summaryrefslogtreecommitdiffstats
path: root/src/sbefw/sbecmdmemaccess.C
diff options
context:
space:
mode:
Diffstat (limited to 'src/sbefw/sbecmdmemaccess.C')
-rw-r--r--src/sbefw/sbecmdmemaccess.C778
1 files changed, 778 insertions, 0 deletions
diff --git a/src/sbefw/sbecmdmemaccess.C b/src/sbefw/sbecmdmemaccess.C
new file mode 100644
index 00000000..942bb72d
--- /dev/null
+++ b/src/sbefw/sbecmdmemaccess.C
@@ -0,0 +1,778 @@
+/* IBM_PROLOG_BEGIN_TAG */
+/* This is an automatically generated prolog. */
+/* */
+/* $Source: src/sbefw/sbecmdmemaccess.C $ */
+/* */
+/* OpenPOWER sbe Project */
+/* */
+/* Contributors Listed Below - COPYRIGHT 2015,2016 */
+/* */
+/* */
+/* Licensed under the Apache License, Version 2.0 (the "License"); */
+/* you may not use this file except in compliance with the License. */
+/* You may obtain a copy of the License at */
+/* */
+/* http://www.apache.org/licenses/LICENSE-2.0 */
+/* */
+/* Unless required by applicable law or agreed to in writing, software */
+/* distributed under the License is distributed on an "AS IS" BASIS, */
+/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
+/* implied. See the License for the specific language governing */
+/* permissions and limitations under the License. */
+/* */
+/* IBM_PROLOG_END_TAG */
+/*
+ * @file: ppe/sbe/sbefw/sbecmdmemaccess.C
+ *
+ * @brief This file contains the SBE Memory Access chipOps
+ *
+ */
+
+#include "sbecmdmemaccess.H"
+#include "sbefifo.H"
+#include "sbe_sp_intf.H"
+#include "sbetrace.H"
+#include "sbeFifoMsgUtils.H"
+#include "sbeutil.H"
+
+#include "fapi2.H"
+
+#include "p9_pba_setup.H"
+#include "p9_adu_setup.H"
+#include "p9_pba_access.H"
+#include "p9_adu_access.H"
+
+
+using namespace fapi2;
+
+// Buffer requirement for ADU and PBA on the stack
+static const uint32_t MAX_ADU_BUFFER = 40;
+static const uint32_t MAX_PBA_BUFFER = 32;
+// PBA / ADU Granule size as per the HWP Requirement
+static const uint32_t PBA_GRAN_SIZE_BYTES = 128;
+static const uint32_t ADU_GRAN_SIZE_BYTES = 8;
+
+// Multiplier factor with respect to the FIFO length
+static const uint32_t ADU_SIZE_MULTIPLIER_FOR_LEN_ALIGNMENT = 2;
+static const uint32_t PBA_SIZE_MULTIPLIER_FOR_LEN_ALIGNMENT = 32;
+
+//Default EX Target ChipletId to be used in PBA by default
+static const uint32_t PBA_DEFAULT_EX_CHIPLET_ID = 7;
+
+/**
+ * @brief static definition of parameters passed in adu chip-ops
+ */
+static const uint32_t SBE_ADU_LOCK_TRIES = 3;
+
+// Transaction size (choice is 1, 2, 4, or 8)
+// 0b00: TSIZE_1
+// 0b01: TSIZE_2
+// 0b10: TSIZE_4
+// 0b11: TSIZE_8
+static const uint32_t SBE_ADU_TRANSACTION_SIZE = 3;
+static const bool SBE_ADU_LEAVE_DIRTY_BOOL = false;
+static const bool SBE_ADU_LOCK_PICK_BOOL = false;
+
+/**
+ * @brief Mask used to build the Flag struct for ADU chip-op
+ **/
+static const uint32_t ADU_LOCK_TRIES_SHIFT = 16;
+static const uint32_t ADU_TRANSACTION_SIZE_SHIFT = 20;
+static const uint32_t ADU_ECC_OVERRIDE_BIT_SHIFT = 22;
+static const uint32_t ADU_ECC_REQUIRED_BIT_SHIFT = 23;
+static const uint32_t ADU_ITAG_REQUIRED_BIT_SHIFT = 24;
+static const uint32_t ADU_FAST_MODE_SHIFT = 25;
+static const uint32_t ADU_LEAVE_DIRTY_SHIFT = 26;
+static const uint32_t ADU_LOCK_PICK_SHIFT = 27;
+static const uint32_t ADU_AUTO_INCR_SHIFT = 28;
+static const uint32_t CACHE_INHIBIT_MODE_SHIFT = 29;
+
+// Fast Mode bit shift for PBA
+static const uint32_t PBA_FAST_MODE_SHIFT = 31;
+
+///////////////////////////////////////////////////////////////////////
+// @brief align4ByteWordLength - Internal Method to this file
