summaryrefslogtreecommitdiffstats
path: root/import-layers/yocto-poky/documentation/profile-manual/profile-manual-usage.xml
diff options
context:
space:
mode:
Diffstat (limited to 'import-layers/yocto-poky/documentation/profile-manual/profile-manual-usage.xml')
-rw-r--r--import-layers/yocto-poky/documentation/profile-manual/profile-manual-usage.xml3160
1 files changed, 3160 insertions, 0 deletions
diff --git a/import-layers/yocto-poky/documentation/profile-manual/profile-manual-usage.xml b/import-layers/yocto-poky/documentation/profile-manual/profile-manual-usage.xml
new file mode 100644
index 000000000..310e8f01c
--- /dev/null
+++ b/import-layers/yocto-poky/documentation/profile-manual/profile-manual-usage.xml
@@ -0,0 +1,3160 @@
+<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
+"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
+[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
+
+<chapter id='profile-manual-usage'>
+
+<title>Basic Usage (with examples) for each of the Yocto Tracing Tools</title>
+
+<para>
+ This chapter presents basic usage examples for each of the tracing
+ tools.
+</para>
+
+<section id='profile-manual-perf'>
+ <title>perf</title>
+
+ <para>
+ The 'perf' tool is the profiling and tracing tool that comes
+ bundled with the Linux kernel.
+ </para>
+
+ <para>
+ Don't let the fact that it's part of the kernel fool you into thinking
+ that it's only for tracing and profiling the kernel - you can indeed
+ use it to trace and profile just the kernel, but you can also use it
+ to profile specific applications separately (with or without kernel
+ context), and you can also use it to trace and profile the kernel
+ and all applications on the system simultaneously to gain a system-wide
+ view of what's going on.
+ </para>
+
+ <para>
+ In many ways, perf aims to be a superset of all the tracing and profiling
+ tools available in Linux today, including all the other tools covered
+ in this HOWTO. The past couple of years have seen perf subsume a lot
+ of the functionality of those other tools and, at the same time, those
+ other tools have removed large portions of their previous functionality
+ and replaced it with calls to the equivalent functionality now
+ implemented by the perf subsystem. Extrapolation suggests that at
+ some point those other tools will simply become completely redundant
+ and go away; until then, we'll cover those other tools in these pages
+ and in many cases show how the same things can be accomplished in
+ perf and the other tools when it seems useful to do so.
+ </para>
+
+ <para>
+ The coverage below details some of the most common ways you'll likely
+ want to apply the tool; full documentation can be found either within
+ the tool itself or in the man pages at
+ <ulink url='http://linux.die.net/man/1/perf'>perf(1)</ulink>.
+ </para>
+
+ <section id='perf-setup'>
+ <title>Setup</title>
+
+ <para>
+ For this section, we'll assume you've already performed the basic
+ setup outlined in the General Setup section.
+ </para>
+
+ <para>
+ In particular, you'll get the most mileage out of perf if you
+ profile an image built with INHIBIT_PACKAGE_STRIP = "1" in your
+ local.conf.
+ </para>
+
+ <para>
+ perf runs on the target system for the most part. You can archive
+ profile data and copy it to the host for analysis, but for the
+ rest of this document we assume you've ssh'ed to the host and
+ will be running the perf commands on the target.
+ </para>
+ </section>
+
+ <section id='perf-basic-usage'>
+ <title>Basic Usage</title>
+
+ <para>
+ The perf tool is pretty much self-documenting. To remind yourself
+ of the available commands, simply type 'perf', which will show you
+ basic usage along with the available perf subcommands:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf
+
+ usage: perf [--version] [--help] COMMAND [ARGS]
+
+ The most commonly used perf commands are:
+ annotate Read perf.data (created by perf record) and display annotated code
+ archive Create archive with object files with build-ids found in perf.data file
+ bench General framework for benchmark suites
+ buildid-cache Manage build-id cache.
+ buildid-list List the buildids in a perf.data file
+ diff Read two perf.data files and display the differential profile
+ evlist List the event names in a perf.data file
+ inject Filter to augment the events stream with additional information
+ kmem Tool to trace/measure kernel memory(slab) properties
+ kvm Tool to trace/measure kvm guest os
+ list List all symbolic event types
+ lock Analyze lock events
+ probe Define new dynamic tracepoints
+ record Run a command and record its profile into perf.data
+ report Read perf.data (created by perf record) and display the profile
+ sched Tool to trace/measure scheduler properties (latencies)
+ script Read perf.data (created by perf record) and display trace output
+ stat Run a command and gather performance counter statistics
+ test Runs sanity tests.
+ timechart Tool to visualize total system behavior during a workload
+ top System profiling tool.
+
+ See 'perf help COMMAND' for more information on a specific command.
+ </literallayout>
+ </para>
+
+ <section id='using-perf-to-do-basic-profiling'>
+ <title>Using perf to do Basic Profiling</title>
+
+ <para>
+ As a simple test case, we'll profile the 'wget' of a fairly large
+ file, which is a minimally interesting case because it has both
+ file and network I/O aspects, and at least in the case of standard
+ Yocto images, it's implemented as part of busybox, so the methods
+ we use to analyze it can be used in a very similar way to the whole
+ host of supported busybox applets in Yocto.
+ <literallayout class='monospaced'>
+ root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
+ wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ </literallayout>
+ The quickest and easiest way to get some basic overall data about
+ what's going on for a particular workload is to profile it using
+ 'perf stat'. 'perf stat' basically profiles using a few default
+ counters and displays the summed counts at the end of the run:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf stat wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
+
+ Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
+
+ 4597.223902 task-clock # 0.077 CPUs utilized
+ 23568 context-switches # 0.005 M/sec
+ 68 CPU-migrations # 0.015 K/sec
+ 241 page-faults # 0.052 K/sec
+ 3045817293 cycles # 0.663 GHz
+ &lt;not supported&gt; stalled-cycles-frontend
+ &lt;not supported&gt; stalled-cycles-backend
+ 858909167 instructions # 0.28 insns per cycle
+ 165441165 branches # 35.987 M/sec
+ 19550329 branch-misses # 11.82% of all branches
+
+ 59.836627620 seconds time elapsed
+ </literallayout>
+ Many times such a simple-minded test doesn't yield much of
+ interest, but sometimes it does (see Real-world Yocto bug
+ (slow loop-mounted write speed)).
