summaryrefslogtreecommitdiffstats
path: root/src/hwpf/src/plat/target.C
blob: 9ff1a75b03da9294f45b01bf712b456724c896a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/hwpf/src/plat/target.C $                                  */
/*                                                                        */
/* OpenPOWER sbe Project                                                  */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2012,2016                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */


#include <fapi2.H>
#include <assert.h>
#include <fapi2_target.H>
#include <plat_target_utils.H>

// Global Vector containing ALL targets.  This structure is referenced by
// fapi2::getChildren to produce the resultant returned vector from that
// call.
std::vector<fapi2::plat_target_handle_t> G_vec_targets;

// Global variable for fixed section in pibmem
G_sbe_attrs_t G_sbe_attrs;

fapi2attr::SystemAttributes_t*    G_system_attributes_ptr;
fapi2attr::ProcChipAttributes_t*  G_proc_chip_attributes_ptr;
fapi2attr::PervAttributes_t*      G_perv_attributes_ptr;
fapi2attr::CoreAttributes_t*      G_core_attributes_ptr;
fapi2attr::EQAttributes_t*        G_eq_attributes_ptr;
fapi2attr::EXAttributes_t*        G_ex_attributes_ptr;

namespace fapi2
{
    // Get the plat target handle by chiplet number - For PERV targets
    template<>
    plat_target_handle_t plat_getTargetHandleByChipletNumber<TARGET_TYPE_PERV>(
            const uint8_t i_chipletNumber)
    {
        uint32_t l_idx = 0;

        if((i_chipletNumber > 0) &&
           (i_chipletNumber < (EQ_CHIPLET_OFFSET + EQ_TARGET_COUNT)))
        {
            l_idx = (i_chipletNumber - NEST_GROUP1_CHIPLET_OFFSET) +
                NEST_GROUP1_TARGET_OFFSET;
        }
        else if((i_chipletNumber >= CORE_CHIPLET_OFFSET) &&
                (i_chipletNumber < (CORE_CHIPLET_OFFSET + CORE_TARGET_COUNT)))
        {
            l_idx = (i_chipletNumber - CORE_CHIPLET_OFFSET) +
                CORE_TARGET_OFFSET;
        }
        else
        {
            assert(false);
        }
        return G_vec_targets[l_idx];
    }

    // Get the plat target handle by chiplet number - For EQ targets
    template<>
    plat_target_handle_t plat_getTargetHandleByChipletNumber<TARGET_TYPE_EQ>(
            const uint8_t i_chipletNumber)
    {
        assert(((i_chipletNumber >= EQ_CHIPLET_OFFSET) &&
                (i_chipletNumber < (EQ_CHIPLET_OFFSET + EQ_TARGET_COUNT))))

        uint32_t l_idx = (i_chipletNumber - EQ_CHIPLET_OFFSET) +
                EQ_TARGET_OFFSET;
        return G_vec_targets[l_idx];
    }

    // Get the plat target handle by chiplet number - For CORE targets
    template<>
    plat_target_handle_t plat_getTargetHandleByChipletNumber<TARGET_TYPE_CORE>(
            const uint8_t i_chipletNumber)
    {
        assert(((i_chipletNumber >= CORE_CHIPLET_OFFSET) &&
                (i_chipletNumber < (CORE_CHIPLET_OFFSET + CORE_TARGET_COUNT))));

        uint32_t l_idx = (i_chipletNumber - CORE_CHIPLET_OFFSET) +
                 CORE_TARGET_OFFSET;

        return G_vec_targets[l_idx];
    }

    // Get the plat target handle by chiplet number - For EX targets
    template<>
    plat_target_handle_t plat_getTargetHandleByChipletNumber<TARGET_TYPE_EX>(
            const uint8_t i_chipletNumber)
    {
        assert(((i_chipletNumber >= CORE_CHIPLET_OFFSET) &&
                (i_chipletNumber < (CORE_CHIPLET_OFFSET + CORE_TARGET_COUNT))));