+// Align the length passed and return number of words
+//
+// @param [in] i_len, length pass from user in Bytes
+//
+// @return Number of words (number of 4byte length)
+///////////////////////////////////////////////////////////////////////
+inline uint32_t align4ByteWordLength(uint32_t i_len)
+{
+ if(i_len % 4 != 0)
+ {
+ i_len = i_len + (4 - (i_len % 4));
+ }
+ return(i_len/4);
+}
+
+///////////////////////////////////////////////////////////////////////
+// @brief calInterAduLenForUpFifo - Internal Method to this file
+// Calculate Intermediate Adu Data length for Upstream Fifo
+//
+// @param [in] i_mod, Modulus number from user, (from numGranules % 4)
+// could be any values from 1,2,3
+// @param [in] i_itag, Itag flag
+// @param [in] i_ecc, Ecc flag
+//
+// @return length in bytes for intermediate ADU length
+///////////////////////////////////////////////////////////////////////
+inline uint32_t calInterAduLenForUpFifo(uint8_t i_mod, bool i_itag, bool i_ecc)
+{
+ //Default init length with either Ecc or Itag
+ uint32_t l_len =
+ ((ADU_GRAN_SIZE_BYTES + 1) * (1 + i_mod));
+ // If ECC and iTag bit is also part of the buffer
+ if(i_itag && i_ecc)
+ {
+ l_len = l_len + (1 + i_mod);
+ }
+ return (l_len);
+}
+
+///////////////////////////////////////////////////////////////////////
+// @brief sbeAduLenInUpStreamFifo - Internal Method to this file
+// Calculate the Final Size which is write/read to/from HWP
+//
+// @param [in] i_numGranules, Number of granules read/write
+// @param [in] i_itag, Itag flag
+// @param [in] i_ecc, Ecc flag
+//
+// @return Length in bytes for ADU to be put in Upstream FIFO
+///////////////////////////////////////////////////////////////////////
+inline uint32_t sbeAduLenInUpStreamFifo(uint32_t i_numGranules,
+ bool i_itag,
+ bool i_ecc)
+{
+ uint32_t l_respLen = i_numGranules * ADU_GRAN_SIZE_BYTES;
+ if(i_itag)
+ {
+ // Add one byte for Itag for Each Granule Completed
+ l_respLen = l_respLen + i_numGranules;
+ }
+ if(i_ecc)
+ {
+ // Add one byte for Ecc for Each Granule Completed
+ l_respLen = l_respLen + i_numGranules;
+ }
+ return l_respLen;
+}
+
+///////////////////////////////////////////////////////////////////////
+// @brief flushUpstreamFifo - Internal Method to this file, to flush
+// out the upstream fifo
+//
+// @param [in] i_fapiRc, Fapi RC
+//
+// @return RC from the underlying FIFO utility
+///////////////////////////////////////////////////////////////////////
+inline uint32_t flushUpstreamFifo (const uint32_t &i_fapiRc)
+{
+ uint32_t l_len2dequeue = 0;
+ uint32_t l_rc = SBE_SEC_OPERATION_SUCCESSFUL;
+ if ( i_fapiRc != FAPI2_RC_SUCCESS )
+ {
+ l_rc = sbeUpFifoDeq_mult(l_len2dequeue, NULL,
+ true, true);
+ }
+ // For other success paths, just attempt to offload
+ // the next entry, which is supposed to be the EOT entry
+ else
+ {
+ l_rc = sbeUpFifoDeq_mult(l_len2dequeue, NULL, true);
+ }
+ return l_rc;
+}
+
+
+///////////////////////////////////////////////////////////////////////
+// @brief constructAduFlag - Internal Method to this file, to construct
+// ADU flag as the HWP expects
+//
+// @param [in] i_hdr, Message Request Header
+// @param [in] i_isFlagRead, Read/Write Flag
+//
+// @return Constructed ADU Flag
+///////////////////////////////////////////////////////////////////////
+uint32_t constructAduFlag(const sbeMemAccessReqMsgHdr_t & i_hdr,
+ const bool i_isFlagRead)
+{
+ #define SBE_FUNC " constructAduFlag"
+
+ // Fast Mode / Ecc mode / Cache Inhibit Mode / Auto Increment
+ // required in ADU operations.