+ </para>
+
+ <para>
+ Also, note that 'perf stat' isn't restricted to a fixed set of
+ counters - basically any event listed in the output of 'perf list'
+ can be tallied by 'perf stat'. For example, suppose we wanted to
+ see a summary of all the events related to kernel memory
+ allocation/freeing along with cache hits and misses:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
+
+ Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
+
+ 5566 kmem:kmalloc
+ 125517 kmem:kmem_cache_alloc
+ 0 kmem:kmalloc_node
+ 0 kmem:kmem_cache_alloc_node
+ 34401 kmem:kfree
+ 69920 kmem:kmem_cache_free
+ 133 kmem:mm_page_free
+ 41 kmem:mm_page_free_batched
+ 11502 kmem:mm_page_alloc
+ 11375 kmem:mm_page_alloc_zone_locked
+ 0 kmem:mm_page_pcpu_drain
+ 0 kmem:mm_page_alloc_extfrag
+ 66848602 cache-references
+ 2917740 cache-misses # 4.365 % of all cache refs
+
+ 44.831023415 seconds time elapsed
+ </literallayout>
+ So 'perf stat' gives us a nice easy way to get a quick overview of
+ what might be happening for a set of events, but normally we'd
+ need a little more detail in order to understand what's going on
+ in a way that we can act on in a useful way.
+ </para>
+
+ <para>
+ To dive down into a next level of detail, we can use 'perf
+ record'/'perf report' which will collect profiling data and
+ present it to use using an interactive text-based UI (or
+ simply as text if we specify --stdio to 'perf report').
+ </para>
+
+ <para>
+ As our first attempt at profiling this workload, we'll simply
+ run 'perf record', handing it the workload we want to profile
+ (everything after 'perf record' and any perf options we hand
+ it - here none - will be executed in a new shell). perf collects
+ samples until the process exits and records them in a file named
+ 'perf.data' in the current working directory.
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
+ [ perf record: Woken up 1 times to write data ]
+ [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ]
+ </literallayout>
+ To see the results in a 'text-based UI' (tui), simply run
+ 'perf report', which will read the perf.data file in the current
+ working directory and display the results in an interactive UI:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf report
+ </literallayout>
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-flat-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ The above screenshot displays a 'flat' profile, one entry for
+ each 'bucket' corresponding to the functions that were profiled
+ during the profiling run, ordered from the most popular to the
+ least (perf has options to sort in various orders and keys as
+ well as display entries only above a certain threshold and so
+ on - see the perf documentation for details). Note that this
+ includes both userspace functions (entries containing a [.]) and
+ kernel functions accounted to the process (entries containing
+ a [k]). (perf has command-line modifiers that can be used to
+ restrict the profiling to kernel or userspace, among others).
+ </para>
+
+ <para>
+ Notice also that the above report shows an entry for 'busybox',
+ which is the executable that implements 'wget' in Yocto, but that
+ instead of a useful function name in that entry, it displays
+ a not-so-friendly hex value instead. The steps below will show
+ how to fix that problem.
+ </para>
+
+ <para>
+ Before we do that, however, let's try running a different profile,
+ one which shows something a little more interesting. The only
+ difference between the new profile and the previous one is that
+ we'll add the -g option, which will record not just the address
+ of a sampled function, but the entire callchain to the sampled
+ function as well:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -g wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
+ [ perf record: Woken up 3 times to write data ]
+ [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ]
+
+
+ root@crownbay:~# perf report
+ </literallayout>
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Using the callgraph view, we can actually see not only which
+ functions took the most time, but we can also see a summary of
+ how those functions were called and learn something about how the
+ program interacts with the kernel in the process.
+ </para>
+
+ <para>
+ Notice that each entry in the above screenshot now contains a '+'
+ on the left-hand side. This means that we can expand the entry and
+ drill down into the callchains that feed into that entry.
+ Pressing 'enter' on any one of them will expand the callchain
+ (you can also press 'E' to expand them all at the same time or 'C'
+ to collapse them all).
+ </para>
+
+ <para>
+ In the screenshot above, we've toggled the __copy_to_user_ll()
+ entry and several subnodes all the way down. This lets us see
+ which callchains contributed to the profiled __copy_to_user_ll()
+ function which contributed 1.77% to the total profile.
+ </para>
+
+ <para>
+ As a bit of background explanation for these callchains, think
+ about what happens at a high level when you run wget to get a file
+ out on the network. Basically what happens is that the data comes
+ into the kernel via the network connection (socket) and is passed
+ to the userspace program 'wget' (which is actually a part of
+ busybox, but that's not important for now), which takes the buffers
+ the kernel passes to it and writes it to a disk file to save it.
+ </para>
+
+ <para>
+ The part of this process that we're looking at in the above call
+ stacks is the part where the kernel passes the data it's read from
+ the socket down to wget i.e. a copy-to-user.
+ </para>
+
+ <para>
+ Notice also that here there's also a case where the hex value
+ is displayed in the callstack, here in the expanded
+ sys_clock_gettime() function. Later we'll see it resolve to a
+ userspace function call in busybox.
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-g-copy-from-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ The above screenshot shows the other half of the journey for the
+ data - from the wget program's userspace buffers to disk. To get
+ the buffers to disk, the wget program issues a write(2), which
+ does a copy-from-user to the kernel, which then takes care via
+ some circuitous path (probably also present somewhere in the
+ profile data), to get it safely to disk.
+ </para>
+
+ <para>
+ Now that we've seen the basic layout of the profile data and the
+ basics of how to extract useful information out of it, let's get
+ back to the task at hand and see if we can get some basic idea
+ about where the time is spent in the program we're profiling,
+ wget. Remember that wget is actually implemented as an applet
+ in busybox, so while the process name is 'wget', the executable
+ we're actually interested in is busybox. So let's expand the
+ first entry containing busybox:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-busybox-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Again, before we expanded we saw that the function was labeled
+ with a hex value instead of a symbol as with most of the kernel
+ entries. Expanding the busybox entry doesn't make it any better.
+ </para>
+
+ <para>
+ The problem is that perf can't find the symbol information for the
+ busybox binary, which is actually stripped out by the Yocto build
+ system.
+ </para>
+
+ <para>
+ One way around that is to put the following in your local.conf
+ when you build the image:
+ <literallayout class='monospaced'>
+ INHIBIT_PACKAGE_STRIP = "1"
+ </literallayout>
+ However, we already have an image with the binaries stripped,
+ so what can we do to get perf to resolve the symbols? Basically
+ we need to install the debuginfo for the busybox package.
+ </para>
+
+ <para>
+ To generate the debug info for the packages in the image, we can
+ add dbg-pkgs to EXTRA_IMAGE_FEATURES in local.conf. For example:
+ <literallayout class='monospaced'>
+ EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
+ </literallayout>
+ Additionally, in order to generate the type of debuginfo that
+ perf understands, we also need to add the following to local.conf:
+ <literallayout class='monospaced'>
+ PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
+ </literallayout>
+ Once we've done that, we can install the debuginfo for busybox.
