/* Copyright 2013-2014 IBM Corp. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define pr_fmt(fmt) "LPC: " fmt #include #include #include #include #include #include #include #include #include //#define DBG_IRQ(fmt...) prerror(fmt) #define DBG_IRQ(fmt...) do { } while(0) DEFINE_LOG_ENTRY(OPAL_RC_LPC_READ, OPAL_PLATFORM_ERR_EVT, OPAL_LPC, OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL, OPAL_NA); DEFINE_LOG_ENTRY(OPAL_RC_LPC_WRITE, OPAL_PLATFORM_ERR_EVT, OPAL_LPC, OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL, OPAL_NA); DEFINE_LOG_ENTRY(OPAL_RC_LPC_SYNC, OPAL_PLATFORM_ERR_EVT, OPAL_LPC, OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL, OPAL_NA); #define ECCB_CTL 0 /* b0020 -> b00200 */ #define ECCB_STAT 2 /* b0022 -> b00210 */ #define ECCB_DATA 3 /* b0023 -> b00218 */ #define ECCB_CTL_MAGIC 0xd000000000000000ul #define ECCB_CTL_DATASZ PPC_BITMASK(4,7) #define ECCB_CTL_READ PPC_BIT(15) #define ECCB_CTL_ADDRLEN PPC_BITMASK(23,25) #define ECCB_ADDRLEN_4B 0x4 #define ECCB_CTL_ADDR PPC_BITMASK(32,63) #define ECCB_STAT_PIB_ERR PPC_BITMASK(0,5) #define ECCB_STAT_RD_DATA PPC_BITMASK(6,37) #define ECCB_STAT_BUSY PPC_BIT(44) #define ECCB_STAT_ERRORS1 PPC_BITMASK(45,51) #define ECCB_STAT_OP_DONE PPC_BIT(52) #define ECCB_STAT_ERRORS2 PPC_BITMASK(53,55) #define ECCB_STAT_ERR_MASK (ECCB_STAT_PIB_ERR | \ ECCB_STAT_ERRORS1 | \ ECCB_STAT_ERRORS2) #define ECCB_TIMEOUT 1000000 /* OPB Master LS registers */ #define OPB_MASTER_LS_IRQ_STAT 0x50 #define OPB_MASTER_LS_IRQ_MASK 0x54 #define OPB_MASTER_LS_IRQ_POL 0x58 #define OPB_MASTER_IRQ_LPC 0x00000800 /* LPC HC registers */ #define LPC_HC_FW_SEG_IDSEL 0x24 #define LPC_HC_FW_RD_ACC_SIZE 0x28 #define LPC_HC_FW_RD_1B 0x00000000 #define LPC_HC_FW_RD_2B 0x01000000 #define LPC_HC_FW_RD_4B 0x02000000 #define LPC_HC_FW_RD_16B 0x04000000 #define LPC_HC_FW_RD_128B 0x07000000 #define LPC_HC_IRQSER_CTRL 0x30 #define LPC_HC_IRQSER_EN 0x80000000 #define LPC_HC_IRQSER_QMODE 0x40000000 #define LPC_HC_IRQSER_START_MASK 0x03000000 #define LPC_HC_IRQSER_START_4CLK 0x00000000 #define LPC_HC_IRQSER_START_6CLK 0x01000000 #define LPC_HC_IRQSER_START_8CLK 0x02000000 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */ #define LPC_HC_IRQSTAT 0x38 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */ #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */ #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000 #define LPC_HC_IRQ_LRESET 0x00000400 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010 #define LPC_HC_IRQ_TARG_TAR_ERR 0x00000008 #define LPC_HC_IRQ_BM_TAR_ERR 0x00000004 #define LPC_HC_IRQ_BM0_REQ 0x00000002 #define LPC_HC_IRQ_BM1_REQ 0x00000001 #define LPC_HC_IRQ_BASE_IRQS ( \ LPC_HC_IRQ_LRESET | \ LPC_HC_IRQ_SYNC_ABNORM_ERR | \ LPC_HC_IRQ_SYNC_NORESP_ERR | \ LPC_HC_IRQ_SYNC_NORM_ERR | \ LPC_HC_IRQ_SYNC_TIMEOUT_ERR | \ LPC_HC_IRQ_TARG_TAR_ERR | \ LPC_HC_IRQ_BM_TAR_ERR) #define LPC_HC_ERROR_ADDRESS 0x40 struct lpc_client_entry { struct list_node node; const struct lpc_client *clt; }; /* Default LPC bus */ static int32_t lpc_default_chip_id = -1; /* * These are expected to be the same on all chips and should probably * be read (or configured) dynamically. This is how things are configured * today on Tuletta. */ static uint32_t lpc_io_opb_base = 0xd0010000; static