+ bool l_isFastMode = i_hdr.isFastModeSet();
+ bool l_isCacheInhibitMode = i_hdr.isCacheInhibitModeFlagSet();
+ bool l_isItagBit = i_hdr.isItagFlagSet();
+ bool l_isAutoIncr = i_hdr.isAutoIncrModeSet();
+ bool l_isEccRequiredMode = false;
+ bool l_isEccOverrideMode = false;
+
+ if(!i_isFlagRead) // ECC override in write mode
+ {
+ l_isEccOverrideMode = i_hdr.isEccOverrideFlagSet();
+ if(l_isEccOverrideMode)
+ {
+ l_isEccRequiredMode = true;
+ }
+ }
+ else // ECC required in read mode
+ {
+ l_isEccRequiredMode = i_hdr.isEccFlagSet();
+ }
+
+ // Construct the flag required for adu setup
+ uint32_t l_aduSetupFlag =
+ ( (l_isCacheInhibitMode << CACHE_INHIBIT_MODE_SHIFT) |
+ // 3-bit of Cache mode placed in 31-30-29 bits
+ (l_isAutoIncr << ADU_AUTO_INCR_SHIFT) |
+ // 1-bit Auto increment placed at 28th bit
+ (SBE_ADU_LOCK_PICK_BOOL << ADU_LOCK_PICK_SHIFT) |
+ // 1-bit pick lock placed at 27th bit
+ (SBE_ADU_LEAVE_DIRTY_BOOL << ADU_LEAVE_DIRTY_SHIFT) |
+ // 1-bit leave dirty placed at 26th bit
+ (l_isFastMode << ADU_FAST_MODE_SHIFT) |
+ // 1-bit Fast mode placed at 25th bit
+ (l_isItagBit << ADU_ITAG_REQUIRED_BIT_SHIFT) |
+ // 1-bit itag placed at 24th bit
+ (l_isEccRequiredMode << ADU_ECC_REQUIRED_BIT_SHIFT) |
+ // 1-bit ecc required at 23rd bit
+ (l_isEccOverrideMode << ADU_ECC_OVERRIDE_BIT_SHIFT) |
+ // 1-bit ecc override at 22nd bit
+ (SBE_ADU_TRANSACTION_SIZE << ADU_TRANSACTION_SIZE_SHIFT) |
+ // 2-bit Transcation size at 21-20th bits
+ (SBE_ADU_LOCK_TRIES << ADU_LOCK_TRIES_SHIFT) );
+ // 4-bit Lock Tries at 19-18-17-16 bits
+
+ SBE_INFO(SBE_FUNC "Cache[%d] Itag[%d] AutoIncr[%d] FastMode[%d] ",
+ l_isCacheInhibitMode,l_isItagBit,l_isAutoIncr,l_isFastMode);
+ SBE_INFO(SBE_FUNC "EccRequiredMode[%d] EccOverrideMode[%d] EccOverrideByte"
+ "[0x%02X] AduSetupFlag[0x%04X]",l_isEccRequiredMode,l_isEccOverrideMode,
+ i_hdr.eccByte, l_aduSetupFlag);
+
+ return (l_aduSetupFlag);
+ #undef SBE_FUNC
+}
+
+///////////////////////////////////////////////////////////////////////
+// @brief processPbaRequest - Internal Method to this file,
+// To process the PBA Access request
+//
+// @param [in] i_hdr, Message Request Header
+// @param [in] i_isFlagRead, Read/Write Flag
+//
+// @return RC from the method
+///////////////////////////////////////////////////////////////////////
+uint32_t processPbaRequest(const sbeMemAccessReqMsgHdr_t &i_hdr,
+ const bool i_isFlagRead)
+{
+ #define SBE_FUNC " processPbaRequest "
+ SBE_ENTER(SBE_FUNC);
+ uint32_t l_rc = SBE_SEC_OPERATION_SUCCESSFUL;
+
+ ReturnCode l_fapiRc = FAPI2_RC_SUCCESS;
+ sbeRespGenHdr_t l_respHdr;
+ l_respHdr.init();
+ sbeResponseFfdc_t l_ffdc;
+
+ // Default for PBA
+ uint32_t l_sizeMultiplier = PBA_SIZE_MULTIPLIER_FOR_LEN_ALIGNMENT;