        uint32_t l_idx = ((i_chipletNumber - CORE_CHIPLET_OFFSET) / 2) +
                 EX_TARGET_OFFSET;

        return G_vec_targets[l_idx];
    }

    // Get plat target handle by instance number - For EX targets
    template <>
    plat_target_handle_t plat_getTargetHandleByInstance<TARGET_TYPE_EX>(
            const uint8_t i_targetNum)
    {
        assert(i_targetNum < EX_TARGET_COUNT);

        return G_vec_targets[i_targetNum + EX_TARGET_OFFSET];
    }


    TargetType plat_target_handle_t::getFapiTargetType() const
    {
        TargetType l_targetType = TARGET_TYPE_NONE;
        switch(fields.type)
        {
            case PPE_TARGET_TYPE_PROC_CHIP:
                l_targetType = TARGET_TYPE_PROC_CHIP;
                break;
            case PPE_TARGET_TYPE_MCS:
                l_targetType = TARGET_TYPE_MCS;
                break;
            case PPE_TARGET_TYPE_CORE | PPE_TARGET_TYPE_PERV:
                l_targetType = TARGET_TYPE_CORE;
                break;
            case PPE_TARGET_TYPE_EQ | PPE_TARGET_TYPE_PERV:
                l_targetType = TARGET_TYPE_EQ;
                break;
            case PPE_TARGET_TYPE_EX:
                l_targetType = TARGET_TYPE_EX;
                break;
            case PPE_TARGET_TYPE_PERV:
                l_targetType = TARGET_TYPE_PERV;
                break;
            case PPE_TARGET_TYPE_SYSTEM:
                l_targetType = TARGET_TYPE_SYSTEM;
                break;
            case PPE_TARGET_TYPE_MCBIST | PPE_TARGET_TYPE_PERV:
                l_targetType = TARGET_TYPE_MCBIST;
                break;
            case PPE_TARGET_TYPE_NONE:
            case PPE_TARGET_TYPE_ALL:
            default:
                assert(false);
                break;
        }
        return l_targetType;
    }

    void plat_target_handle_t::getChildren(const TargetType i_parentType,
                                           const TargetType i_childType,
                                           const plat_target_type_t i_platType,
                                           const TargetState i_state,
                                           std::vector<plat_target_handle>
                                           &o_children) const
    {
        uint32_t l_childPerChiplet = 0;
        uint32_t l_childTargetOffset = 0;
        uint32_t l_loopCount = G_vec_targets.size();
        TargetType l_targetType = i_parentType;

        if((i_parentType & ~(TARGET_TYPE_PROC_CHIP)) != 0)
        {
            // For composite targets, if multicast, treat as PROC_CHIP, else
            // treat as other target
            if(this->fields.is_multicast)
            {
                l_targetType = TARGET_TYPE_PROC_CHIP;
            }
            else
            {
                l_targetType =
                    static_cast<TargetType>(l_targetType & ~(TARGET_TYPE_PROC_CHIP));
            }
        }

        // EQ ==> EX
        if((l_targetType == TARGET_TYPE_EQ) && (i_childType == TARGET_TYPE_EX))
        {
            l_childPerChiplet = EX_PER_QUAD;
            l_childTargetOffset = EX_TARGET_OFFSET;
            l_loopCount = l_childPerChiplet;
        }

        // EQ ==> EC
        if((l_targetType == TARGET_TYPE_EQ) && (i_childType == TARGET_TYPE_CORE))
        {
            l_childPerChiplet = CORES_PER_QUAD;
            l_childTargetOffset = CORE_TARGET_OFFSET;
            l_loopCount = l_childPerChiplet;
        }