+ The debug packages once built can be found in
+ build/tmp/deploy/rpm/* on the host system. Find the
+ busybox-dbg-...rpm file and copy it to the target. For example:
+ <literallayout class='monospaced'>
+ [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31:
+ root@192.168.1.31's password:
+ busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01
+ </literallayout>
+ Now install the debug rpm on the target:
+ <literallayout class='monospaced'>
+ root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm
+ </literallayout>
+ Now that the debuginfo is installed, we see that the busybox
+ entries now display their functions symbolically:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-busybox-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ If we expand one of the entries and press 'enter' on a leaf node,
+ we're presented with a menu of actions we can take to get more
+ information related to that entry:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-busybox-dso-zoom-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ One of these actions allows us to show a view that displays a
+ busybox-centric view of the profiled functions (in this case we've
+ also expanded all the nodes using the 'E' key):
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-busybox-dso-zoom.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Finally, we can see that now that the busybox debuginfo is
+ installed, the previously unresolved symbol in the
+ sys_clock_gettime() entry mentioned previously is now resolved,
+ and shows that the sys_clock_gettime system call that was the
+ source of 6.75% of the copy-to-user overhead was initiated by
+ the handle_input() busybox function:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ At the lowest level of detail, we can dive down to the assembly
+ level and see which instructions caused the most overhead in a
+ function. Pressing 'enter' on the 'udhcpc_main' function, we're
+ again presented with a menu:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-busybox-annotate-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Selecting 'Annotate udhcpc_main', we get a detailed listing of
+ percentages by instruction for the udhcpc_main function. From the
+ display, we can see that over 50% of the time spent in this
+ function is taken up by a couple tests and the move of a
+ constant (1) to a register:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-wget-busybox-annotate-udhcpc.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ As a segue into tracing, let's try another profile using a
+ different counter, something other than the default 'cycles'.
+ </para>
+
+ <para>
+ The tracing and profiling infrastructure in Linux has become
+ unified in a way that allows us to use the same tool with a
+ completely different set of counters, not just the standard
+ hardware counters that traditional tools have had to restrict
+ themselves to (of course the traditional tools can also make use
+ of the expanded possibilities now available to them, and in some
+ cases have, as mentioned previously).
+ </para>
+
+ <para>
+ We can get a list of the available events that can be used to
+ profile a workload via 'perf list':
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf list
+
+ List of pre-defined events (to be used in -e):
+ cpu-cycles OR cycles [Hardware event]
+ stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
+ stalled-cycles-backend OR idle-cycles-backend [Hardware event]
+ instructions [Hardware event]
+ cache-references [Hardware event]
+ cache-misses [Hardware event]
+ branch-instructions OR branches [Hardware event]
+ branch-misses [Hardware event]
+ bus-cycles [Hardware event]
+ ref-cycles [Hardware event]
+
+ cpu-clock [Software event]
+ task-clock [Software event]
+ page-faults OR faults [Software event]
+ minor-faults [Software event]
+ major-faults [Software event]
+ context-switches OR cs [Software event]
+ cpu-migrations OR migrations [Software event]
+ alignment-faults [Software event]
+ emulation-faults [Software event]
+
+ L1-dcache-loads [Hardware cache event]
+ L1-dcache-load-misses [Hardware cache event]
+ L1-dcache-prefetch-misses [Hardware cache event]
+ L1-icache-loads [Hardware cache event]
+ L1-icache-load-misses [Hardware cache event]
+ .
+ .
+ .
+ rNNN [Raw hardware event descriptor]
+ cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]
+ (see 'perf list --help' on how to encode it)
+
+ mem:&lt;addr&gt;[:access] [Hardware breakpoint]
+
+ sunrpc:rpc_call_status [Tracepoint event]
+ sunrpc:rpc_bind_status [Tracepoint event]
+ sunrpc:rpc_connect_status [Tracepoint event]
+ sunrpc:rpc_task_begin [Tracepoint event]
+ skb:kfree_skb [Tracepoint event]
+ skb:consume_skb [Tracepoint event]
+ skb:skb_copy_datagram_iovec [Tracepoint event]
+ net:net_dev_xmit [Tracepoint event]
+ net:net_dev_queue [Tracepoint event]
+ net:netif_receive_skb [Tracepoint event]
+ net:netif_rx [Tracepoint event]
+ napi:napi_poll [Tracepoint event]
+ sock:sock_rcvqueue_full [Tracepoint event]
+ sock:sock_exceed_buf_limit [Tracepoint event]
+ udp:udp_fail_queue_rcv_skb [Tracepoint event]
+ hda:hda_send_cmd [Tracepoint event]
+ hda:hda_get_response [Tracepoint event]
+ hda:hda_bus_reset [Tracepoint event]
+ scsi:scsi_dispatch_cmd_start [Tracepoint event]
+ scsi:scsi_dispatch_cmd_error [Tracepoint event]
+ scsi:scsi_eh_wakeup [Tracepoint event]
+ drm:drm_vblank_event [Tracepoint event]
+ drm:drm_vblank_event_queued [Tracepoint event]
+ drm:drm_vblank_event_delivered [Tracepoint event]
+ random:mix_pool_bytes [Tracepoint event]
+ random:mix_pool_bytes_nolock [Tracepoint event]
+ random:credit_entropy_bits [Tracepoint event]
+ gpio:gpio_direction [Tracepoint event]
+ gpio:gpio_value [Tracepoint event]
+ block:block_rq_abort [Tracepoint event]
+ block:block_rq_requeue [Tracepoint event]
+ block:block_rq_issue [Tracepoint event]
+ block:block_bio_bounce [Tracepoint event]
+ block:block_bio_complete [Tracepoint event]
+ block:block_bio_backmerge [Tracepoint event]
+ .
+ .
+ writeback:writeback_wake_thread [Tracepoint event]
+ writeback:writeback_wake_forker_thread [Tracepoint event]
+ writeback:writeback_bdi_register [Tracepoint event]
+ .
+ .
+ writeback:writeback_single_inode_requeue [Tracepoint event]
+ writeback:writeback_single_inode [Tracepoint event]
+ kmem:kmalloc [Tracepoint event]
+ kmem:kmem_cache_alloc [Tracepoint event]
+ kmem:mm_page_alloc [Tracepoint event]
+ kmem:mm_page_alloc_zone_locked [Tracepoint event]
+ kmem:mm_page_pcpu_drain [Tracepoint event]
+ kmem:mm_page_alloc_extfrag [Tracepoint event]
+ vmscan:mm_vmscan_kswapd_sleep [Tracepoint event]
+ vmscan:mm_vmscan_kswapd_wake [Tracepoint event]
+ vmscan:mm_vmscan_wakeup_kswapd [Tracepoint event]
+ vmscan:mm_vmscan_direct_reclaim_begin [Tracepoint event]
+ .
+ .