+ uint32_t l_granuleSize = PBA_GRAN_SIZE_BYTES;
+ uint64_t l_addr = i_hdr.getAddr();
+
+ // Proc Chip Target
+ Target<fapi2::TARGET_TYPE_PROC_CHIP> l_proc = plat_getChipTarget();
+ // Default EX Target Init..Not changing it for the time being
+ Target<fapi2::TARGET_TYPE_EX > l_ex((uint64_t)PBA_DEFAULT_EX_CHIPLET_ID);
+
+ // Determine the access flags
+ // Fast mode flag
+ bool l_isFastMode = i_hdr.isFastModeSet();
+ //LCO Mode for PBA-Put
+ bool l_isLcoMode = i_hdr.isPbaLcoModeSet();
+ if(l_isLcoMode)
+ {
+ //Derive the EX target from the input Core Chiplet Id
+ //Core0/1 -> EX0, Core2/3 -> EX1, Core4/5 -> EX2, Core6/7 -> EX3
+ //..so on
+ l_ex = plat_getTargetHandleByChipletNumber<fapi2::TARGET_TYPE_EX>
+ (i_hdr.coreChipletId);
+ }
+ // By default, ex_chipletId printed below won't be used unless accompanied
+ // by LCO_mode.
+ SBE_INFO(SBE_FUNC "FAST_Mode[%d] LCO_Mode[%d] EX_ChipletId[%d]",
+ l_isFastMode, l_isLcoMode, (i_hdr.coreChipletId)/2);
+
+ // The max granule size for which the ADU/PBA interface if configured
+ uint32_t l_numGranules = 0;
+ // Keeps track of number of granules sent to HWP
+ uint64_t l_granulesCompleted = 0;
+
+ // Input Data length in alignment with PBA (128 Bytes)
+ uint64_t l_lenCacheAligned = i_hdr.getDataLenCacheAlign();
+ SBE_DEBUG(SBE_FUNC "Data Aligned Len / Number of data granules = %d",
+ l_lenCacheAligned);
+
+ while (l_granulesCompleted < l_lenCacheAligned)
+ {
+ // Call the PBA setup HWP
+ l_fapiRc = p9_pba_setup(
+ l_proc,
+ l_ex,
+ l_addr,
+ i_isFlagRead,
+ ((l_isFastMode) ? (1<<PBA_FAST_MODE_SHIFT) : 0),
+ l_numGranules);
+
+ // if p9_pba_setup returns error
+ if(l_fapiRc != FAPI2_RC_SUCCESS)
+ {
+ SBE_ERROR(SBE_FUNC" p9_pba_setup Failed");
+ // Respond with HWP FFDC
+ l_respHdr.setStatus( SBE_PRI_GENERIC_EXECUTION_FAILURE,
+ SBE_SEC_GENERIC_FAILURE_IN_EXECUTION );
+ l_ffdc.setRc(l_fapiRc);
+ break;
+ }
+
+ // Assumption is Hwp won't return zero for Num Granules
+ assert(0 != l_numGranules);
+
+ SBE_INFO(SBE_FUNC "Hwp returned l_numGranules=[0x%08X]",l_numGranules);
+ uint64_t l_numAcc = 0;
+
+ if (l_numGranules < (l_lenCacheAligned - l_granulesCompleted))
+ {
+ l_numAcc = l_numGranules;
+ }
+ else
+ {
+ l_numAcc = l_lenCacheAligned - l_granulesCompleted;
+ }
+
+ // 128Byte granule for PBA access
+ uint32_t l_dataFifo[MAX_PBA_BUFFER] = {0};
+
+ uint64_t l_numCurrAcc = 0;
+ while (l_numCurrAcc < l_numAcc)
+ {
+ bool l_lastGran = (l_numCurrAcc == (l_numAcc-1)) ? true : false;
+ bool l_firstGran = (l_numCurrAcc == 0) ? true : false;
+
+ // If this is putmem request, read input data from the upstream FIFO
+ if (!i_isFlagRead)
+ {
+ // l_sizeMultiplier * 4B Upstream FIFO = Granule size 128B
+ uint32_t l_len2dequeue = l_sizeMultiplier;