        // EX ==> EC
        if((l_targetType == TARGET_TYPE_EX) && (i_childType == TARGET_TYPE_CORE))
        {
            l_childPerChiplet = CORES_PER_EX;
            l_childTargetOffset = CORE_TARGET_OFFSET;
            l_loopCount = l_childPerChiplet;
        }
        // else it is TARGET_TYPE_PROC_CHIP ==> anything, and we iterate over
        // all the targets

        for(uint32_t i = 0; i < l_loopCount; ++i)
        {
            plat_target_handle_t l_temp =
                G_vec_targets.at((this->fields.type_target_num *
                            l_childPerChiplet) + l_childTargetOffset + i);
            if ((l_temp.fields.type & i_platType) == i_platType)
            {
                switch (i_state)
                {
                    case TARGET_STATE_PRESENT:
                        if (l_temp.fields.present)
                        {
                            o_children.push_back(l_temp);
                        }
                        break;
                    case TARGET_STATE_FUNCTIONAL:
                        if (l_temp.fields.functional)
                        {
                            o_children.push_back(l_temp);
                        }
                        break;
                    default:
                        assert(false);
                }
            }
        }
    }

    void plat_target_handle_t::getChildren(const TargetFilter i_filter,
                                           const TargetState i_state,
                                           std::vector<plat_target_handle_t>
                                           &o_children) const
    {
        static const uint64_t mask = 1;

        // Walk the bits in the input target filter. For every bit, at
        // position x, that is set, x can be used as an index into our global
        // target vector (indexed by chiplet number)
        for (uint32_t l_idx = 0;
                l_idx < sizeof(TargetFilter) * 8;
                ++l_idx)
        {
            if (i_filter & (mask << (((sizeof(TargetFilter)*8)-1) - l_idx)))
            {
                plat_target_handle_t l_targetHandle = G_vec_targets.at(l_idx + NEST_GROUP1_CHIPLET_OFFSET);

                if(l_targetHandle.fields.type & PPE_TARGET_TYPE_PERV) // Can be an assertion?
                {
                    switch (i_state)
                    {
                        case TARGET_STATE_PRESENT:
                            if(l_targetHandle.fields.present)
                            {
                                o_children.push_back(l_targetHandle);
                            }
                            break;
                         case TARGET_STATE_FUNCTIONAL:
                            if(l_targetHandle.fields.functional)
                            {
                                o_children.push_back(l_targetHandle);
                            }
                            break;
                        default:
                            break;
                     }
                 }
             }
         }
    }

    #ifndef __noRC__
    ReturnCode current_err;
    #endif

     fapi2::ReturnCode plat_PervPGTargets(const fapi2::Target<fapi2::TARGET_TYPE_PERV> & i_target,
                                          bool & o_present)
     {
        o_present = false;
        uint16_t attr_value = 0;
        FAPI_ATTR_GET(fapi2::ATTR_PG,
                i_target,
                attr_value);
        FAPI_DBG("Target: 0x%08X, ATTR_PG value = %x", static_cast<uint32_t>(i_target.get().value), attr_value);
        if (0 == (attr_value & 0x1000))
        {
            o_present = true;
        }
        return fapi2::FAPI2_RC_SUCCESS;
    }

    /// @brief Function to determine if pervsaive target within a chip is
    ///     present and, thus, considered functional per PG attributes
    fapi2::ReturnCode
    plat_TargetPresent( fapi2::Target<fapi2::TARGET_TYPE_PERV> & i_chiplet_target,
                        bool & b_present)
    {

        // Find the PERV target number in the partial good initialization
        // array
        FAPI_TRY(plat_PervPGTargets(i_chiplet_target, b_present));

        if (b_present)
        {
            static_cast<plat_target_handle_t&>((i_chiplet_target.operator()())).setPresent();
            static_cast<plat_target_handle_t&>((i_chiplet_target.operator()())).setFunctional(true);
        }
        else
        {
            FAPI_DBG("Perv target NOT present (nor functional): chiplet_number = %d", i_chiplet_target.getChipletNumber());
        }