+ module:module_get [Tracepoint event]
+ module:module_put [Tracepoint event]
+ module:module_request [Tracepoint event]
+ sched:sched_kthread_stop [Tracepoint event]
+ sched:sched_wakeup [Tracepoint event]
+ sched:sched_wakeup_new [Tracepoint event]
+ sched:sched_process_fork [Tracepoint event]
+ sched:sched_process_exec [Tracepoint event]
+ sched:sched_stat_runtime [Tracepoint event]
+ rcu:rcu_utilization [Tracepoint event]
+ workqueue:workqueue_queue_work [Tracepoint event]
+ workqueue:workqueue_execute_end [Tracepoint event]
+ signal:signal_generate [Tracepoint event]
+ signal:signal_deliver [Tracepoint event]
+ timer:timer_init [Tracepoint event]
+ timer:timer_start [Tracepoint event]
+ timer:hrtimer_cancel [Tracepoint event]
+ timer:itimer_state [Tracepoint event]
+ timer:itimer_expire [Tracepoint event]
+ irq:irq_handler_entry [Tracepoint event]
+ irq:irq_handler_exit [Tracepoint event]
+ irq:softirq_entry [Tracepoint event]
+ irq:softirq_exit [Tracepoint event]
+ irq:softirq_raise [Tracepoint event]
+ printk:console [Tracepoint event]
+ task:task_newtask [Tracepoint event]
+ task:task_rename [Tracepoint event]
+ syscalls:sys_enter_socketcall [Tracepoint event]
+ syscalls:sys_exit_socketcall [Tracepoint event]
+ .
+ .
+ .
+ syscalls:sys_enter_unshare [Tracepoint event]
+ syscalls:sys_exit_unshare [Tracepoint event]
+ raw_syscalls:sys_enter [Tracepoint event]
+ raw_syscalls:sys_exit [Tracepoint event]
+ </literallayout>
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> These are exactly the same set of events defined
+ by the trace event subsystem and exposed by
+ ftrace/tracecmd/kernelshark as files in
+ /sys/kernel/debug/tracing/events, by SystemTap as
+ kernel.trace("tracepoint_name") and (partially) accessed by LTTng.
+ </informalexample>
+
+ <para>
+ Only a subset of these would be of interest to us when looking at
+ this workload, so let's choose the most likely subsystems
+ (identified by the string before the colon in the Tracepoint events)
+ and do a 'perf stat' run using only those wildcarded subsystems:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
+
+ 23323 skb:kfree_skb
+ 0 skb:consume_skb
+ 49897 skb:skb_copy_datagram_iovec
+ 6217 net:net_dev_xmit
+ 6217 net:net_dev_queue
+ 7962 net:netif_receive_skb
+ 2 net:netif_rx
+ 8340 napi:napi_poll
+ 0 sched:sched_kthread_stop
+ 0 sched:sched_kthread_stop_ret
+ 3749 sched:sched_wakeup
+ 0 sched:sched_wakeup_new
+ 0 sched:sched_switch
+ 29 sched:sched_migrate_task
+ 0 sched:sched_process_free
+ 1 sched:sched_process_exit
+ 0 sched:sched_wait_task
+ 0 sched:sched_process_wait
+ 0 sched:sched_process_fork
+ 1 sched:sched_process_exec
+ 0 sched:sched_stat_wait
+ 2106519415641 sched:sched_stat_sleep
+ 0 sched:sched_stat_iowait
+ 147453613 sched:sched_stat_blocked
+ 12903026955 sched:sched_stat_runtime
+ 0 sched:sched_pi_setprio
+ 3574 workqueue:workqueue_queue_work
+ 3574 workqueue:workqueue_activate_work
+ 0 workqueue:workqueue_execute_start
+ 0 workqueue:workqueue_execute_end
+ 16631 irq:irq_handler_entry
+ 16631 irq:irq_handler_exit
+ 28521 irq:softirq_entry
+ 28521 irq:softirq_exit
+ 28728 irq:softirq_raise
+ 1 syscalls:sys_enter_sendmmsg
+ 1 syscalls:sys_exit_sendmmsg
+ 0 syscalls:sys_enter_recvmmsg
+ 0 syscalls:sys_exit_recvmmsg
+ 14 syscalls:sys_enter_socketcall
+ 14 syscalls:sys_exit_socketcall
+ .
+ .
+ .
+ 16965 syscalls:sys_enter_read
+ 16965 syscalls:sys_exit_read
+ 12854 syscalls:sys_enter_write
+ 12854 syscalls:sys_exit_write
+ .
+ .
+ .
+
+ 58.029710972 seconds time elapsed
+ </literallayout>
+ Let's pick one of these tracepoints and tell perf to do a profile
+ using it as the sampling event:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -g -e sched:sched_wakeup wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ </literallayout>
+ </para>
+
+ <para>
+ <imagedata fileref="figures/sched-wakeup-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ The screenshot above shows the results of running a profile using
+ sched:sched_switch tracepoint, which shows the relative costs of
+ various paths to sched_wakeup (note that sched_wakeup is the
+ name of the tracepoint - it's actually defined just inside
+ ttwu_do_wakeup(), which accounts for the function name actually
+ displayed in the profile:
+ <literallayout class='monospaced'>
+ /*
+ * Mark the task runnable and perform wakeup-preemption.
+ */
+ static void
+ ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
+ {
+ trace_sched_wakeup(p, true);
+ .
+ .
+ .
+ }
+ </literallayout>
+ A couple of the more interesting callchains are expanded and
+ displayed above, basically some network receive paths that
+ presumably end up waking up wget (busybox) when network data is
+ ready.
+ </para>
+
+ <para>
+ Note that because tracepoints are normally used for tracing,
+ the default sampling period for tracepoints is 1 i.e. for
+ tracepoints perf will sample on every event occurrence (this
+ can be changed using the -c option). This is in contrast to
+ hardware counters such as for example the default 'cycles'
+ hardware counter used for normal profiling, where sampling
+ periods are much higher (in the thousands) because profiling should
+ have as low an overhead as possible and sampling on every cycle
+ would be prohibitively expensive.
+ </para>
+ </section>
+
+ <section id='using-perf-to-do-basic-tracing'>
+ <title>Using perf to do Basic Tracing</title>
+
+ <para>
+ Profiling is a great tool for solving many problems or for
+ getting a high-level view of what's going on with a workload or
+ across the system. It is however by definition an approximation,
+ as suggested by the most prominent word associated with it,
+ 'sampling'. On the one hand, it allows a representative picture of
+ what's going on in the system to be cheaply taken, but on the other
+ hand, that cheapness limits its utility when that data suggests a
+ need to 'dive down' more deeply to discover what's really going
+ on. In such cases, the only way to see what's really going on is
+ to be able to look at (or summarize more intelligently) the
+ individual steps that go into the higher-level behavior exposed
+ by the coarse-grained profiling data.
+ </para>
+
+ <para>
+ As a concrete example, we can trace all the events we think might
+ be applicable to our workload:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:*
+ -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write
+ wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ </literallayout>
+ We can look at the raw trace output using 'perf script' with no
+ arguments:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf script
+
+ perf 1262 [000] 11624.857082: sys_exit_read: 0x0
+ perf 1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000
+ wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200
+ wget 1262 [001] 11624.858177: sys_exit_read: 0x200
+ wget 1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308
+ wget 1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308
+ wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859192: sys_exit_read: 0x1d7
+ wget 1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859233: sys_exit_read: 0x0
+ wget 1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200
+ wget 1262 [001] 11624.859584: sys_exit_read: 0x200
+ wget 1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859888: sys_exit_read: 0x400
+ wget 1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859944: sys_exit_read: 0x400
+ </literallayout>
+ This gives us a detailed timestamped sequence of events that
+ occurred within the workload with respect to those events.