+ l_rc = sbeUpFifoDeq_mult (l_len2dequeue,
+ (uint32_t *)&l_dataFifo,
+ false);
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ }
+ // Call PBA access
+ l_fapiRc = p9_pba_access(
+ l_proc,
+ l_addr,
+ i_isFlagRead,
+ ((l_isFastMode) ? (1<<PBA_FAST_MODE_SHIFT) : 0),
+ l_firstGran,
+ l_lastGran,
+ (uint8_t *)&l_dataFifo);
+
+ // if p9_pba_access returns error
+ if( l_fapiRc != FAPI2_RC_SUCCESS )
+ {
+ SBE_ERROR(SBE_FUNC" p9_pba_access Failed");
+ // Respond with HWP FFDC
+ l_respHdr.setStatus( SBE_PRI_GENERIC_EXECUTION_FAILURE,
+ SBE_SEC_GENERIC_FAILURE_IN_EXECUTION );
+ l_ffdc.setRc(l_fapiRc);
+ break;
+ }
+
+ // If this is a getmem request,
+ // need to push the data into the downstream FIFO
+ if (i_isFlagRead)
+ {
+ // Number of 4Bytes to put, to align with Granule Size
+ uint32_t l_len = l_sizeMultiplier; // l_len*4 = Granule Size
+ l_rc = sbeDownFifoEnq_mult (l_len, (uint32_t *)&l_dataFifo);
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ }
+ l_granulesCompleted++;
+ l_numCurrAcc++;
+ } // End inner while loop
+
+ if ( (l_fapiRc != FAPI2_RC_SUCCESS) ||
+ (l_rc != SBE_SEC_OPERATION_SUCCESSFUL) )
+ {
+ break;
+ }
+ l_addr += l_granuleSize * l_granulesCompleted;
+ } // End..while (l_granulesCompleted < l_lenCacheAligned);
+
+ // Now build and enqueue response into downstream FIFO
+ do
+ {
+ // If there was a FIFO error, will skip sending the response,
+ // instead give the control back to the command processor thread
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ // If there was a HWP failure for putmem request,
+ // need to Flush out upstream FIFO, until EOT arrives
+ if (!i_isFlagRead)
+ {
+ l_rc = flushUpstreamFifo(l_fapiRc);
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ }
+
+ // first enqueue the length of data actually written
+ uint32_t l_len = 1;
+ uint32_t l_respLen = l_granulesCompleted * l_granuleSize;
+
+ SBE_INFO(SBE_FUNC "Total length Pushed for ChipOp [%d]", l_respLen);
+ l_rc = sbeDownFifoEnq_mult ( l_len, &l_respLen );
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+
+ l_rc = sbeDsSendRespHdr( l_respHdr, l_ffdc);
+ } while(false);
+
+ SBE_EXIT(SBE_FUNC);
+ return l_rc;
+ #undef SBE_FUNC
+}
+
+
+///////////////////////////////////////////////////////////////////////
+// @brief processAduRequest - Internal Method to this file,
+// To process the ADU Access request
+//
+// @param [in] i_hdr, Message Request Header
+// @param [in] i_isFlagRead, Read/Write Flag
+//
+// @return RC from the method
+///////////////////////////////////////////////////////////////////////
+uint32_t processAduRequest(const sbeMemAccessReqMsgHdr_t &i_hdr,
+ const bool i_isFlagRead)
+{
+ #define SBE_FUNC " processAduRequest "
