits(); - return *this; - } - - BitVector &set(unsigned Idx) { - assert(Bits && "Bits never allocated"); - Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); - return *this; - } - - /// set - Efficiently set a range of bits in [I, E) - BitVector &set(unsigned I, unsigned E) { - assert(I <= E && "Attempted to set backwards range!"); - assert(E <= size() && "Attempted to set out-of-bounds range!"); - - if (I == E) return *this; - - if (I / BITWORD_SIZE == E / BITWORD_SIZE) { - BitWord EMask = 1UL << (E % BITWORD_SIZE); - BitWord IMask = 1UL << (I % BITWORD_SIZE); - BitWord Mask = EMask - IMask; - Bits[I / BITWORD_SIZE] |= Mask; - return *this; - } - - BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); - Bits[I / BITWORD_SIZE] |= PrefixMask; - I = alignTo(I, BITWORD_SIZE); - - for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) - Bits[I / BITWORD_SIZE] = ~0UL; - - BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; - if (I < E) - Bits[I / BITWORD_SIZE] |= PostfixMask; - - return *this; - } - - BitVector &reset() { - init_words(Bits, Capacity, false); - return *this; - } - - BitVector &reset(unsigned Idx) { - Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); - return *this; - } - - /// reset - Efficiently reset a range of bits in [I, E) - BitVector &reset(unsigned I, unsigned E) { - assert(I <= E && "Attempted to reset backwards range!"); - assert(E <= size() && "Attempted to reset out-of-bounds range!"); - - if (I == E) return *this; - - if (I / BITWORD_SIZE == E / BITWORD_SIZE) { - BitWord EMask = 1UL << (E % BITWORD_SIZE); - BitWord IMask = 1UL << (I % BITWORD_SIZE); - BitWord Mask = EMask - IMask; - Bits[I / BITWORD_SIZE] &= ~Mask; - return *this; - } - - BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); - Bits[I / BITWORD_SIZE] &= ~PrefixMask; - I = alignTo(I, BITWORD_SIZE); - - for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) - Bits[I / BITWORD_SIZE] = 0UL; - - BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; - if (I < E) - Bits[I / BITWORD_SIZE] &= ~PostfixMask; - - return *this; - } - - BitVector &flip() { - for (unsigned i = 0; i < NumBitWords(size()); ++i) - Bits[i] = ~Bits[i]; - clear_unused_bits(); - return *this; - } - - BitVector &flip(unsigned Idx) { - Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); - return *this; - } - - // Indexing. - reference operator[](unsigned Idx) { - assert (Idx < Size && "Out-of-bounds Bit access."); - return reference(*this, Idx); - } - - bool operator[](unsigned Idx) const { - assert (Idx < Size && "Out-of-bounds Bit access."); - BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); - return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; - } - - bool test(unsigned Idx) const { - return (*this)[Idx]; - } - - /// Test if any common bits are set. - bool anyCommon(const BitVector &RHS) const { - unsigned ThisWords = NumBitWords(size()); - unsigned RHSWords = NumBitWords(RHS.size()); - for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) - if (Bits[i] & RHS.Bits[i]) - return true; - return false; - } - - // Comparison operators. - bool operator==(const BitVector &RHS) const { - unsigned ThisWords = NumBitWords(size()); - unsigned RHSWords = NumBitWords(RHS.size()); - unsigned i; - for (i = 0; i != std::min(ThisWords, RHSWords); ++i) - if (Bits[i] != RHS.Bits[i]) - return false; - - // Verify that any extra words are all zeros. - if (i != ThisWords) { - for (; i != ThisWords; ++i) - if (Bits[i]) - return false; - } else if (i != RHSWords) { - for (; i != RHSWords; ++i) - if (RHS.Bits[i]) - return false; - } - return true; - } - - bool operator!=(const BitVector &RHS) const { - return !