+ </para>
+
+ <para>
+ In many ways, profiling can be viewed as a subset of tracing -
+ theoretically, if you have a set of trace events that's sufficient
+ to capture all the important aspects of a workload, you can derive
+ any of the results or views that a profiling run can.
+ </para>
+
+ <para>
+ Another aspect of traditional profiling is that while powerful in
+ many ways, it's limited by the granularity of the underlying data.
+ Profiling tools offer various ways of sorting and presenting the
+ sample data, which make it much more useful and amenable to user
+ experimentation, but in the end it can't be used in an open-ended
+ way to extract data that just isn't present as a consequence of
+ the fact that conceptually, most of it has been thrown away.
+ </para>
+
+ <para>
+ Full-blown detailed tracing data does however offer the opportunity
+ to manipulate and present the information collected during a
+ tracing run in an infinite variety of ways.
+ </para>
+
+ <para>
+ Another way to look at it is that there are only so many ways that
+ the 'primitive' counters can be used on their own to generate
+ interesting output; to get anything more complicated than simple
+ counts requires some amount of additional logic, which is typically
+ very specific to the problem at hand. For example, if we wanted to
+ make use of a 'counter' that maps to the value of the time
+ difference between when a process was scheduled to run on a
+ processor and the time it actually ran, we wouldn't expect such
+ a counter to exist on its own, but we could derive one called say
+ 'wakeup_latency' and use it to extract a useful view of that metric
+ from trace data. Likewise, we really can't figure out from standard
+ profiling tools how much data every process on the system reads and
+ writes, along with how many of those reads and writes fail
+ completely. If we have sufficient trace data, however, we could
+ with the right tools easily extract and present that information,
+ but we'd need something other than pre-canned profiling tools to
+ do that.
+ </para>
+
+ <para>
+ Luckily, there is a general-purpose way to handle such needs,
+ called 'programming languages'. Making programming languages
+ easily available to apply to such problems given the specific
+ format of data is called a 'programming language binding' for
+ that data and language. Perf supports two programming language
+ bindings, one for Python and one for Perl.
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> Language bindings for manipulating and
+ aggregating trace data are of course not a new
+ idea. One of the first projects to do this was IBM's DProbes
+ dpcc compiler, an ANSI C compiler which targeted a low-level
+ assembly language running on an in-kernel interpreter on the
+ target system. This is exactly analogous to what Sun's DTrace
+ did, except that DTrace invented its own language for the purpose.
+ Systemtap, heavily inspired by DTrace, also created its own
+ one-off language, but rather than running the product on an
+ in-kernel interpreter, created an elaborate compiler-based
+ machinery to translate its language into kernel modules written
+ in C.
+ </informalexample>
+
+ <para>
+ Now that we have the trace data in perf.data, we can use
+ 'perf script -g' to generate a skeleton script with handlers
+ for the read/write entry/exit events we recorded:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf script -g python
+ generated Python script: perf-script.py
+ </literallayout>
+ The skeleton script simply creates a python function for each
+ event type in the perf.data file. The body of each function simply
+ prints the event name along with its parameters. For example:
+ <literallayout class='monospaced'>
+ def net__netif_rx(event_name, context, common_cpu,
+ common_secs, common_nsecs, common_pid, common_comm,
+ skbaddr, len, name):
+ print_header(event_name, common_cpu, common_secs, common_nsecs,
+ common_pid, common_comm)
+
+ print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),
+ </literallayout>
+ We can run that script directly to print all of the events
+ contained in the perf.data file:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf script -s perf-script.py
+
+ in trace_begin
+ syscalls__sys_exit_read 0 11624.857082795 1262 perf nr=3, ret=0
+ sched__sched_wakeup 0 11624.857193498 1262 perf comm=migration/0, pid=6, prio=0, success=1, target_cpu=0
+ irq__softirq_raise 1 11624.858021635 1262 wget vec=TIMER
+ irq__softirq_entry 1 11624.858074075 1262 wget vec=TIMER
+ irq__softirq_exit 1 11624.858081389 1262 wget vec=TIMER
+ syscalls__sys_enter_read 1 11624.858166434 1262 wget nr=3, fd=3, buf=3213019456, count=512
+ syscalls__sys_exit_read 1 11624.858177924 1262 wget nr=3, ret=512
+ skb__kfree_skb 1 11624.858878188 1262 wget skbaddr=3945041280, location=3243922184, protocol=0
+ skb__kfree_skb 1 11624.858945608 1262 wget skbaddr=3945037824, location=3243922184, protocol=0
+ irq__softirq_raise 1 11624.859020942 1262 wget vec=TIMER
+ irq__softirq_entry 1 11624.859076935 1262 wget vec=TIMER
+ irq__softirq_exit 1 11624.859083469 1262 wget vec=TIMER
+ syscalls__sys_enter_read 1 11624.859167565 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859192533 1262 wget nr=3, ret=471
+ syscalls__sys_enter_read 1 11624.859228072 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859233707 1262 wget nr=3, ret=0
+ syscalls__sys_enter_read 1 11624.859573008 1262 wget nr=3, fd=3, buf=3213018496, count=512
+ syscalls__sys_exit_read 1 11624.859584818 1262 wget nr=3, ret=512
+ syscalls__sys_enter_read 1 11624.859864562 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859888770 1262 wget nr=3, ret=1024
+ syscalls__sys_enter_read 1 11624.859935140 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859944032 1262 wget nr=3, ret=1024
+ </literallayout>
+ That in itself isn't very useful; after all, we can accomplish
+ pretty much the same thing by simply running 'perf script'
+ without arguments in the same directory as the perf.data file.
+ </para>
+
+ <para>
+ We can however replace the print statements in the generated
+ function bodies with whatever we want, and thereby make it
+ infinitely more useful.
