summaryrefslogtreecommitdiffstats
path: root/sbe/sbefw/sbecmdmemaccess.C
blob: 6a55e66cc956d9f12316c1c2aa057f78845c77f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 * @file: ppe/sbe/sbefw/sbecmdmemaccess.C
 *
 * @brief This file contains the SBE Memory Access chipOps
 *
 */

#include "sbecmdmemaccess.H"
#include "sbefifo.H"
#include "sbe_sp_intf.H"
#include "sbetrace.H"
#include "sbeFifoMsgUtils.H"

#include "fapi2.H"

#include "p9_pba_access.H"
#include "p9_pba_setup.H"

using namespace fapi2;

///////////////////////////////////////////////////////////////////////
// @brief sbeMemAccess_Wrap Memory Access Wrapper function
//
// @param [in] i_flagGetOrPut Flag to indicate the memory Access Type
//                 true  : GetMem ChipOp
//                 false : PutMem ChipOp
//
// @return  RC from the underlying FIFO utility
///////////////////////////////////////////////////////////////////////
uint32_t sbeMemAccess_Wrap(const bool i_flagGetOrPut)
{
    #define SBE_FUNC " sbeMemAccess_Wrap "
    SBE_ENTER(SBE_FUNC);

    uint32_t l_rc = SBE_SEC_OPERATION_SUCCESSFUL;

    ReturnCode l_fapiRc = FAPI2_RC_SUCCESS;
    sbeRespGenHdr_t l_respHdr;
    l_respHdr.init();
    sbeResponseFfdc_t l_ffdc;

    // Create an instance of Memory Access ChipOp structure
    sbeMemAccessReqMsgHdr_t l_req = {0};

    // @TODO via RTC: 128982
    //       ADU support
    //       Handle ECC data

    // Offload the common header from
    // the Upstream FIFO
    bool l_eot = (i_flagGetOrPut)? true : false;
    uint32_t l_len2dequeue  = sizeof(l_req) / sizeof(uint32_t);
    l_rc = sbeUpFifoDeq_mult (l_len2dequeue, (uint32_t *)&l_req, l_eot);

    SBE_DEBUG(SBE_FUNC " flags[0x%08X], addrHi[0x%08X],"
                       " addrLo[0x%08X], len[[0x%08X]",
                       l_req.flags, l_req.addrHi,
                       l_req.addrLo, l_req.len);

    // Calculate the PBA address from the given input
    uint64_t l_pbaAddr = l_req.getPbaAddr();

    // @TODO via RTC: 128982
    //       Handle Invalid length (0) and Invalid Flags:
    //       Primary status code could be SBE_PRI_INVALID_DATA,
    //       but, what would be the secondary status code?

    // @TODO via RTC: 128982
    //       ADU support
    //       Auto Increment Flag is applicable only for ADU operations
    // bool l_isAutoIncr = l_req.isAutoIncrModeSet();

    // Determine the access flags
    bool l_isPBA = l_req.isPbaFlagSet();
    uint32_t l_isFastMode = l_req.isFastModeSet();

    uint32_t l_numGranules = 0;
    uint64_t l_numCacheLineCompleted = 0;

    // Input Data length in alignment with PBA Cacheline (128 Bytes)
    uint64_t l_dataLenCacheLineAligned = l_req.getDataLenPbaCacheAlign();

    Target<fapi2::TARGET_TYPE_PROC_CHIP> l_proc =
                              plat_getChipTarget();
    // @TODO via RTC: 128982
    //       Accept Ex target from input data
    Target<fapi2::TARGET_TYPE_EX > l_ex((uint64_t)7);

    while (l_numCacheLineCompleted < l_dataLenCacheLineAligned)
    {
        // If FIFO access failure
        if (l_rc != SBE_SEC_OPERATION_SUCCESSFUL)
        {
            // Let command processor routine to handle the RC.
            break;
        }

        if (l_isPBA)
        {
            // Call the PBA setup HWP
            l_fapiRc = p9_pba_setup (l_proc,
                                     l_ex,
                                     l_pbaAddr,
                                     i_flagGetOrPut,
                                     l_isFastMode,
                                     l_numGranules);
        }
        else
        {
            // @TODO via RTC: 128982
            //       ADU support
            //       Call p9_*_setup for ADU operations
            l_rc = SBE_SEC_COMMAND_NOT_SUPPORTED;
            break;
        }

        // if p9_pba_setup returns error
        if( l_fapiRc != FAPI2_RC_SUCCESS )
        {
            SBE_ERROR(SBE_FUNC" p9_pba_setup Failed");

             // Respond with HWP FFDC
            l_respHdr.setStatus( SBE_PRI_GENERIC_EXECUTION_FAILURE,
                                 SBE_SEC_GENERIC_FAILURE_IN_EXECUTION );
            l_ffdc.setRc(l_fapiRc);

            break;
        }

        SBE_DEBUG(SBE_FUNC "l_numGranules=[0x%08X]", l_numGranules);
        uint64_t l_numAccesses = 0;

        if ((l_numGranules != 0) &&
            (l_numGranules <
            (l_dataLenCacheLineAligned - l_numCacheLineCompleted)))
        {
            l_numAccesses = l_numGranules;
        }
        else
        {
            l_numAccesses =
                l_dataLenCacheLineAligned - l_numCacheLineCompleted;
        }

        uint64_t l_numCurrentAccess = 0;
        while (l_numCurrentAccess < l_numAccesses)
        {
            bool l_lastGranule = false;
            bool l_firstGranule = false;