(*this == RHS); - } - - /// Intersection, union, disjoint union. - BitVector &operator&=(const BitVector &RHS) { - unsigned ThisWords = NumBitWords(size()); - unsigned RHSWords = NumBitWords(RHS.size()); - unsigned i; - for (i = 0; i != std::min(ThisWords, RHSWords); ++i) - Bits[i] &= RHS.Bits[i]; - - // Any bits that are just in this bitvector become zero, because they aren't - // in the RHS bit vector. Any words only in RHS are ignored because they - // are already zero in the LHS. - for (; i != ThisWords; ++i) - Bits[i] = 0; - - return *this; - } - - /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. - BitVector &reset(const BitVector &RHS) { - unsigned ThisWords = NumBitWords(size()); - unsigned RHSWords = NumBitWords(RHS.size()); - unsigned i; - for (i = 0; i != std::min(ThisWords, RHSWords); ++i) - Bits[i] &= ~RHS.Bits[i]; - return *this; - } - - /// test - Check if (This - RHS) is zero. - /// This is the same as reset(RHS) and any(). - bool test(const BitVector &RHS) const { - unsigned ThisWords = NumBitWords(size()); - unsigned RHSWords = NumBitWords(RHS.size()); - unsigned i; - for (i = 0; i != std::min(ThisWords, RHSWords); ++i) - if ((Bits[i] & ~RHS.Bits[i]) != 0) - return true; - - for (; i != ThisWords ; ++i) - if (Bits[i] != 0) - return true; - - return false; - } - - BitVector &operator|=(const BitVector &RHS) { - if (size() < RHS.size()) - resize(RHS.size()); - for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) - Bits[i] |= RHS.Bits[i]; - return *this; - } - - BitVector &operator^=(const BitVector &RHS) { - if (size() < RHS.size()) - resize(RHS.size()); - for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) - Bits[i] ^= RHS.Bits[i]; - return *this; - } - - // Assignment operator. - const BitVector &operator=(const BitVector &RHS) { - if (this == &RHS) return *this; - - Size = RHS.size(); - unsigned RHSWords = NumBitWords(Size); - if (Size <= Capacity * BITWORD_SIZE) { - if (Size) - std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); - clear_unused_bits(); - return *this; - } - - // Grow the bitvector to have enough elements. - Capacity = RHSWords; - assert(Capacity > 0 && "negative capacity?"); - BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord)); - std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); - - // Destroy the old bits. - std::free(Bits); - Bits = NewBits; - - return *this; - } - - const BitVector &operator=(BitVector &&RHS) { - if (this == &RHS) return *this; - - std::free(Bits); - Bits = RHS.Bits; - Size = RHS.Size; - Capacity = RHS.Capacity; - - RHS.Bits = nullptr; - RHS.Size = RHS.Capacity = 0; - - return *this; - } - - void swap(BitVector &RHS) { - std::swap(Bits, RHS.Bits); - std::swap(Size, RHS.Size); - std::swap(Capacity, RHS.Capacity); - } - - //===--------------------------------------------------------------------===// - // Portable bit mask operations. - //===--------------------------------------------------------------------===// - // - // These methods all operate on arrays of uint32_t, each holding 32 bits. The - // fixed word size makes it easier to work with literal bit vector constants - // in portable code. - // - // The LSB in each word is the lowest numbered bit. The size of a portable - // bit mask is always a whole multiple of 32 bits. If no bit mask size is - // given, the bit mask is assumed to cover the entire BitVector. - - /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. - /// This computes "*this |= Mask". - void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { - applyMask<true, false>(Mask, MaskWords); - } - - /// clearBitsInMask - Clear any bits in this vector that are set in Mask. - /// Don't resize. This computes "*this &= ~Mask". - void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { - applyMask<false, false>(Mask, MaskWords); - } - - /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. - /// Don't resize. This computes "*this |= ~Mask". - void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { - applyMask<true, true>(Mask, MaskWords); - } - - /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. - /// Don't resize. This computes "*this &= Mask". - void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { - applyMask<false, true>(Mask, MaskWords); - } - -private: - unsigned NumBitWords(unsigned S) const { - return (S + BITWORD_SIZE-1) / BITWORD_SIZE; - } - - // Set the unused bits in the high words. - void set_unused_bits(bool t = true) { - // Set high words first. - unsigned UsedWords = NumBitWords(Size); - if (Capacity > UsedWords) - init_words(&Bits[UsedWords], (Capacity-UsedWords), t); - - // Then set any stray high bits of the last used word. - unsigned ExtraBits = Size % BITWORD_SIZE; - if (ExtraBits) { - BitWord ExtraBitMask = ~0UL << ExtraBits; - if (t) - Bits[UsedWords-1] |= ExtraBitMask; - else - Bits[UsedWords-1] &= ~ExtraBitMask; - } - } - - // Clear the unused bits in the high words. - void clear_unused_bits() { - set_unused_bits(false); - } - - void grow(unsigned NewSize) { - Capacity = std::max(NumBitWords(NewSize), Capacity * 2); - assert(Capacity > 0 && "realloc-ing zero space"); - Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord)); - - clear_unused_bits(); - } - - void init_words(BitWord *B, unsigned NumWords, bool t) { - if (NumWords > 0) - memset(B, 0 - (int)t, NumWords*sizeof(BitWord)); - } - - template<bool AddBits, bool InvertMask> - void applyMask(const uint32_t *Mask, unsigned MaskWords) { - static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); - MaskWords = std::min(MaskWords, (size() + 31) / 32); - const unsigned Scale = BITWORD_SIZE / 32; - unsigned i; - for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { - BitWord BW = Bits[i]; - // This inner loop should unroll completely when BITWORD_SIZE > 32. - for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { - uint32_t M = *Mask++; - if (InvertMask) M = ~M; - if (AddBits) BW |= BitWord(M) << b; - else BW &= ~(BitWord(M) << b); - } - Bits[i] = BW; - } - for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { - uint32_t M = *Mask++; - if (InvertMask) M = ~M; - if (AddBits) Bits[i] |= BitWord(M) << b; - else Bits[i] &= ~(BitWord(M) << b); - } - if (AddBits) - clear_unused_bits(); - } - -public: - /// Return the size (in bytes) of the bit vector. - size_t getMemorySize() const { return Capacity * sizeof(BitWord); } -}; - -static inline size_t capacity_in_bytes(const BitVector &X) { - return X.getMemorySize(); -} - -} // end namespace llvm - -namespace std { - /// Implement std::swap in terms of BitVector swap. - inline void - swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { - LHS.swap(RHS); - } -} // end namespace std - -#endif // LLVM_ADT_BITVECTOR_H +//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the BitVector class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_BITVECTOR_H
+#define LLVM_ADT_BITVECTOR_H
+
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <utility>
+
+namespace llvm {
+
+class BitVector {
+ typedef unsigned long BitWord;
+
+ enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
+
+ static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
+ "Unsupported word size");
+
+ BitWord *Bits; // Actual bits.
+ unsigned Size; // Size of bitvector in bits.
+ unsigned Capacity; // Number of BitWords allocated in the Bits array.
+
+public:
+ typedef unsigned size_type;
+ // Encapsulation of a single bit.
+ class reference {
+ friend class BitVector;
+
+ BitWord *WordRef;
+ unsigned BitPos;
+
+ public:
+ reference(BitVector &b, unsigned Idx) {
+ WordRef = &b.Bits[Idx / BITWORD_SIZE];
+ BitPos = Idx % BITWORD_SIZE;
+ }
+
+ reference() = delete;
+ reference(const reference&) = default;
+
+ reference &operator=(reference t) {
+ *this = bool(t);
+ return *this;
+ }
+
+ reference& operator=(bool t) {
+ if (t)
+ *WordRef |= BitWord(1) << BitPos;
+ else
+ *WordRef &= ~(BitWord(1) << BitPos);
+ return *this;
+ }
+
+ operator bool() const {
+ return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
+ }
+ };
+
+
+ /// BitVector default ctor - Creates an empty bitvector.
+ BitVector() : Size(0), Capacity(0) {
+ Bits = nullptr;
+ }
+
+ /// BitVector ctor - Creates a bitvector of specified number of bits. All
+ /// bits are initialized to the specified value.
+ explicit BitVector(unsigned s, bool t = false) : Size(s) {
+ Capacity = NumBitWords(s);
+ Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+ init_words(Bits, Capacity, t);
+ if (t)
+ clear_unused_bits();
+ }
+
+ /// BitVector copy ctor.
+ BitVector(const BitVector &RHS) : Size(RHS.size()) {
+ if (Size == 0) {
+ Bits = nullptr;
+ Capacity = 0;
+ return;
+ }
+
+ Capacity = NumBitWords(RHS.size());
+ Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+ std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
+ }
+
+ BitVector(BitVector &&RHS)
+ : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
+ RHS.Bits = nullptr;
+ RHS.Size = RHS.Capacity = 0;
+ }
+
+ ~BitVector() {
+ std::free(Bits);
+ }
+
+ /// empty - Tests whether there are no bits in this bitvector.