+ </para>
+
+ <para>
+ As a simple example, let's just replace the print statements in
+ the function bodies with a simple function that does nothing but
+ increment a per-event count. When the program is run against a
+ perf.data file, each time a particular event is encountered,
+ a tally is incremented for that event. For example:
+ <literallayout class='monospaced'>
+ def net__netif_rx(event_name, context, common_cpu,
+ common_secs, common_nsecs, common_pid, common_comm,
+ skbaddr, len, name):
+ inc_counts(event_name)
+ </literallayout>
+ Each event handler function in the generated code is modified
+ to do this. For convenience, we define a common function called
+ inc_counts() that each handler calls; inc_counts() simply tallies
+ a count for each event using the 'counts' hash, which is a
+ specialized hash function that does Perl-like autovivification, a
+ capability that's extremely useful for kinds of multi-level
+ aggregation commonly used in processing traces (see perf's
+ documentation on the Python language binding for details):
+ <literallayout class='monospaced'>
+ counts = autodict()
+
+ def inc_counts(event_name):
+ try:
+ counts[event_name] += 1
+ except TypeError:
+ counts[event_name] = 1
+ </literallayout>
+ Finally, at the end of the trace processing run, we want to
+ print the result of all the per-event tallies. For that, we
+ use the special 'trace_end()' function:
+ <literallayout class='monospaced'>
+ def trace_end():
+ for event_name, count in counts.iteritems():
+ print "%-40s %10s\n" % (event_name, count)
+ </literallayout>
+ The end result is a summary of all the events recorded in the
+ trace:
+ <literallayout class='monospaced'>
+ skb__skb_copy_datagram_iovec 13148
+ irq__softirq_entry 4796
+ irq__irq_handler_exit 3805
+ irq__softirq_exit 4795
+ syscalls__sys_enter_write 8990
+ net__net_dev_xmit 652
+ skb__kfree_skb 4047
+ sched__sched_wakeup 1155
+ irq__irq_handler_entry 3804
+ irq__softirq_raise 4799
+ net__net_dev_queue 652
+ syscalls__sys_enter_read 17599
+ net__netif_receive_skb 1743
+ syscalls__sys_exit_read 17598
+ net__netif_rx 2
+ napi__napi_poll 1877
+ syscalls__sys_exit_write 8990
+ </literallayout>
+ Note that this is pretty much exactly the same information we get
+ from 'perf stat', which goes a little way to support the idea
+ mentioned previously that given the right kind of trace data,
+ higher-level profiling-type summaries can be derived from it.
+ </para>
+
+ <para>
+ Documentation on using the
+ <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
+ </para>
+ </section>
+
+ <section id='system-wide-tracing-and-profiling'>
+ <title>System-Wide Tracing and Profiling</title>
+
+ <para>
+ The examples so far have focused on tracing a particular program or
+ workload - in other words, every profiling run has specified the
+ program to profile in the command-line e.g. 'perf record wget ...'.
+ </para>
+
+ <para>
+ It's also possible, and more interesting in many cases, to run a
+ system-wide profile or trace while running the workload in a
+ separate shell.
+ </para>
+
+ <para>
+ To do system-wide profiling or tracing, you typically use
+ the -a flag to 'perf record'.
+ </para>
+
+ <para>
+ To demonstrate this, open up one window and start the profile
+ using the -a flag (press Ctrl-C to stop tracing):
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -g -a
+ ^C[ perf record: Woken up 6 times to write data ]
+ [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ]
+ </literallayout>
+ In another window, run the wget test:
+ <literallayout class='monospaced'>
+ root@crownbay:~# wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
+ </literallayout>
+ Here we see entries not only for our wget load, but for other
+ processes running on the system as well:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-systemwide.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ In the snapshot above, we can see callchains that originate in
+ libc, and a callchain from Xorg that demonstrates that we're
+ using a proprietary X driver in userspace (notice the presence
+ of 'PVR' and some other unresolvable symbols in the expanded
+ Xorg callchain).
+ </para>
+
+ <para>
+ Note also that we have both kernel and userspace entries in the
+ above snapshot. We can also tell perf to focus on userspace but
+ providing a modifier, in this case 'u', to the 'cycles' hardware
+ counter when we record a profile:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -g -a -e cycles:u
+ ^C[ perf record: Woken up 2 times to write data ]
+ [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ]
+ </literallayout>
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-report-cycles-u.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Notice in the screenshot above, we see only userspace entries ([.])
+ </para>
+
+ <para>
+ Finally, we can press 'enter' on a leaf node and select the 'Zoom
+ into DSO' menu item to show only entries associated with a
+ specific DSO. In the screenshot below, we've zoomed into the
+ 'libc' DSO which shows all the entries associated with the
+ libc-xxx.so DSO.
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-systemwide-libc.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ We can also use the system-wide -a switch to do system-wide
+ tracing. Here we'll trace a couple of scheduler events:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup
+ ^C[ perf record: Woken up 38 times to write data ]
+ [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ]
+ </literallayout>
+ We can look at the raw output using 'perf script' with no
+ arguments:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf script
+
+ perf 1383 [001] 6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1383 [001] 6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
+ kworker/1:1 21 [001] 6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
+ swapper 0 [000] 6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
+ swapper 0 [000] 6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
+ kworker/0:3 1209 [000] 6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
+ perf 1383 [001] 6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1383 [001] 6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
+ kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
+ perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ </literallayout>
+ </para>
+
+ <section id='perf-filtering'>
+ <title>Filtering</title>
+
+ <para>
+ Notice that there are a lot of events that don't really have
+ anything to do with what we're interested in, namely events
+ that schedule 'perf' itself in and out or that wake perf up.
+ We can get rid of those by using the '--filter' option -
+ for each event we specify using -e, we can add a --filter
+ after that to filter out trace events that contain fields
+ with specific values:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf &amp;&amp; prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf'
+ ^C[ perf record: Woken up 38 times to write data ]
+ [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ]
+
+
+ root@crownbay:~# perf script
+
+ swapper 0 [000] 7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
+ kworker/0:3 1209 [000] 7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
+ perf 1407 [001] 7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ swapper 0 [001] 7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ swapper 0 [001] 7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
+ kworker/1:1 21 [001] 7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120
+ swapper 0 [000] 7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
+ swapper 0 [000] 7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
+ kworker/0:3 1209 [000] 7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
+ </literallayout>
+ In this case, we've filtered out all events that have 'perf'
+ in their 'comm' or 'comm_prev' or 'comm_next' fields. Notice
+ that there are still events recorded for perf, but notice
+ that those events don't have values of 'perf' for the filtered
+ fields. To completely filter out anything from perf will
+ require a bit more work, but for the purpose of demonstrating
+ how to use filters, it's close enough.
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> These are exactly the same set of event
+ filters defined by the trace event subsystem. See the
+ ftrace/tracecmd/kernelshark section for more discussion about
+ these event filters.
+ </informalexample>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> These event filters are implemented by a
+ special-purpose pseudo-interpreter in the kernel and are an
+ integral and indispensable part of the perf design as it
+ relates to tracing. kernel-based event filters provide a
+ mechanism to precisely throttle the event stream that appears
+ in user space, where it makes sense to provide bindings to real
+ programming languages for postprocessing the event stream.
+ This architecture allows for the intelligent and flexible
+ partitioning of processing between the kernel and user space.
+ Contrast this with other tools such as SystemTap, which does
+ all of its processing in the kernel and as such requires a
+ special project-defined language in order to accommodate that
+ design, or LTTng, where everything is sent to userspace and
+ as such requires a super-efficient kernel-to-userspace
+ transport mechanism in order to function properly. While
+ perf certainly can benefit from for instance advances in
+ the design of the transport, it doesn't fundamentally depend
+ on them. Basically, if you find that your perf tracing
+ application is causing buffer I/O overruns, it probably
+ means that you aren't taking enough advantage of the
+ kernel filtering engine.
