summaryrefslogtreecommitdiffstats
path: root/src/hwpf/src/plat/plat_utils.C
blob: f9bbea9addfd77a3aa5f81f926b6b69138015380 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/hwpf/src/plat/plat_utils.C $                              */
/*                                                                        */
/* OpenPOWER sbe Project                                                  */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2015,2016                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

/**
 *  @file plat_utils.C
 *  @brief Implements fapi2 common utilities
 */

#include <stdint.h>
#include <fapi2_attribute_service.H>
#include <attribute_ids.H>
#include <return_code.H>
#include <plat_trace.H>
#include <target.H>

namespace fapi2
{

    /// @brief Delay this thread.
    ///
    ReturnCode delay(uint64_t i_nanoSeconds, uint64_t i_simCycles, bool i_fixed /* = false*/)
    {
        // void statements to keep the compiler from complaining
        // about unused variables.
        static_cast<void>(i_nanoSeconds);
        static_cast<void>(i_simCycles);


#ifndef __FAPI_DELAY_SIM__

#define PK_NANOSECONDS_SBE(n) ((PkInterval)((PK_BASE_FREQ_HZ * (PkInterval)(n)) / (1024*1024*1024)))

        PkTimebase  target_time;
        PkTimebase  current_time;
        PkMachineContext  ctx;


        // Only execute if nanoSeconds is non-zero (eg a real wait)
        if (i_nanoSeconds)
        {
            // @todo For SBE applications, the time accuracy can be traded off
            // for space with the PK_NANOSECONDS_SBE implemenation as the compiler
            // use shift operations for the unit normalizing division.

            // The critical section enter/exit set is done to ensure the timebase
            // operations are non-interrupible.

            pk_critical_section_enter(&ctx);
            //
            // The "accurate" version is the next line.
            // target_time = pk_timebase32_get() + PK_INTERVAL_SCALE(PK_NANOSECONDS(i_nanoSeconds));

            target_time = pk_timebase32_get() + PK_INTERVAL_SCALE(PK_NANOSECONDS_SBE(i_nanoSeconds));

            do
            {
                current_time = pk_timebase32_get();
            } while (target_time > current_time);

            pk_critical_section_exit(&ctx);


        }
#else

        // Execute a tight loop that simply counts down the i_simCycles
        // value.

        // @todo This can might be optimized with a fused compare branch loop
        //    Note, though, that subwibnz instruction is optimized for word
        //      operations.   i_simCycles are uint64_t values so the upper
        //      word values needs to be accounted for.
        //
        //  Need to determine if this optimization is worth the effort.

#ifndef __FAPI_DELAY_PPE_SIM_CYCLES__
#define __FAPI_DELAY_PPE_SIM_CYCLES__ 8
#endif

        static const uint8_t NUM_OVERHEAD_INSTRS = 15;
        static const uint8_t NUM_LOOP_INSTRS = 4;
        static const uint64_t MIN_DELAY_CYCLES =
                ((NUM_OVERHEAD_INSTRS + NUM_LOOP_INSTRS) * __FAPI_DELAY_PPE_SIM_CYCLES__);

        uint64_t l_adjusted_simcycles;

        if (i_simCycles < MIN_DELAY_CYCLES)
            l_adjusted_simcycles = MIN_DELAY_CYCLES;
        else
            l_adjusted_simcycles = i_simCycles;

        uint64_t delay_loop_count =
            ((l_adjusted_simcycles - (NUM_OVERHEAD_INSTRS * __FAPI_DELAY_PPE_SIM_CYCLES__)) /
                        (NUM_LOOP_INSTRS * __FAPI_DELAY_PPE_SIM_CYCLES__));


        for (auto i = delay_loop_count; i > 0; --i) {}

#endif

        // replace with platform specific implementation
        return FAPI2_RC_SUCCESS;
    }

    ///
    /// @brief Queries the ATTR_NAME and ATTR_EC attributes
    ///
    ReturnCode queryChipEcAndName(
        const Target < fapi2::TARGET_TYPE_PROC_CHIP > & i_target,
        fapi2::ATTR_NAME_Type& o_chipName, fapi2::ATTR_EC_Type& o_chipEc )
    {

        ReturnCode l_rc = FAPI_ATTR_GET_PRIVILEGED(fapi2::ATTR_NAME, i_target, o_chipName);

        if ( l_rc != FAPI2_RC_SUCCESS )
        {
            FAPI_ERR("queryChipEcFeature: error getting chip name");
        }
        else
        {
            l_rc = FAPI_ATTR_GET_PRIVILEGED(fapi2::ATTR_EC, i_target, o_chipEc);

            if ( l_rc != FAPI2_RC_SUCCESS )
            {
                FAPI_ERR("queryChipEcFeature: error getting chip ec");
            }
        }

        return l_rc;
    }
};

#ifndef _BIG_ENDIAN

/// Byte-reverse a 16-bit integer if on a little-endian machine

uint16_t
revle16(uint16_t i_x)
{
    uint16_t rx;
    uint8_t *pix = (uint8_t*)(&i_x);
    uint8_t *prx = (uint8_t*)(&rx);

    prx[0] = pix[1];
    prx[1] = pix[0];

    return rx;
}

/// Byte-reverse a 32-bit integer if on a little-endian machine

uint32_t
revle32(uint32_t i_x)
{
    uint32_t rx;
    uint8_t *pix = (uint8_t*)(&i_x);
    uint8_t *prx = (uint8_t*)(&rx);

    prx[0] = pix[3];
    prx[1] = pix[2];
    prx[2] = pix[1];
    prx[3] = pix[0];

    return rx;
}


/// Byte-reverse a 64-bit integer if on a little-endian machine

uint64_t
revle64(const uint64_t i_x)
{
    uint64_t rx;
    uint8_t *pix = (uint8_t*)(&i_x);
    uint8_t *prx = (uint8_t*)(&rx);

    prx[0] = pix[7];
    prx[1] = pix[6];
    prx[2] = pix[5];
    prx[3] = pix[4];
    prx[4] = pix[3];
    prx[5] = pix[2];
    prx[6] = pix[1];
    prx[7] = pix[0];

    return rx;
}
#endif

OpenPOWER on IntegriCloud