uint32_t lpc_mem_opb_base = 0xe0000000; static uint32_t lpc_fw_opb_base = 0xf0000000; static uint32_t lpc_reg_opb_base = 0xc0012000; static uint32_t opb_master_reg_base = 0xc0010000; static int64_t opb_write(struct proc_chip *chip, uint32_t addr, uint32_t data, uint32_t sz) { uint64_t ctl = ECCB_CTL_MAGIC, stat; int64_t rc, tout; uint64_t data_reg; switch(sz) { case 1: data_reg = ((uint64_t)data) << 56; break; case 2: data_reg = ((uint64_t)data) << 48; break; case 4: data_reg = ((uint64_t)data) << 32; break; default: prerror("Invalid data size %d\n", sz); return OPAL_PARAMETER; } rc = xscom_write(chip->id, chip->lpc_xbase + ECCB_DATA, data_reg); if (rc) { log_simple_error(&e_info(OPAL_RC_LPC_WRITE), "LPC: XSCOM write to ECCB DATA error %lld\n", rc); return rc; } ctl = SETFIELD(ECCB_CTL_DATASZ, ctl, sz); ctl = SETFIELD(ECCB_CTL_ADDRLEN, ctl, ECCB_ADDRLEN_4B); ctl = SETFIELD(ECCB_CTL_ADDR, ctl, addr); rc = xscom_write(chip->id, chip->lpc_xbase + ECCB_CTL, ctl); if (rc) { log_simple_error(&e_info(OPAL_RC_LPC_WRITE), "LPC: XSCOM write to ECCB CTL error %lld\n", rc); return rc; } for (tout = 0; tout < ECCB_TIMEOUT; tout++) { rc = xscom_read(chip->id, chip->lpc_xbase + ECCB_STAT, &stat); if (rc) { log_simple_error(&e_info(OPAL_RC_LPC_WRITE), "LPC: XSCOM read from ECCB STAT err %lld\n", rc); return rc; } if (stat & ECCB_STAT_OP_DONE) { if (stat & ECCB_STAT_ERR_MASK) { log_simple_error(&e_info(OPAL_RC_LPC_WRITE), "LPC: Error status: 0x%llx\n", stat); return OPAL_HARDWARE; } return OPAL_SUCCESS; } time_wait_nopoll(100); } log_simple_error(&e_info(OPAL_RC_LPC_WRITE), "LPC: Write timeout !\n"); return OPAL_HARDWARE; } static int64_t opb_read(struct proc_chip *chip, uint32_t addr, uint32_t *data, uint32_t sz) { uint64_t ctl = ECCB_CTL_MAGIC | ECCB_CTL_READ, stat; int64_t rc, tout; if (sz != 1 && sz != 2 && sz != 4) { prerror("Invalid data size %d\n", sz); return OPAL_PARAMETER; } ctl = SETFIELD(ECCB_CTL_DATASZ, ctl, sz); ctl = SETFIELD(ECCB_CTL_ADDRLEN, ctl, ECCB_ADDRLEN_4B); ctl = SETFIELD(ECCB_CTL_ADDR, ctl, addr); rc = xscom_write(chip->id, chip->lpc_xbase + ECCB_CTL, ctl); if (rc) { log_simple_error(&e_info(OPAL_RC_LPC_READ), "LPC: XSCOM write to ECCB CTL error %lld\n", rc); return rc; } for (tout = 0; tout < ECCB_TIMEOUT; tout++) { rc = xscom_read(chip->id, chip->lpc_xbase + ECCB_STAT, &stat); if (rc) { log_simple_error(&e_info(OPAL_RC_LPC_READ), "LPC: XSCOM read from ECCB STAT err %lld\n", rc); return rc; } if (stat & ECCB_STAT_OP_DONE) { uint32_t rdata = GETFIELD(ECCB_STAT_RD_DATA, stat); if (stat & ECCB_STAT_ERR_MASK) { log_simple_error(&e_info(OPAL_RC_LPC_READ), "LPC: Error status: 0x%llx\n", stat); return OPAL_HARDWARE; } switch(sz) { case 1: *data = rdata >> 24; break; case 2: *data = rdata >> 16; break; default: *data = rdata; break; } return 0; } time_wait_nopoll(100); } log_simple_error(&e_info(OPAL_RC_LPC_READ), "LPC: Read timeout !\n"); return OPAL_HARDWARE; } static int64_t lpc_set_fw_idsel(struct proc_chip *chip, uint8_t idsel) { uint32_t val; int64_t rc; if (idsel == chip->lpc_fw_idsel) return OPAL_SUCCESS; if (idsel > 0xf) return OPAL_PARAMETER; rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_FW_SEG_IDSEL, &val, 4); if (rc) { prerror("Failed to read HC_FW_SEG_IDSEL register !