+ </informalexample>
+ </section>
+ </section>
+
+ <section id='using-dynamic-tracepoints'>
+ <title>Using Dynamic Tracepoints</title>
+
+ <para>
+ perf isn't restricted to the fixed set of static tracepoints
+ listed by 'perf list'. Users can also add their own 'dynamic'
+ tracepoints anywhere in the kernel. For instance, suppose we
+ want to define our own tracepoint on do_fork(). We can do that
+ using the 'perf probe' perf subcommand:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf probe do_fork
+ Added new event:
+ probe:do_fork (on do_fork)
+
+ You can now use it in all perf tools, such as:
+
+ perf record -e probe:do_fork -aR sleep 1
+ </literallayout>
+ Adding a new tracepoint via 'perf probe' results in an event
+ with all the expected files and format in
+ /sys/kernel/debug/tracing/events, just the same as for static
+ tracepoints (as discussed in more detail in the trace events
+ subsystem section:
+ <literallayout class='monospaced'>
+ root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al
+ drwxr-xr-x 2 root root 0 Oct 28 11:42 .
+ drwxr-xr-x 3 root root 0 Oct 28 11:42 ..
+ -rw-r--r-- 1 root root 0 Oct 28 11:42 enable
+ -rw-r--r-- 1 root root 0 Oct 28 11:42 filter
+ -r--r--r-- 1 root root 0 Oct 28 11:42 format
+ -r--r--r-- 1 root root 0 Oct 28 11:42 id
+
+ root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format
+ name: do_fork
+ ID: 944
+ format:
+ field:unsigned short common_type; offset:0; size:2; signed:0;
+ field:unsigned char common_flags; offset:2; size:1; signed:0;
+ field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
+ field:int common_pid; offset:4; size:4; signed:1;
+ field:int common_padding; offset:8; size:4; signed:1;
+
+ field:unsigned long __probe_ip; offset:12; size:4; signed:0;
+
+ print fmt: "(%lx)", REC->__probe_ip
+ </literallayout>
+ We can list all dynamic tracepoints currently in existence:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf probe -l
+ probe:do_fork (on do_fork)
+ probe:schedule (on schedule)
+ </literallayout>
+ Let's record system-wide ('sleep 30' is a trick for recording
+ system-wide but basically do nothing and then wake up after
+ 30 seconds):
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30
+ [ perf record: Woken up 1 times to write data ]
+ [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ]
+ </literallayout>
+ Using 'perf script' we can see each do_fork event that fired:
+ <literallayout class='monospaced'>
+ root@crownbay:~# perf script
+
+ # ========
+ # captured on: Sun Oct 28 11:55:18 2012
+ # hostname : crownbay
+ # os release : 3.4.11-yocto-standard
+ # perf version : 3.4.11
+ # arch : i686
+ # nrcpus online : 2
+ # nrcpus avail : 2
+ # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz
+ # cpuid : GenuineIntel,6,38,1
+ # total memory : 1017184 kB
+ # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30
+ # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern
+ = 0, id = { 5, 6 }
+ # HEADER_CPU_TOPOLOGY info available, use -I to display
+ # ========
+ #
+ matchbox-deskto 1197 [001] 34211.378318: do_fork: (c1028460)
+ matchbox-deskto 1295 [001] 34211.380388: do_fork: (c1028460)
+ pcmanfm 1296 [000] 34211.632350: do_fork: (c1028460)
+ pcmanfm 1296 [000] 34211.639917: do_fork: (c1028460)
+ matchbox-deskto 1197 [001] 34217.541603: do_fork: (c1028460)
+ matchbox-deskto 1299 [001] 34217.543584: do_fork: (c1028460)
+ gthumb 1300 [001] 34217.697451: do_fork: (c1028460)
+ gthumb 1300 [001] 34219.085734: do_fork: (c1028460)
+ gthumb 1300 [000] 34219.121351: do_fork: (c1028460)
+ gthumb 1300 [001] 34219.264551: do_fork: (c1028460)
+ pcmanfm 1296 [000] 34219.590380: do_fork: (c1028460)
+ matchbox-deskto 1197 [001] 34224.955965: do_fork: (c1028460)
+ matchbox-deskto 1306 [001] 34224.957972: do_fork: (c1028460)
+ matchbox-termin 1307 [000] 34225.038214: do_fork: (c1028460)
+ matchbox-termin 1307 [001] 34225.044218: do_fork: (c1028460)
+ matchbox-termin 1307 [000] 34225.046442: do_fork: (c1028460)
+ matchbox-deskto 1197 [001] 34237.112138: do_fork: (c1028460)
+ matchbox-deskto 1311 [001] 34237.114106: do_fork: (c1028460)
+ gaku 1312 [000] 34237.202388: do_fork: (c1028460)
+ </literallayout>
+ And using 'perf report' on the same file, we can see the
+ callgraphs from starting a few programs during those 30 seconds:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/perf-probe-do_fork-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> The trace events subsystem accommodate static
+ and dynamic tracepoints in exactly the same way - there's no
+ difference as far as the infrastructure is concerned. See the
+ ftrace section for more details on the trace event subsystem.
+ </informalexample>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> Dynamic tracepoints are implemented under the
+ covers by kprobes and uprobes. kprobes and uprobes are also used
+ by and in fact are the main focus of SystemTap.
+ </informalexample>
+ </section>
+ </section>
+
+ <section id='perf-documentation'>
+ <title>Documentation</title>
+
+ <para>
+ Online versions of the man pages for the commands discussed in this
+ section can be found here:
+ <itemizedlist>
+ <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-stat'>'perf stat' manpage</ulink>.
+ </para></listitem>
+ <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-record'>'perf record' manpage</ulink>.
+ </para></listitem>
+ <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-report'>'perf report' manpage</ulink>.
+ </para></listitem>
+ <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-probe'>'perf probe' manpage</ulink>.
+ </para></listitem>
+ <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-script'>'perf script' manpage</ulink>.
+ </para></listitem>
+ <listitem><para>Documentation on using the
+ <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
+ </para></listitem>
+ <listitem><para>The top-level
+ <ulink url='http://linux.die.net/man/1/perf'>perf(1) manpage</ulink>.
+ </para></listitem>
+ </itemizedlist>
+ </para>
+
+ <para>
+ Normally, you should be able to invoke the man pages via perf
+ itself e.g. 'perf help' or 'perf help record'.
+ </para>
+
+ <para>
+ However, by default Yocto doesn't install man pages, but perf
+ invokes the man pages for most help functionality. This is a bug
+ and is being addressed by a Yocto bug:
+ <ulink url='https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388'>Bug 3388 - perf: enable man pages for basic 'help' functionality</ulink>.