+ bool empty() const { return Size == 0; }
+
+ /// size - Returns the number of bits in this bitvector.
+ size_type size() const { return Size; }
+
+ /// count - Returns the number of bits which are set.
+ size_type count() const {
+ unsigned NumBits = 0;
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ NumBits += countPopulation(Bits[i]);
+ return NumBits;
+ }
+
+ /// any - Returns true if any bit is set.
+ bool any() const {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return true;
+ return false;
+ }
+
+ /// all - Returns true if all bits are set.
+ bool all() const {
+ for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
+ if (Bits[i] != ~0UL)
+ return false;
+
+ // If bits remain check that they are ones. The unused bits are always zero.
+ if (unsigned Remainder = Size % BITWORD_SIZE)
+ return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
+
+ return true;
+ }
+
+ /// none - Returns true if none of the bits are set.
+ bool none() const {
+ return !any();
+ }
+
+ /// find_first - Returns the index of the first set bit, -1 if none
+ /// of the bits are set.
+ int find_first() const {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
+ return -1;
+ }
+
+ /// find_next - Returns the index of the next set bit following the
+ /// "Prev" bit. Returns -1 if the next set bit is not found.
+ int find_next(unsigned Prev) const {
+ ++Prev;
+ if (Prev >= Size)
+ return -1;
+
+ unsigned WordPos = Prev / BITWORD_SIZE;
+ unsigned BitPos = Prev % BITWORD_SIZE;
+ BitWord Copy = Bits[WordPos];
+ // Mask off previous bits.
+ Copy &= ~0UL << BitPos;
+
+ if (Copy != 0)
+ return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
+
+ // Check subsequent words.
+ for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
+ if (Bits[i] != 0)
+ return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
+ return -1;
+ }
+
+ /// clear - Clear all bits.
+ void clear() {
+ Size = 0;
+ }
+
+ /// resize - Grow or shrink the bitvector.
+ void resize(unsigned N, bool t = false) {
+ if (N > Capacity * BITWORD_SIZE) {
+ unsigned OldCapacity = Capacity;
+ grow(N);
+ init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
+ }
+
+ // Set any old unused bits that are now included in the BitVector. This
+ // may set bits that are not included in the new vector, but we will clear
+ // them back out below.
+ if (N > Size)
+ set_unused_bits(t);
+
+ // Update the size, and clear out any bits that are now unused
+ unsigned OldSize = Size;
+ Size = N;
+ if (t || N < OldSize)
+ clear_unused_bits();
+ }
+
+ void reserve(unsigned N) {
+ if (N > Capacity * BITWORD_SIZE)
+ grow(N);
+ }
+
+ // Set, reset, flip
+ BitVector &set() {
+ init_words(Bits, Capacity, true);
+ clear_unused_bits();
+ return *this;
+ }
+
+ BitVector &set(unsigned Idx) {
+ assert(Bits && "Bits never allocated");
+ Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
+ return *this;
+ }
+
+ /// set - Efficiently set a range of bits in [I, E)
+ BitVector &set(unsigned I, unsigned E) {
+ assert(I <= E && "Attempted to set backwards range!");
+ assert(E <= size() && "Attempted to set out-of-bounds range!");
+
+ if (I == E) return *this;
+
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+ BitWord EMask = 1UL << (E % BITWORD_SIZE);
+ BitWord IMask = 1UL << (I % BITWORD_SIZE);
+ BitWord Mask = EMask - IMask;
+ Bits[I / BITWORD_SIZE] |= Mask;
+ return *this;
+ }
+
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+ Bits[I / BITWORD_SIZE] |= PrefixMask;
+ I = alignTo(I, BITWORD_SIZE);
+
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+ Bits[I / BITWORD_SIZE] = ~0UL;
+
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+ if (I < E)
+ Bits[I / BITWORD_SIZE] |= PostfixMask;
+
+ return *this;
+ }
+
+ BitVector &reset() {
+ init_words(Bits, Capacity, false);
+ return *this;
+ }
+
+ BitVector &reset(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
+ return *this;
+ }
+
+ /// reset - Efficiently reset a range of bits in [I, E)
+ BitVector &reset(unsigned I, unsigned E) {
+ assert(I <= E && "Attempted to reset backwards range!");
+ assert(E <= size() && "Attempted to reset out-of-bounds range!");
+
+ if (I == E) return *this;
+
+ if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
+ BitWord EMask = 1UL << (E % BITWORD_SIZE);
+ BitWord IMask = 1UL << (I % BITWORD_SIZE);
+ BitWord Mask = EMask - IMask;
+ Bits[I / BITWORD_SIZE] &= ~Mask;
+ return *this;
+ }
+
+ BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
+ Bits[I / BITWORD_SIZE] &= ~PrefixMask;
+ I = alignTo(I, BITWORD_SIZE);
+
+ for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
+ Bits[I / BITWORD_SIZE] = 0UL;
+
+ BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
+ if (I < E)
+ Bits[I / BITWORD_SIZE] &= ~PostfixMask;
+
+ return *this;
+ }
+
+ BitVector &flip() {
+ for (unsigned i = 0; i < NumBitWords(size()); ++i)
+ Bits[i] = ~Bits[i];
+ clear_unused_bits();
+ return *this;
+ }
+
+ BitVector &flip(unsigned Idx) {
+ Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
+ return *this;
+ }
+
+ // Indexing.