        FAPI_DBG("Target present = %u, Target functional = %u",
            static_cast<plat_target_handle_t>(i_chiplet_target.get()).getPresent(),
            static_cast<plat_target_handle_t>(i_chiplet_target.get()).getFunctional());

fapi_try_exit:
        return fapi2::current_err;
    }


    /// @brief Function to initialize the G_targets vector based on partial good
    ///      attributes ///  this will move to plat_target.H formally
    fapi2::ReturnCode plat_TargetsInit()
    {
        bool b_present = false;

        // Copy fixed section from SEEPROM to PIBMEM
        G_sbe_attrs.G_system_attrs = G_system_attributes;
        G_sbe_attrs.G_proc_chip_attrs = G_proc_chip_attributes;
        G_sbe_attrs.G_perv_attrs = G_perv_attributes;
        G_sbe_attrs.G_core_attrs = G_core_attributes;
        G_sbe_attrs.G_eq_attrs = G_eq_attributes;
        G_sbe_attrs.G_ex_attrs = G_ex_attributes;

        // Initialise global attribute pointers
        G_system_attributes_ptr = &(G_sbe_attrs.G_system_attrs);
        G_proc_chip_attributes_ptr = &(G_sbe_attrs.G_proc_chip_attrs);
        G_perv_attributes_ptr = &(G_sbe_attrs.G_perv_attrs);
        G_core_attributes_ptr = &(G_sbe_attrs.G_core_attrs);
        G_eq_attributes_ptr = &(G_sbe_attrs.G_eq_attrs);
        G_ex_attributes_ptr = &(G_sbe_attrs.G_ex_attrs);


        std::vector<fapi2::plat_target_handle_t>::iterator tgt_iter;
        uint32_t l_beginning_offset;

        FAPI_DBG("Platform target initialization.  Target Count = %u", TARGET_COUNT);
        /*
         * Initialize all entries to NULL
         */
        for (uint32_t i = 0; i < TARGET_COUNT; ++i)
        {
            G_vec_targets.push_back((fapi2::plat_target_handle_t)0x0);
        }

        /*
         * Chip Target is the first one
         */
        l_beginning_offset = CHIP_TARGET_OFFSET;

        fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> chip_target((createPlatTargetHandle<fapi2::TARGET_TYPE_PROC_CHIP>(0)));
        G_vec_targets.at(l_beginning_offset) = revle32((fapi2::plat_target_handle_t)(chip_target.get()));

        /*
         * Nest Targets - group 1
         */
        l_beginning_offset = NEST_GROUP1_TARGET_OFFSET;
        for (uint32_t i = 0; i < NEST_GROUP1_TARGET_COUNT; ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_PERV> target_name((createPlatTargetHandle<fapi2::TARGET_TYPE_PERV>(i)));

            // Determine if the chiplet is present and, thus, functional
            // via partial good attributes
            FAPI_TRY(plat_TargetPresent(target_name, b_present));

            G_vec_targets.at(l_beginning_offset+i) = revle32((fapi2::plat_target_handle_t)(target_name.get()));
        }

        /*
         * Memory Controller Synchronous (MCBIST) Targets
         */

        l_beginning_offset = MCBIST_TARGET_OFFSET;
        for (uint32_t i = 0; i < MCBIST_TARGET_COUNT; ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_MCBIST> target_name((createPlatTargetHandle<fapi2::TARGET_TYPE_MCBIST>(i)));
            fapi2::Target<fapi2::TARGET_TYPE_PERV> l_perv = target_name.getParent<fapi2::TARGET_TYPE_PERV>();

            // Determine if the chiplet is present and, thus, functional
            // via partial good attributes
            FAPI_TRY(plat_TargetPresent(l_perv, b_present));

            G_vec_targets.at(l_beginning_offset+i) = revle32((fapi2::plat_target_handle_t)(l_perv.get()));

        }

        /*
         * Nest Targets - group 2
         */
        l_beginning_offset = NEST_GROUP2_TARGET_OFFSET;
        for (uint32_t i = NEST_GROUP2_TARGET_OFFSET;
                i < (NEST_GROUP2_TARGET_OFFSET + NEST_GROUP2_TARGET_COUNT); ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_PERV> target_name((createPlatTargetHandle<fapi2::TARGET_TYPE_PERV>(i - 1)));