\n"); return rc; } val = (val & 0xfffffff0) | idsel; rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_FW_SEG_IDSEL, val, 4); if (rc) { prerror("Failed to write HC_FW_SEG_IDSEL register !\n"); return rc; } chip->lpc_fw_idsel = idsel; return OPAL_SUCCESS; } static int64_t lpc_set_fw_rdsz(struct proc_chip *chip, uint8_t rdsz) { uint32_t val; int64_t rc; if (rdsz == chip->lpc_fw_rdsz) return OPAL_SUCCESS; switch(rdsz) { case 1: val = LPC_HC_FW_RD_1B; break; case 2: val = LPC_HC_FW_RD_2B; break; case 4: val = LPC_HC_FW_RD_4B; break; default: /* * The HW supports 16 and 128 via a buffer/cache * but I have never exprimented with it and am not * sure it works the way we expect so let's leave it * at that for now */ return OPAL_PARAMETER; } rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_FW_RD_ACC_SIZE, val, 4); if (rc) { prerror("Failed to write LPC_HC_FW_RD_ACC_SIZE !\n"); return rc; } chip->lpc_fw_rdsz = rdsz; return OPAL_SUCCESS; } static int64_t lpc_opb_prepare(struct proc_chip *chip, enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t sz, uint32_t *opb_base, bool is_write) { uint32_t top = addr + sz; uint8_t fw_idsel; int64_t rc; /* Address wraparound */ if (top < addr) return OPAL_PARAMETER; /* * Bound check access and get the OPB base address for * the window corresponding to the access type */ switch(addr_type) { case OPAL_LPC_IO: /* IO space is 64K */ if (top > 0x10000) return OPAL_PARAMETER; /* And only supports byte accesses */ if (sz != 1) return OPAL_PARAMETER; *opb_base = lpc_io_opb_base; break; case OPAL_LPC_MEM: /* MEM space is 256M */ if (top > 0x10000000) return OPAL_PARAMETER; /* And only supports byte accesses */ if (sz != 1) return OPAL_PARAMETER; *opb_base = lpc_mem_opb_base; break; case OPAL_LPC_FW: /* * FW space is in segments of 256M controlled * by IDSEL, make sure we don't cross segments */ *opb_base = lpc_fw_opb_base; fw_idsel = (addr >> 28); if (((top - 1) >> 28) != fw_idsel) return OPAL_PARAMETER; /* Set segment */ rc = lpc_set_fw_idsel(chip, fw_idsel); if (rc) return rc; /* Set read access size */ if (!is_write) { rc = lpc_set_fw_rdsz(chip, sz); if (rc) return rc; } break; default: return OPAL_PARAMETER; } return OPAL_SUCCESS; } static int64_t __lpc_write(uint32_t chip_id, enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t data, uint32_t sz) { struct proc_chip *chip = get_chip(chip_id); uint32_t opb_base; int64_t rc; if (!chip || !chip->lpc_xbase) return OPAL_PARAMETER; lock(&chip->lpc_lock); /* * Convert to an OPB access and handle LPC HC configuration * for FW accesses (IDSEL) */ rc = lpc_opb_prepare(chip, addr_type, addr, sz, &opb_base, true); if (rc) goto bail; /* Perform OPB access */ rc = opb_write(chip, opb_base + addr, data, sz); /* XXX Add LPC error handling/recovery */ bail: unlock(&chip->lpc_lock); return rc; } int64_t lpc_write(enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t data, uint32_t sz) { if (lpc_default_chip_id < 0) return OPAL_PARAMETER; return __lpc_write(lpc_default_chip_id, addr_type, addr, data, sz); } /* * The "OPAL" variant add the emulation of 2 and 4 byte accesses using * byte accesses for IO and MEM space in order to be compatible with * existing Linux expectations */ static int64_t opal_lpc_write(uint32_t chip_id, enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t