+ reference operator[](unsigned Idx) {
+ assert (Idx < Size && "Out-of-bounds Bit access.");
+ return reference(*this, Idx);
+ }
+
+ bool operator[](unsigned Idx) const {
+ assert (Idx < Size && "Out-of-bounds Bit access.");
+ BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
+ return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
+ }
+
+ bool test(unsigned Idx) const {
+ return (*this)[Idx];
+ }
+
+ /// Test if any common bits are set.
+ bool anyCommon(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
+ if (Bits[i] & RHS.Bits[i])
+ return true;
+ return false;
+ }
+
+ // Comparison operators.
+ bool operator==(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ if (Bits[i] != RHS.Bits[i])
+ return false;
+
+ // Verify that any extra words are all zeros.
+ if (i != ThisWords) {
+ for (; i != ThisWords; ++i)
+ if (Bits[i])
+ return false;
+ } else if (i != RHSWords) {
+ for (; i != RHSWords; ++i)
+ if (RHS.Bits[i])
+ return false;
+ }
+ return true;
+ }
+
+ bool operator!=(const BitVector &RHS) const {
+ return !(*this == RHS);
+ }
+
+ /// Intersection, union, disjoint union.
+ BitVector &operator&=(const BitVector &RHS) {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ Bits[i] &= RHS.Bits[i];
+
+ // Any bits that are just in this bitvector become zero, because they aren't
+ // in the RHS bit vector. Any words only in RHS are ignored because they
+ // are already zero in the LHS.
+ for (; i != ThisWords; ++i)
+ Bits[i] = 0;
+
+ return *this;
+ }
+
+ /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
+ BitVector &reset(const BitVector &RHS) {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ Bits[i] &= ~RHS.Bits[i];
+ return *this;
+ }
+
+ /// test - Check if (This - RHS) is zero.
+ /// This is the same as reset(RHS) and any().
+ bool test(const BitVector &RHS) const {
+ unsigned ThisWords = NumBitWords(size());
+ unsigned RHSWords = NumBitWords(RHS.size());
+ unsigned i;
+ for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
+ if ((Bits[i] & ~RHS.Bits[i]) != 0)
+ return true;
+
+ for (; i != ThisWords ; ++i)
+ if (Bits[i] != 0)
+ return true;
+
+ return false;
+ }
+
+ BitVector &operator|=(const BitVector &RHS) {
+ if (size() < RHS.size())
+ resize(RHS.size());
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+ Bits[i] |= RHS.Bits[i];
+ return *this;
+ }
+
+ BitVector &operator^=(const BitVector &RHS) {
+ if (size() < RHS.size())
+ resize(RHS.size());
+ for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
+ Bits[i] ^= RHS.Bits[i];
+ return *this;
+ }
+
+ // Assignment operator.
+ const BitVector &operator=(const BitVector &RHS) {
+ if (this == &RHS) return *this;
+
+ Size = RHS.size();
+ unsigned RHSWords = NumBitWords(Size);
+ if (Size <= Capacity * BITWORD_SIZE) {
+ if (Size)
+ std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
+ clear_unused_bits();
+ return *this;
+ }
+
+ // Grow the bitvector to have enough elements.
+ Capacity = RHSWords;
+ assert(Capacity > 0 && "negative capacity?");
+ BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
+ std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
+
+ // Destroy the old bits.
