/* IBM_PROLOG_BEGIN_TAG */ /* This is an automatically generated prolog. */ /* */ /* $Source: src/hwpf/src/plat/plat_utils.C $ */ /* */ /* OpenPOWER sbe Project */ /* */ /* Contributors Listed Below - COPYRIGHT 2015,2016 */ /* [+] International Business Machines Corp. */ /* */ /* */ /* Licensed under the Apache License, Version 2.0 (the "License"); */ /* you may not use this file except in compliance with the License. */ /* You may obtain a copy of the License at */ /* */ /* http://www.apache.org/licenses/LICENSE-2.0 */ /* */ /* Unless required by applicable law or agreed to in writing, software */ /* distributed under the License is distributed on an "AS IS" BASIS, */ /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */ /* implied. See the License for the specific language governing */ /* permissions and limitations under the License. */ /* */ /* IBM_PROLOG_END_TAG */ /** * @file plat_utils.C * @brief Implements fapi2 common utilities */ #include #include #include #include #include #include namespace fapi2 { /// @brief Delay this thread. /// ReturnCode delay(uint64_t i_nanoSeconds, uint64_t i_simCycles, bool i_fixed /* = false*/) { // void statements to keep the compiler from complaining // about unused variables. static_cast(i_nanoSeconds); static_cast(i_simCycles); #ifndef __FAPI_DELAY_SIM__ #define PK_NANOSECONDS_SBE(n) ((PkInterval)((PK_BASE_FREQ_HZ * (PkInterval)(n)) / (1024*1024*1024))) PkTimebase target_time; PkTimebase current_time; PkMachineContext ctx; // Only execute if nanoSeconds is non-zero (eg a real wait) if (i_nanoSeconds) { // @todo For SBE applications, the time accuracy can be traded off // for space with the PK_NANOSECONDS_SBE implemenation as the compiler // use shift operations for the unit normalizing division. // The critical section enter/exit set is done to ensure the timebase // operations are non-interrupible. pk_critical_section_enter(&ctx); // // The "accurate" version is the next line. // target_time = pk_timebase32_get() + PK_INTERVAL_SCALE(PK_NANOSECONDS(i_nanoSeconds)); target_time = pk_timebase32_get() + PK_INTERVAL_SCALE(PK_NANOSECONDS_SBE(i_nanoSeconds)); do { current_time = pk_timebase32_get(); } while (target_time > current_time); pk_critical_section_exit(&ctx); } #else // Execute a tight loop that simply counts down the i_simCycles // value. // @todo This can might be optimized with a fused compare branch loop // Note, though, that subwibnz instruction is optimized for word // operations. i_simCycles are uint64_t values so the upper // word values needs to be accounted for. // // Need to determine if this optimization is worth the effort. #ifndef __FAPI_DELAY_PPE_SIM_CYCLES__ #define __FAPI_DELAY_PPE_SIM_CYCLES__ 8 #endif static const uint8_t NUM_OVERHEAD_INSTRS = 15; static const uint8_t NUM_LOOP_INSTRS = 4; static const uint64_t MIN_DELAY_CYCLES = ((NUM_OVERHEAD_INSTRS + NUM_LOOP_INSTRS) * __FAPI_DELAY_PPE_SIM_CYCLES__); uint64_t l_adjusted_simcycles; if (i_simCycles < MIN_DELAY_CYCLES) l_adjusted_simcycles = MIN_DELAY_CYCLES; else l_adjusted_simcycles = i_simCycles; uint64_t delay_loop_count = ((l_adjusted_simcycles - (NUM_OVERHEAD_INSTRS * __FAPI_DELAY_PPE_SIM_CYCLES__)) / (NUM_LOOP_INSTRS * __FAPI_DELAY_PPE_SIM_CYCLES__)); for (auto i = delay_loop_count; i > 0; --i) { // Force compiler not to optimize for loop asm(""); } #endif // replace with platform specific implementation return FAPI2_RC_SUCCESS; } /// /// @brief Queries the ATTR_NAME and ATTR_EC attributes /// ReturnCode queryChipEcAndName( const Target < fapi2::TARGET_TYPE_PROC_CHIP > & i_target, fapi2::ATTR_NAME_Type& o_chipName, fapi2::ATTR_EC_Type& o_chipEc ) { ReturnCode l_rc = FAPI_ATTR_GET_PRIVILEGED(fapi2::ATTR_NAME, i_target, o_chipName); if ( l_rc != FAPI2_RC_SUCCESS ) { FAPI_ERR("queryChipEcFeature: error getting chip name"); } else { l_rc = FAPI_ATTR_GET_PRIVILEGED(fapi2::ATTR_EC, i_target, o_chipEc); if ( l_rc != FAPI2_RC_SUCCESS ) { FAPI_ERR("queryChipEcFeature: error getting chip ec"); } } return l_rc; } }; #ifndef _BIG_ENDIAN /// Byte-reverse a 16-bit integer if on a little-endian machine uint16_t revle16(uint16_t i_x) { uint16_t rx; uint8_t *pix = (uint8_t*)(&i_x); uint8_t *prx = (uint8_t*)(&rx); prx[0] = pix[1]; prx[1] = pix[0]; return rx; } /// Byte-reverse a 32-bit integer if on a little-endian machine uint32_t revle32(uint32_t i_x) { uint32_t rx; uint8_t *pix = (uint8_t*)(&i_x); uint8_t *prx = (uint8_t*)(&rx); prx[0] = pix[3]; prx[1] = pix[2]; prx[2] = pix[1]; prx[3] = pix[0]; return rx; } /// Byte-reverse a 64-bit integer if on a little-endian machine uint64_t revle64(const uint64_t i_x) { uint64_t rx; uint8_t *pix = (uint8_t*)(&i_x); uint8_t *prx = (uint8_t*)(&rx); prx[0] = pix[7]; prx[1] = pix[6]; prx[2] = pix[5]; prx[3] = pix[4]; prx[4] = pix[3]; prx[5] = pix[2]; prx[6] = pix[1]; prx[7] = pix[0]; return rx; } #endif