data, uint32_t sz) { int64_t rc; if (addr_type == OPAL_LPC_FW || sz == 1) return __lpc_write(chip_id, addr_type, addr, data, sz); while(sz--) { rc = __lpc_write(chip_id, addr_type, addr, data & 0xff, 1); if (rc) return rc; addr++; data >>= 8; } return OPAL_SUCCESS; } static int64_t __lpc_read(uint32_t chip_id, enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t *data, uint32_t sz) { struct proc_chip *chip = get_chip(chip_id); uint32_t opb_base; int64_t rc; if (!chip || !chip->lpc_xbase) return OPAL_PARAMETER; lock(&chip->lpc_lock); /* * Convert to an OPB access and handle LPC HC configuration * for FW accesses (IDSEL and read size) */ rc = lpc_opb_prepare(chip, addr_type, addr, sz, &opb_base, false); if (rc) goto bail; /* Perform OPB access */ rc = opb_read(chip, opb_base + addr, data, sz); /* XXX Add LPC error handling/recovery */ bail: unlock(&chip->lpc_lock); return rc; } int64_t lpc_read(enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t *data, uint32_t sz) { if (lpc_default_chip_id < 0) return OPAL_PARAMETER; return __lpc_read(lpc_default_chip_id, addr_type, addr, data, sz); } /* * The "OPAL" variant add the emulation of 2 and 4 byte accesses using * byte accesses for IO and MEM space in order to be compatible with * existing Linux expectations */ static int64_t opal_lpc_read(uint32_t chip_id, enum OpalLPCAddressType addr_type, uint32_t addr, uint32_t *data, uint32_t sz) { int64_t rc; if (addr_type == OPAL_LPC_FW || sz == 1) return __lpc_read(chip_id, addr_type, addr, data, sz); *data = 0; while(sz--) { uint32_t byte; rc = __lpc_read(chip_id, addr_type, addr, &byte, 1); if (rc) return rc; *data = *data | (byte << (8 * sz)); addr++; } return OPAL_SUCCESS; } bool lpc_present(void) { return lpc_default_chip_id >= 0; } /* Called with LPC lock held */ static void lpc_setup_serirq(struct proc_chip *chip) { struct lpc_client_entry *ent; uint32_t mask = LPC_HC_IRQ_BASE_IRQS; int rc; /* Collect serirq enable bits */ list_for_each(&chip->lpc_clients, ent, node) mask |= ent->clt->interrupts & LPC_HC_IRQ_SERIRQ_ALL; rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, mask, 4); if (rc) { prerror("Failed to update irq mask\n"); return; } DBG_IRQ("LPC: IRQ mask set to 0x%08x\n", mask); /* Enable the LPC interrupt in the OPB Master */ opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_POL, 0, 4); rc = opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_MASK, OPB_MASTER_IRQ_LPC, 4); if (rc) prerror("Failed to enable IRQs in OPB\n"); /* Check whether we should enable serirq */ if (mask & LPC_HC_IRQ_SERIRQ_ALL) { rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL, LPC_HC_IRQSER_EN | LPC_HC_IRQSER_START_4CLK, 4); DBG_IRQ("LPC: SerIRQ enabled\n"); } else { rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL, 0, 4); DBG_IRQ("LPC: SerIRQ disabled\n"); } if (rc) prerror("Failed to configure SerIRQ\n"); { u32 val; rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, &val, 4); if (rc) prerror("Failed to readback mask"); else DBG_IRQ("LPC: MASK READBACK=%x\n", val); rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL, &val, 4); if (rc) prerror("Failed to readback ctrl"); else DBG_IRQ("LPC: CTRL READBACK=%x\n", val); } } static void lpc_init_interrupts(struct proc_chip *chip) { int rc; /* First mask them all */ rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, 0, 4); if (rc) { prerror("Failed to init interrutps\n"); return; } switch(chip->type) { case PROC_CHIP_P8_MURANO: case PROC_CHIP_P8_VENICE: /* On Murano/Venice, there is no SerIRQ, only enable error * interrupts */ rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, LPC_HC_IRQ_BASE_IRQS, 4); if (rc) { prerror("Failed to set interrupt mask\n"); return; } opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL, 0, 4); break; case PROC_CHIP_P8_NAPLES: /* On Naples, we support LPC interrupts, enable them based * on what clients requests. This will setup the mask and * enable processing */ lock(&chip->lpc_lock); lpc_setup_serirq(chip); unlock(&chip->lpc_lock); break; default: /* We aren't getting here, are we ? */ return; } } static void lpc_dispatch_reset(struct proc_chip *chip) { struct lpc_client_entry *ent; /* XXX We are going to hit this repeatedly while reset is * asserted which might be sub-optimal. We should instead * detect assertion and start a poller that will wait for * de-assertion. We could notify clients of LPC being * on/off rather than just reset */ prerror("Got LPC reset!\n"); /* Collect serirq enable bits */ list_for_each(&chip->lpc_clients, ent, node) { if (!ent->clt->reset) continue; unlock(&chip->lpc_lock); ent->clt->reset(chip->id); lock(&chip->lpc_lock); } /* Reconfigure serial interrupts */ if (chip->type == PROC_CHIP_P8_NAPLES) lpc_setup_serirq(chip); } static void lpc_dispatch_err_irqs(struct proc_chip *chip, uint32_t irqs) { int rc; const char *sync_err = "Unknown LPC error"; uint32_t err_addr; /* Write back to clear error interrupts, we clear SerIRQ later * as they are handled as level interrupts */ rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSTAT, LPC_HC_IRQ_BASE_IRQS, 4); if (rc) prerror("Failed to clear IRQ error latches !\n"); if (irqs & LPC_HC_IRQ_LRESET) lpc_dispatch_reset(chip); if (irqs & LPC_HC_IRQ_SYNC_ABNORM_ERR) sync_err = "LPC: Got SYNC abnormal error."; if (irqs & LPC_HC_IRQ_SYNC_NORESP_ERR) sync_err = "LPC: Got SYNC no-response error."; if (irqs & LPC_HC_IRQ_SYNC_NORM_ERR) sync_err = "LPC: Got SYNC normal error."; if (irqs & LPC_HC_IRQ_SYNC_TIMEOUT_ERR) sync_err = "LPC: Got SYNC timeout error."; if (irqs & LPC_HC_IRQ_TARG_TAR_ERR) sync_err = "LPC: Got abnormal TAR error."; if (irqs & LPC_HC_IRQ_BM_TAR_ERR) sync_err = "LPC: Got bus master TAR error."; rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_ERROR_ADDRESS, &err_addr, 4); if (rc) log_simple_error(&e_info(OPAL_RC_LPC_SYNC), "%s " "Error address: Unknown\n", sync_err); else log_simple_error(&e_info(OPAL_RC_LPC_SYNC), "%s " "Error address: 0x%08x\n", sync_err, err_addr); } static void lpc_dispatch_ser_irqs(struct proc_chip *chip, uint32_t irqs, bool clear_latch) { struct lpc_client_entry *ent; uint32_t cirqs; int rc; irqs &= LPC_HC_IRQ_SERIRQ_ALL; /* Collect serirq enable bits */ list_for_each(&chip->lpc_clients, ent, node) { if (!ent->clt->interrupt) continue; cirqs = ent->clt->interrupts & irqs; if (cirqs) { unlock(&chip->lpc_lock); ent->clt->interrupt(chip->id, cirqs); lock(&chip->lpc_lock); } } /* Our SerIRQ are level sensitive, we clear the latch after * we call the handler. */ if (!clear_latch) return; rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSTAT, irqs, 4); if (rc) prerror("Failed to clear SerIRQ latches !