+ SBE_ENTER(SBE_FUNC);
+ uint32_t l_rc = SBE_SEC_OPERATION_SUCCESSFUL;
+
+ ReturnCode l_fapiRc = FAPI2_RC_SUCCESS;
+ sbeRespGenHdr_t l_respHdr;
+ l_respHdr.init();
+ sbeResponseFfdc_t l_ffdc;
+
+ // Default for ADU
+ uint32_t l_sizeMultiplier = ADU_SIZE_MULTIPLIER_FOR_LEN_ALIGNMENT;
+ uint32_t l_granuleSize = ADU_GRAN_SIZE_BYTES;
+
+ // Adu Setup Flag
+ uint32_t l_aduSetupFlags = constructAduFlag(i_hdr, i_isFlagRead);
+
+ // For local Use
+ bool l_isEccMode = i_hdr.isEccFlagSet();
+ bool l_isItagMode = i_hdr.isItagFlagSet();
+ uint64_t l_addr = i_hdr.getAddr();
+
+ // Proc Chip Target
+ Target<fapi2::TARGET_TYPE_PROC_CHIP> l_proc = plat_getChipTarget();
+
+ // The max granule size for which the ADU/PBA interface if configured
+ uint32_t l_numGranules = 0;
+ // Keeps track of number of granules sent to HWP
+ uint64_t l_granulesCompleted = 0;
+
+ // Input Data length in alignment with PBA (128 Bytes)
+ uint64_t l_lenCacheAligned = i_hdr.getDataLenCacheAlign();
+ SBE_DEBUG(SBE_FUNC "Data Aligned Len / Number of data granules = %d",
+ l_lenCacheAligned);
+
+ while (l_granulesCompleted < l_lenCacheAligned)
+ {
+ // Call the ADU setup HWP
+ l_fapiRc = p9_adu_setup (l_proc,
+ l_addr,
+ i_isFlagRead,
+ l_aduSetupFlags,
+ l_numGranules);
+ // if p9_adu_setup returns error
+ if( (l_fapiRc != FAPI2_RC_SUCCESS) )
+ {
+ SBE_ERROR(SBE_FUNC" p9_adu_setup Failed");
+ // Respond with HWP FFDC
+ l_respHdr.setStatus( SBE_PRI_GENERIC_EXECUTION_FAILURE,
+ SBE_SEC_GENERIC_FAILURE_IN_EXECUTION );
+ l_ffdc.setRc(l_fapiRc);
+ break;
+ }
+ // Assumption is Hwp won't return zero for Num Granules
+ assert(0 != l_numGranules);
+
+ SBE_INFO(SBE_FUNC "Hwp returned l_numGranules=[0x%08X]",l_numGranules);
+ uint64_t l_numAcc = 0;
+
+ if (l_numGranules < (l_lenCacheAligned - l_granulesCompleted))
+ {
+ l_numAcc = l_numGranules;
+ }
+ else
+ {
+ l_numAcc = l_lenCacheAligned - l_granulesCompleted;
+ }
+
+ // 8Byte granule for ADU access
+ uint32_t l_dataFifo[MAX_ADU_BUFFER] = {0};
+
+ uint64_t l_numCurrAcc = 0;
+ while (l_numCurrAcc < l_numAcc)
+ {
+ bool l_lastGran = (l_numCurrAcc == (l_numAcc-1)) ? true : false;
+ bool l_firstGran = (l_numCurrAcc == 0) ? true : false;
+
+ // With ECC or ITAG the output length of a granule will become
+ // 9 bytes instead of 8, To align it we will merge 4 output granule
+ // before putting it in the Downstream FIFO i.e. 9*4 = 36Bytes
+ // which is 4Bytes aligned size.
+ // With Both ECC and ITag, the o/p length of a granule will become
+ // 10Bytes instead of 8, To align it we will merge 4 output granule
+ // before putting it in the Downstream FIFO i.e. 10*4 = 40bytes
+ // So in ADU Read case we will use the same buffer with 10Bytes
+ // offset to fill the 40bytes.