            // @TODO via RTC: 128982
            //       ADU support
            //       Need 8Byte alignment for ADU operations
            uint32_t l_dataFifo[32] ; // 128Byte granule for PBA access

            if (l_numCurrentAccess == (l_numGranules - 1))
            {
                l_lastGranule = true;
            }

            if (l_numCurrentAccess == 0)
            {
                l_firstGranule = true;
            }

            // If this is putmem request,
            // read input data from the upstream FIFO
            if (!i_flagGetOrPut)
            {
                // @TODO via RTC: 128982
                //       Use a granule variable
                l_len2dequeue = 32;

                l_rc = sbeUpFifoDeq_mult (l_len2dequeue,
                                         (uint32_t *)&l_dataFifo,
                                          false);

                // If there was an underlying FIFO operation failure
                if (l_rc != SBE_SEC_OPERATION_SUCCESSFUL)
                {
                    // Let command processor routine to handle the RC.
                    break;
                }
            }

            // Call PBA access HWP for PBA write or read request
            l_fapiRc = p9_pba_access ( l_proc, l_pbaAddr,
                                       i_flagGetOrPut,
                                       l_isFastMode,
                                       l_firstGranule,
                                       l_lastGranule,
                                       (uint8_t *)&l_dataFifo);

            // if p9_pba_access returns error
            if( l_fapiRc != FAPI2_RC_SUCCESS )
            {
                SBE_ERROR(SBE_FUNC" p9_pba_access Failed");

                // Respond with HWP FFDC
                l_respHdr.setStatus( SBE_PRI_GENERIC_EXECUTION_FAILURE,
                                 SBE_SEC_GENERIC_FAILURE_IN_EXECUTION );
                l_ffdc.setRc(l_fapiRc);

                break;
            }

            // If this is a getmem request,
            // need to push the data into the downstream FIFO
            if (i_flagGetOrPut)
            {
                // Break out on underlying FIFO operational error
                if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
                {
                    break;
                }

                uint32_t l_len = 32;
                l_rc = sbeDownFifoEnq_mult (l_len, (uint32_t *)&l_dataFifo);

                // If FIFO failure
                if (l_rc != SBE_SEC_OPERATION_SUCCESSFUL)
                {
                    // Let command processor routine to handle the RC.
                    break;
                }
            }
            l_numCacheLineCompleted++;
            l_numCurrentAccess++;

        } // End inner while loop

        if ( (l_fapiRc != FAPI2_RC_SUCCESS) ||
             (l_rc != SBE_SEC_OPERATION_SUCCESSFUL) )
        {
            break;
        }

        // @TODO via RTC: 128982
        //       Use a granule variable
        l_pbaAddr += 128 * l_numCacheLineCompleted;

    } // End..while (l_numCacheLineCompleted < l_dataLenCacheLineAligned);

    // Now build and enqueue response into downstream FIFO
    do
    {
        // If there was a FIFO error, will skip sending the response,
        // instead give the control back to the command processor thread
        if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
        {
            break;
        }

        l_len2dequeue = 0;
        // If there was a HWP failure for putmem request,
        // need to Flush out upstream FIFO, until EOT arrives
        if (!i_flagGetOrPut)
        {
            if ( l_fapiRc != FAPI2_RC_SUCCESS )
            {
                l_rc = sbeUpFifoDeq_mult(l_len2dequeue, NULL,
                                     true, true);
            }
            // For other success paths, just attempt to offload
            // the next entry, which is supposed to be the EOT entry
            else
            {
                l_rc = sbeUpFifoDeq_mult(l_len2dequeue, NULL, true);
            }
        }

        // Break out on underlying FIFO operational error
        if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
        {
            break;
        }

        // first enqueue the length of data actually written
        uint32_t l_len = 1;
        uint32_t l_respLen = l_numCacheLineCompleted*8*16;
        l_rc = sbeDownFifoEnq_mult ( l_len, &l_respLen );

        if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
        {
            break;
        }

        // Now enqueue the minimum response header
        uint32_t l_dist2Hdr = 1;
        l_len = sizeof(l_respHdr) / sizeof(uint32_t);
        l_rc = sbeDownFifoEnq_mult ( l_len, reinterpret_cast<uint32_t *>
                                                 (&l_respHdr) );

        if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
        {
            break;
        }

        l_dist2Hdr += l_len;

        // Enqueue FFDC data if there is one
        if( l_ffdc.getRc() )
        {
            l_len = sizeof(l_ffdc) / sizeof(uint32_t);
            l_rc = sbeDownFifoEnq_mult ( l_len,
                        reinterpret_cast<uint32_t *>(&l_ffdc) );
            if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
            {
                break;
            }

            l_dist2Hdr += l_len;

            // @TODO via 129076:
            //       Need to add FFDC data as well.
        }

        l_len = sizeof(l_dist2Hdr) / sizeof(uint32_t);
        l_rc = sbeDownFifoEnq_mult ( l_len, &l_dist2Hdr);

        if ( l_rc != SBE_SEC_OPERATION_SUCCESSFUL )
        {
            break;
        }

    } while(false);

    return l_rc;
    #undef SBE_FUNC
}

//////////////////////////////////////////////////////
//////////////////////////////////////////////////////
uint32_t sbePutMem (uint8_t *i_pArg)
{
    #define SBE_FUNC " sbePutMem "
    SBE_ENTER(SBE_FUNC);

    return sbeMemAccess_Wrap (false);

    #undef SBE_FUNC
}

/////////////////////////////////////////////////////
//////////////////////////////////////////////////////
uint32_t sbeGetMem (uint8_t *i_pArg)
{
    #define SBE_FUNC " sbeGetMem "
    SBE_ENTER(SBE_FUNC);

    return sbeMemAccess_Wrap (true);

    #undef SBE_FUNC
}


OpenPOWER on IntegriCloud