+ std::free(Bits);
+ Bits = NewBits;
+
+ return *this;
+ }
+
+ const BitVector &operator=(BitVector &&RHS) {
+ if (this == &RHS) return *this;
+
+ std::free(Bits);
+ Bits = RHS.Bits;
+ Size = RHS.Size;
+ Capacity = RHS.Capacity;
+
+ RHS.Bits = nullptr;
+ RHS.Size = RHS.Capacity = 0;
+
+ return *this;
+ }
+
+ void swap(BitVector &RHS) {
+ std::swap(Bits, RHS.Bits);
+ std::swap(Size, RHS.Size);
+ std::swap(Capacity, RHS.Capacity);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Portable bit mask operations.
+ //===--------------------------------------------------------------------===//
+ //
+ // These methods all operate on arrays of uint32_t, each holding 32 bits. The
+ // fixed word size makes it easier to work with literal bit vector constants
+ // in portable code.
+ //
+ // The LSB in each word is the lowest numbered bit. The size of a portable
+ // bit mask is always a whole multiple of 32 bits. If no bit mask size is
+ // given, the bit mask is assumed to cover the entire BitVector.
+
+ /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
+ /// This computes "*this |= Mask".
+ void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<true, false>(Mask, MaskWords);
+ }
+
+ /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
+ /// Don't resize. This computes "*this &= ~Mask".
+ void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<false, false>(Mask, MaskWords);
+ }
+
+ /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
+ /// Don't resize. This computes "*this |= ~Mask".
+ void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<true, true>(Mask, MaskWords);
+ }
+
+ /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
+ /// Don't resize. This computes "*this &= Mask".
+ void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
+ applyMask<false, true>(Mask, MaskWords);
+ }
+
+private:
+ unsigned NumBitWords(unsigned S) const {
+ return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
+ }
+
+ // Set the unused bits in the high words.
+ void set_unused_bits(bool t = true) {
+ // Set high words first.
+ unsigned UsedWords = NumBitWords(Size);
+ if (Capacity > UsedWords)
+ init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
+
+ // Then set any stray high bits of the last used word.
+ unsigned ExtraBits = Size % BITWORD_SIZE;
+ if (ExtraBits) {
+ BitWord ExtraBitMask = ~0UL << ExtraBits;
+ if (t)
+ Bits[UsedWords-1] |= ExtraBitMask;
+ else
+ Bits[UsedWords-1] &= ~ExtraBitMask;
+ }
+ }
+
+ // Clear the unused bits in the high words.
+ void clear_unused_bits() {
+ set_unused_bits(false);
+ }
+
+ void grow(unsigned NewSize) {
+ Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
+ assert(Capacity > 0 && "realloc-ing zero space");
+ Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
+
+ clear_unused_bits();
+ }
+
+ void init_words(BitWord *B, unsigned NumWords, bool t) {
+ if (NumWords > 0)
+ memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
+ }
+
+ template<bool AddBits, bool InvertMask>
+ void applyMask(const uint32_t *Mask, unsigned MaskWords) {
+ static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
+ MaskWords = std::min(MaskWords, (size() + 31) / 32);
+ const unsigned Scale = BITWORD_SIZE / 32;
+ unsigned i;
+ for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
+ BitWord BW = Bits[i];
+ // This inner loop should unroll completely when BITWORD_SIZE > 32.
+ for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
+ uint32_t M = *Mask++;
+ if (InvertMask) M = ~M;
+ if (AddBits) BW |= BitWord(M) << b;
+ else BW &= ~(BitWord(M) << b);
+ }
+ Bits[i] = BW;
+ }
+ for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
+ uint32_t M = *Mask++;
+ if (InvertMask) M = ~M;
+ if (AddBits) Bits[i] |= BitWord(M) << b;
+ else Bits[i] &= ~(BitWord(M) << b);
+ }
+ if (AddBits)
+ clear_unused_bits();
+ }
+
+public:
+ /// Return the size (in bytes) of the bit vector.
+ size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
+};
+
+static inline size_t capacity_in_bytes(const BitVector &X) {
+ return X.getMemorySize();
+}
+
+} // end namespace llvm
+
+namespace std {
+ /// Implement std::swap in terms of BitVector swap.
+ inline void
+ swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
+ LHS.swap(RHS);
+ }
+} // end namespace std
+
+#endif // LLVM_ADT_BITVECTOR_H
|