+
+ // Both Ecc and ITag Present = 40Bytes is the alignment length
+ /* D[00] D[01] D[02] D[03] D[04] D[05] D[06] D[07] -> 8 Data Bytes
+ * D[08-Itag] D[09-Ecc] D[0a] D[0b] D[0c] D[0d] D[0e] D[0f] -> 6D B
+ * D[10] D[11] D [12-Itag] D[13-Ecc] D[14] D[15] D[16] D[17]
+ * D[18] D[19] D[1a] D[1b] D[1c-Itag] D[1d-Ecc] D[1e] D[1f]
+ * D[20] D[21] D[22] D[23] D[24] D[25] D[26-Itag] D[27-Ecc]
+ */
+ // Only Ecc Present = 36 Bytes is the alignment length
+ /* D[00] D[01] D[02] D[03] D[04] D[05] D[06] D[07] -> 8 Data Bytes
+ * D[08-Ecc] D[09] D[0a] D[0b] D[0c] D[0d] D[0e] D[0f] -> 7D B
+ * D[10] D[11-Ecc] D [12] D[13] D[14] D[15] D[16] D[17]
+ * D[18] D[19] D[1a-Ecc] D[1b] D[1c] D[1d] D[1e] D[1f]
+ * D[20] D[21] D[22] D[23-Ecc]
+ */
+ // Only ITag Present = 36 Bytes is the alignment length
+ /* D[00] D[01] D[02] D[03] D[04] D[05] D[06] D[07] -> 8 Data Bytes
+ * D[08-Itag] D[09] D[0a] D[0b] D[0c] D[0d] D[0e] D[0f] -> 7D B
+ * D[10] D[11-Itag] D [12] D[13] D[14] D[15] D[16] D[17]
+ * D[18] D[19] D[1a-Itag] D[1b] D[1c] D[1d] D[1e] D[1f]
+ * D[20] D[21] D[22] D[23-Itag]
+ */
+ uint8_t l_bufIdx = 0;
+
+ // If this is putmem request, read input data from the upstream FIFO
+ if (!i_isFlagRead)
+ {
+ // l_sizeMultiplier * 4B Upstream FIFO = Granule size 128B
+ uint32_t l_len2dequeue = l_sizeMultiplier;
+ l_rc = sbeUpFifoDeq_mult (l_len2dequeue,
+ (uint32_t *)&l_dataFifo,
+ false);
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+
+ // Insert the ECC if ECC Mode is set
+ if(l_isEccMode)
+ {
+ uint8_t l_eccPos = 8;
+ if(l_isItagMode)
+ {
+ l_eccPos = 9;
+ }
+ ((uint8_t*)&l_dataFifo)[l_eccPos] = i_hdr.eccByte;
+ }
+ }
+ else
+ {
+ //Adu Read Mode - with either ECC or ITag or Both
+ // Calculate the MODULUS
+ uint8_t l_mod = (l_numCurrAcc % 4);
+ if( (l_mod) && ((l_isEccMode) || (l_isItagMode)) )
+ {
+ // Default Init it for 1byte extra
+ l_bufIdx = (ADU_GRAN_SIZE_BYTES * l_mod) + l_mod;
+ if((l_isEccMode) && (l_isItagMode))
+ {
+ l_bufIdx = l_bufIdx + l_mod;
+ }
+ }
+ }
+
+ // Call ADU access HWP for ADU write/read request
+ l_fapiRc = p9_adu_access (
+ l_proc,
+ l_addr,
+ i_isFlagRead,
+ l_aduSetupFlags,
+ l_firstGran,
+ l_lastGran,
+ &(((uint8_t *)&(l_dataFifo))[l_bufIdx]));
+ // if p9_adu_access returns error
+ if( l_fapiRc != FAPI2_RC_SUCCESS )
+ {
+ SBE_ERROR(SBE_FUNC" p9_adu_access Failed");
+ // Respond with HWP FFDC
+ l_respHdr.setStatus( SBE_PRI_GENERIC_EXECUTION_FAILURE,
+ SBE_SEC_GENERIC_FAILURE_IN_EXECUTION );
+ l_ffdc.setRc(l_fapiRc);
+ break;
+ }
+
+ // If this is a getmem request,
+ // need to push the data into the downstream FIFO
+ if (i_isFlagRead)
+ {
+ // Number of 4Bytes to put, to align with Granule Size
+ uint32_t l_len = l_sizeMultiplier; // l_len*4 = Granule Size
+
+ //Enter the below 'if' if ADU Read Mode with Either Ecc or ITag
+ //or both set. During non-aligned Transaction (but not the last)
+ //then set the len as zero so as to skip the unalign byte send,
+ //during next transaction when the data is aligned it will take
+ //care of sending all granules.
+ //If the below condition is not met then for ADU Read Mode will
+ //happen to write on DownStream FIFO for each granule.