            // Determine if the chiplet is present and, thus, functional
            // via partial good attributes
            FAPI_TRY(plat_TargetPresent(target_name, b_present));

            G_vec_targets.at(i) = revle32((fapi2::plat_target_handle_t)(target_name.get()));
        }

        /*
         * Cache (EQ) Targets
         */
        l_beginning_offset = EQ_TARGET_OFFSET;
        for (uint32_t i = 0; i < EQ_TARGET_COUNT; ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_EQ> target_name((createPlatTargetHandle<fapi2::TARGET_TYPE_EQ>(i)));
            fapi2::Target<fapi2::TARGET_TYPE_PERV> l_perv = target_name.getParent<fapi2::TARGET_TYPE_PERV>();

            // Determine if the chiplet is present and, thus, functional
            // via partial good attributes
            FAPI_TRY(plat_TargetPresent(l_perv, b_present));

            G_vec_targets.at(l_beginning_offset+i) = revle32((fapi2::plat_target_handle_t)(l_perv.get()));
        }

        /*
         * Core (EC) Targets
         */

        l_beginning_offset = CORE_TARGET_OFFSET;
        for (uint32_t i = 0; i < CORE_TARGET_COUNT; ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_CORE> target_name((createPlatTargetHandle<fapi2::TARGET_TYPE_CORE>(i)));
            fapi2::Target<fapi2::TARGET_TYPE_PERV> l_perv = target_name.getParent<fapi2::TARGET_TYPE_PERV>();

            // Determine if the chiplet is present and, thus, functional
            // via partial good attributes
            FAPI_TRY(plat_TargetPresent(l_perv, b_present));

            G_vec_targets.at(l_beginning_offset+i) = revle32((fapi2::plat_target_handle_t)(l_perv.get()));
        }

        /*
         * EX Targets
         */

        l_beginning_offset = EX_TARGET_OFFSET;
        for (uint32_t i = 0; i < EX_TARGET_COUNT; ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_EX> target_name((createPlatTargetHandle<fapi2::TARGET_TYPE_EX>(i)));

            fapi2::Target<fapi2::TARGET_TYPE_EQ> l_parent = target_name.getParent<fapi2::TARGET_TYPE_EQ>();

            // Get the parent EQ's ATTR_PG
            uint16_t l_eqAttrPg = 0;
            FAPI_ATTR_GET(fapi2::ATTR_PG, l_parent.getParent<TARGET_TYPE_PERV>(), l_eqAttrPg);

            // Check if this EX's L2 and L3 regions are marked "good"
            if(0 == (i % EX_PER_QUAD))
            {
                // Bits 6 and 8 need to be 0
                l_eqAttrPg &= 0x0280;
            }
            else
            {
                // Bits 7 and 9 need to be 0
                l_eqAttrPg &= 0x0140;
            }

            if(0 == l_eqAttrPg)
            {
                static_cast<plat_target_handle_t&>(target_name.operator ()()).setPresent();
                static_cast<plat_target_handle_t&>(target_name.operator ()()).setFunctional(true);
            }
            G_vec_targets.at(l_beginning_offset+i) = revle32((fapi2::plat_target_handle_t)(target_name.get()));
        }

        /*
         * MCS Targets
         */

        l_beginning_offset = MCS_TARGET_OFFSET;
        for (uint32_t i = 0; i < MCS_TARGET_COUNT; ++i)
        {
            fapi2::Target<fapi2::TARGET_TYPE_MCS> target_name(createPlatTargetHandle<fapi2::TARGET_TYPE_MCS>(i));

            fapi2::Target<fapi2::TARGET_TYPE_PERV>
                l_nestTarget((plat_getTargetHandleByChipletNumber<TARGET_TYPE_PERV>(N3_CHIPLET - (MCS_PER_MCBIST * (i / MCS_PER_MCBIST)))));

            uint16_t l_attrPg = 0;