\n"); } void lpc_interrupt(uint32_t chip_id) { struct proc_chip *chip = get_chip(chip_id); uint32_t irqs, opb_irqs; int rc; /* No initialized LPC controller on that chip */ if (!chip->lpc_xbase) return; lock(&chip->lpc_lock); /* Grab OPB Master LS interrupt status */ rc = opb_read(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_STAT, &opb_irqs, 4); if (rc) { prerror("Failed to read OPB IRQ state\n"); goto bail; } /* Check if it's an LPC interrupt */ if (!(opb_irqs & OPB_MASTER_IRQ_LPC)) { /* Something we don't support ? Ack it anyway... */ opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_STAT, opb_irqs, 4); goto bail; } /* Handle the lpc interrupt source (errors etc...) */ rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_IRQSTAT, &irqs, 4); if (rc) { prerror("Failed to read LPC IRQ state\n"); goto bail; } DBG_IRQ("LPC: IRQ on chip 0x%x, irqs=0x%08x\n", chip_id, irqs); /* Handle error interrupts */ if (irqs & LPC_HC_IRQ_BASE_IRQS) lpc_dispatch_err_irqs(chip, irqs); /* Handle SerIRQ interrupts */ if (irqs & LPC_HC_IRQ_SERIRQ_ALL) lpc_dispatch_ser_irqs(chip, irqs, true); /* Ack it at the OPB level */ opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_STAT, opb_irqs, 4); bail: unlock(&chip->lpc_lock); } void lpc_all_interrupts(uint32_t chip_id) { struct proc_chip *chip = get_chip(chip_id); /* Dispatch all */ lock(&chip->lpc_lock); lpc_dispatch_ser_irqs(chip, LPC_HC_IRQ_SERIRQ_ALL, false); unlock(&chip->lpc_lock); } void lpc_init(void) { struct dt_node *xn; bool has_lpc = false; dt_for_each_compatible(dt_root, xn, "ibm,power8-lpc") { uint32_t gcid = dt_get_chip_id(xn); struct proc_chip *chip; chip = get_chip(gcid); assert(chip); chip->lpc_xbase = dt_get_address(xn, 0, NULL); chip->lpc_fw_idsel = 0xff; chip->lpc_fw_rdsz = 0xff; init_lock(&chip->lpc_lock); if (lpc_default_chip_id < 0 || dt_has_node_property(xn, "primary", NULL)) { lpc_default_chip_id = chip->id; } prlog(PR_NOTICE, "Bus on chip %d PCB_Addr=0x%x\n", chip->id, chip->lpc_xbase); has_lpc = true; lpc_init_interrupts(chip); if (chip->type == PROC_CHIP_P8_NAPLES) dt_add_property(xn, "interrupt-controller", NULL, 0); } if (lpc_default_chip_id >= 0) prlog(PR_NOTICE, "Default bus on chip %d\n", lpc_default_chip_id); if (has_lpc) { opal_register(OPAL_LPC_WRITE, opal_lpc_write, 5); opal_register(OPAL_LPC_READ, opal_lpc_read, 5); } } void lpc_used_by_console(void) { struct proc_chip *chip; xscom_used_by_console(); for_each_chip(chip) { chip->lpc_lock.in_con_path = true; lock(&chip->lpc_lock); unlock(&chip->lpc_lock); } } bool lpc_ok(void) { struct proc_chip *chip; if (lpc_default_chip_id < 0) return false; if (!xscom_ok()) return false; chip = get_chip(lpc_default_chip_id); return !lock_held_by_me(&chip->lpc_lock); } void lpc_register_client(uint32_t chip_id, const struct lpc_client *clt) { struct lpc_client_entry *ent; struct proc_chip *chip; chip = get_chip(chip_id); assert(chip); ent = malloc(sizeof(*ent)); assert(ent); ent->clt = clt; lock(&chip->lpc_lock); list_add(&chip->lpc_clients, &ent->node); /* Re-evaluate ser irqs on Naples */ if (chip->type == PROC_CHIP_P8_NAPLES) lpc_setup_serirq(chip); unlock(&chip->lpc_lock); }