+
+ //Calculate the MODULUS
+ uint8_t l_mod = (l_numCurrAcc % 4);
+ if((l_isEccMode) || (l_isItagMode))
+ {
+ if( (l_mod == 3) || (l_lastGran) )
+ {
+ l_len = calInterAduLenForUpFifo(l_mod,l_isItagMode,
+ l_isEccMode);
+ l_len = align4ByteWordLength(l_len);
+ }
+ else
+ {
+ // If it is not the last granule or on the 4th entry
+ // into the data buffer, need not send it to Upstream
+ // Fifo
+ l_len = 0;
+ }
+ }
+ if(l_len)
+ {
+ l_rc = sbeDownFifoEnq_mult (l_len, (uint32_t *)&l_dataFifo);
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ }
+ }
+ l_granulesCompleted++;
+ l_numCurrAcc++;
+ } // End inner while loop
+
+ if ( (l_fapiRc != FAPI2_RC_SUCCESS) ||
+ (l_rc != SBE_SEC_OPERATION_SUCCESSFUL) )
+ {
+ break;
+ }
+
+ l_addr += l_granuleSize * l_granulesCompleted;
+ } // End..while (l_granulesCompleted < l_lenCacheAligned);
+
+ // Now build and enqueue response into downstream FIFO
+ do
+ {
+ // If there was a FIFO error, will skip sending the response,
+ // instead give the control back to the command processor thread
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ // If there was a HWP failure for putmem request,
+ // need to Flush out upstream FIFO, until EOT arrives
+ if (!i_isFlagRead)
+ {
+ l_rc = flushUpstreamFifo(l_fapiRc);
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+ }
+
+ // first enqueue the length of data actually written
+ uint32_t l_len = 1;
+ uint32_t l_respLen = sbeAduLenInUpStreamFifo(
+ l_granulesCompleted,
+ l_isItagMode,
+ l_isEccMode);
+
+ SBE_INFO(SBE_FUNC "Total length Pushed for ChipOp [%d]", l_respLen);
+ l_rc = sbeDownFifoEnq_mult ( l_len, &l_respLen );
+ CHECK_SBE_RC_AND_BREAK_IF_NOT_SUCCESS(l_rc);
+
+ l_rc = sbeDsSendRespHdr( l_respHdr, l_ffdc);
+ } while(false);
+
+ SBE_EXIT(SBE_FUNC);
+ return l_rc;
+ #undef SBE_FUNC
+}
+
+///////////////////////////////////////////////////////////////////////
+// @brief sbeMemAccess_Wrap Memory Access Wrapper function
+//
+// @param [in] i_isFlagRead Flag to indicate the memory Access Type
+// true : GetMem ChipOp
+// false : PutMem ChipOp
+//
+// @return RC from the method
+///////////////////////////////////////////////////////////////////////
+uint32_t sbeMemAccess_Wrap(const bool i_isFlagRead)
+{
+ #define SBE_FUNC " sbeMemAccess_Wrap "
+ SBE_ENTER(SBE_FUNC);
+
+ uint32_t l_rc = SBE_SEC_OPERATION_SUCCESSFUL;
+ // Create an instance of Memory Access ChipOp structure
+ sbeMemAccessReqMsgHdr_t l_req = {0};
+
+ // Offload the common header from the Upstream FIFO
+ uint32_t l_len2dequeue = sizeof(l_req) / sizeof(uint32_t);
+ l_rc = sbeUpFifoDeq_mult(l_len2dequeue, (uint32_t *)&l_req, i_isFlagRead);
+
+ if(!l_rc)
+ {
+ // Calculate the PBA/ADU address from the given input
+ SBE_INFO(SBE_FUNC "Address Upper[0x%08X] Lower[0x%08X] Flags[0x%08X] "
+ "Length[0x%08X]", ((l_req.getAddr()>>32) & 0xFFFFFFFF),
+ (l_req.getAddr() & 0xFFFFFFFF), l_req.flags, l_req.len);
+
+ // PBA
+ bool l_isPBA = l_req.isPbaFlagSet();
+ if(l_isPBA)
+ {
+ l_rc = processPbaRequest(l_req, i_isFlagRead);
+ if(l_rc)
+ {
+ SBE_ERROR(SBE_FUNC "processPbaRequest failed");
+ }
+ }
+ // ADU
+ else
+ {
+ l_rc = processAduRequest(l_req, i_isFlagRead);
+ if(l_rc)
+ {
+ SBE_ERROR(SBE_FUNC "processAduRequest failed");
+ }
+ }
+ }
+ // If there was a FIFO error, will skip sending the response,
+ // instead give the control back to the command processor thread
+ SBE_EXIT(SBE_FUNC);
+ return l_rc;
+ #undef SBE_FUNC
+}
+
+//////////////////////////////////////////////////////
+//////////////////////////////////////////////////////
+uint32_t sbePutMem (uint8_t *i_pArg)
+{
+ return sbeMemAccess_Wrap (false);
+}
+
+/////////////////////////////////////////////////////
+//////////////////////////////////////////////////////
+uint32_t sbeGetMem (uint8_t *i_pArg)
+{
+ return sbeMemAccess_Wrap (true);
+}
+
OpenPOWER on IntegriCloud