            FAPI_ATTR_GET(fapi2::ATTR_PG, l_nestTarget, l_attrPg);

            if(0 == (i / MCS_PER_MCBIST))
            {
                // Bit 10 needs to be 0 for MCS 0, 1
                l_attrPg &= 0x0020;
            }
            else
            {
                // Bit 9 needs to be 0 for MCS 2, 3
                l_attrPg &= 0x0040;
            }

            if(0 == l_attrPg)
            {
                static_cast<plat_target_handle_t&>(target_name.operator ()()).setPresent();
                static_cast<plat_target_handle_t&>(target_name.operator ()()).setFunctional(true);
            }

            G_vec_targets.at(l_beginning_offset+i) = revle32((fapi2::plat_target_handle_t)(target_name.get()));
        }


fapi_try_exit:
        return fapi2::current_err;
    }

    /// @brief Function to initialize the G_targets vector based on partial good
    ///        attributes
    fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> plat_getChipTarget()
    {

        // Get the chip specific target
        return ((fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>)G_vec_targets.at(0));
    }

    /// @brief Function to apply any gard records set (via
    //  ATTR_EQ_GARD/ATTR_EC_GARD) to mark corresponding targets non functional
    ReturnCode plat_ApplyGards()
    {
        uint8_t l_eqGards = 0;
        uint32_t l_ecGards = 0;
        static const uint32_t l_mask = 0x80000000;
        bool l_coreGroupNonFunctional = true;
        fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> l_chip = plat_getChipTarget();

        // Read the EQ and EC gard attributes from the chip target
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_EQ_GARD, l_chip, l_eqGards));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_EC_GARD, l_chip, l_ecGards));

        FAPI_DBG("ATTR_EQ_GARD:: 0x%08x", l_eqGards);
        FAPI_DBG("ATTR_EC_GARD:: 0x%08x", l_ecGards);

        // Iterate over the bits in EQ and EC gards, if set, mark the
        // corresponding target non-functional
        for(uint32_t l_idx = 0; l_idx < EQ_TARGET_COUNT; ++l_idx)
        {
            if((l_mask >> l_idx) & (((uint32_t)(l_eqGards)) << 24))
            {
                FAPI_DBG("Making %d'th EQ non-functional", l_idx);
                // EQ chiplet l_idx is to be marked non-functional
                fapi2::Target<fapi2::TARGET_TYPE_EQ> l_target = G_vec_targets.at(l_idx + EQ_TARGET_OFFSET);
                static_cast<plat_target_handle_t&>(l_target.operator ()()).setFunctional(false);
                G_vec_targets.at(l_idx + EQ_TARGET_OFFSET) = l_target.get();
            }
        }

        for(uint32_t l_idx = 0; l_idx < CORE_TARGET_COUNT; ++l_idx)
        {
            if((l_mask >> l_idx) & (l_ecGards))
            {
                FAPI_DBG("Making %d'th EC non-functional", l_idx);
                // EC chiplet l_idx is to be marked non-functional
                fapi2::Target<fapi2::TARGET_TYPE_CORE> l_target = G_vec_targets.at(l_idx + CORE_TARGET_OFFSET);
                static_cast<plat_target_handle_t&>(l_target.operator ()()).setFunctional(false);
                G_vec_targets.at(l_idx + CORE_TARGET_OFFSET) = l_target.get();
            }
            else
            {
                l_coreGroupNonFunctional = false;
            }
            if(0 == ((l_idx + 1) % CORES_PER_EX))
            {
                if(true == l_coreGroupNonFunctional)
                {
                    // All cores of this group are non-functional. Mark the EX
                    // non-functional too.
                    G_vec_targets.at((l_idx / CORES_PER_EX) + EX_TARGET_OFFSET).fields.functional = false;
                }
                // Reset ex non-functional flag for the next group
                l_coreGroupNonFunctional = true;
            }
        }
fapi_try_exit:
        return fapi2::current_err;
    }

} // fapi2
OpenPOWER on IntegriCloud