+ </para>
+
+ <para>
+ The man pages in text form, along with some other files, such as
+ a set of examples, can be found in the 'perf' directory of the
+ kernel tree:
+ <literallayout class='monospaced'>
+ tools/perf/Documentation
+ </literallayout>
+ There's also a nice perf tutorial on the perf wiki that goes
+ into more detail than we do here in certain areas:
+ <ulink url='https://perf.wiki.kernel.org/index.php/Tutorial'>Perf Tutorial</ulink>
+ </para>
+ </section>
+</section>
+
+<section id='profile-manual-ftrace'>
+ <title>ftrace</title>
+
+ <para>
+ 'ftrace' literally refers to the 'ftrace function tracer' but in
+ reality this encompasses a number of related tracers along with
+ the infrastructure that they all make use of.
+ </para>
+
+ <section id='ftrace-setup'>
+ <title>Setup</title>
+
+ <para>
+ For this section, we'll assume you've already performed the basic
+ setup outlined in the General Setup section.
+ </para>
+
+ <para>
+ ftrace, trace-cmd, and kernelshark run on the target system,
+ and are ready to go out-of-the-box - no additional setup is
+ necessary. For the rest of this section we assume you've ssh'ed
+ to the host and will be running ftrace on the target. kernelshark
+ is a GUI application and if you use the '-X' option to ssh you
+ can have the kernelshark GUI run on the target but display
+ remotely on the host if you want.
+ </para>
+ </section>
+
+ <section id='basic-ftrace-usage'>
+ <title>Basic ftrace usage</title>
+
+ <para>
+ 'ftrace' essentially refers to everything included in
+ the /tracing directory of the mounted debugfs filesystem
+ (Yocto follows the standard convention and mounts it
+ at /sys/kernel/debug). Here's a listing of all the files
+ found in /sys/kernel/debug/tracing on a Yocto system:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# ls
+ README kprobe_events trace
+ available_events kprobe_profile trace_clock
+ available_filter_functions options trace_marker
+ available_tracers per_cpu trace_options
+ buffer_size_kb printk_formats trace_pipe
+ buffer_total_size_kb saved_cmdlines tracing_cpumask
+ current_tracer set_event tracing_enabled
+ dyn_ftrace_total_info set_ftrace_filter tracing_on
+ enabled_functions set_ftrace_notrace tracing_thresh
+ events set_ftrace_pid
+ free_buffer set_graph_function
+ </literallayout>
+ The files listed above are used for various purposes -
+ some relate directly to the tracers themselves, others are
+ used to set tracing options, and yet others actually contain
+ the tracing output when a tracer is in effect. Some of the
+ functions can be guessed from their names, others need
+ explanation; in any case, we'll cover some of the files we
+ see here below but for an explanation of the others, please
+ see the ftrace documentation.
+ </para>
+
+ <para>
+ We'll start by looking at some of the available built-in
+ tracers.
+ </para>
+
+ <para>
+ cat'ing the 'available_tracers' file lists the set of
+ available tracers:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers
+ blk function_graph function nop
+ </literallayout>
+ The 'current_tracer' file contains the tracer currently in
+ effect:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
+ nop
+ </literallayout>
+ The above listing of current_tracer shows that
+ the 'nop' tracer is in effect, which is just another
+ way of saying that there's actually no tracer
+ currently in effect.
+ </para>
+
+ <para>
+ echo'ing one of the available_tracers into current_tracer
+ makes the specified tracer the current tracer:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer
+ root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
+ function
+ </literallayout>
+ The above sets the current tracer to be the
+ 'function tracer'. This tracer traces every function
+ call in the kernel and makes it available as the
+ contents of the 'trace' file. Reading the 'trace' file
+ lists the currently buffered function calls that have been
+ traced by the function tracer:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
+
+ # tracer: function
+ #
+ # entries-in-buffer/entries-written: 310629/766471 #P:8
+ #
+ # _-----=&gt; irqs-off
+ # / _----=&gt; need-resched
+ # | / _---=&gt; hardirq/softirq
+ # || / _--=&gt; preempt-depth
+ # ||| / delay
+ # TASK-PID CPU# |||| TIMESTAMP FUNCTION
+ # | | | |||| | |
+ &lt;idle&gt;-0 [004] d..1 470.867169: ktime_get_real &lt;-intel_idle
+ &lt;idle&gt;-0 [004] d..1 470.867170: getnstimeofday &lt;-ktime_get_real
+ &lt;idle&gt;-0 [004] d..1 470.867171: ns_to_timeval &lt;-intel_idle
+ &lt;idle&gt;-0 [004] d..1 470.867171: ns_to_timespec &lt;-ns_to_timeval
+ &lt;idle&gt;-0 [004] d..1 470.867172: smp_apic_timer_interrupt &lt;-apic_timer_interrupt
+ &lt;idle&gt;-0 [004] d..1 470.867172: native_apic_mem_write &lt;-smp_apic_timer_interrupt
+ &lt;idle&gt;-0 [004] d..1 470.867172: irq_enter &lt;-smp_apic_timer_interrupt
+ &lt;idle&gt;-0 [004] d..1 470.867172: rcu_irq_enter &lt;-irq_enter
+ &lt;idle&gt;-0 [004] d..1 470.867173: rcu_idle_exit_common.isra.33 &lt;-rcu_irq_enter
+ &lt;idle&gt;-0 [004] d..1 470.867173: local_bh_disable &lt;-irq_enter
+ &lt;idle&gt;-0 [004] d..1 470.867173: add_preempt_count &lt;-local_bh_disable
+ &lt;idle&gt;-0 [004] d.s1 470.867174: tick_check_idle &lt;-irq_enter
+ &lt;idle&gt;-0 [004] d.s1 470.867174: tick_check_oneshot_broadcast &lt;-tick_check_idle
+ &lt;idle&gt;-0 [004] d.s1 470.867174: ktime_get &lt;-tick_check_idle
+ &lt;idle&gt;-0 [004] d.s1 470.867174: tick_nohz_stop_idle &lt;-tick_check_idle
+ &lt;idle&gt;-0 [004] d.s1 470.867175: update_ts_time_stats &lt;-tick_nohz_stop_idle
+ &lt;idle&gt;-0 [004] d.s1 470.867175: nr_iowait_cpu &lt;-update_ts_time_stats
+ &lt;idle&gt;-0 [004] d.s1 470.867175: tick_do_update_jiffies64 &lt;-tick_check_idle
+ &lt;idle&gt;-0 [004] d.s1 470.867175: _raw_spin_lock &lt;-tick_do_update_jiffies64
+ &lt;idle&gt;-0 [004] d.s1 470.867176: add_preempt_count &lt;-_raw_spin_lock
+ &lt;idle&gt;-0 [004] d.s2 470.867176: do_timer &lt;-tick_do_update_jiffies64
+ &lt;idle&gt;-0 [004] d.s2 470.867176: _raw_spin_lock &lt;-do_timer
+ &lt;idle&gt;-0 [004] d.s2 470.867176: add_preempt_count &lt;-_raw_spin_lock
+ &lt;idle&gt;-0 [004] d.s3 470.867177: ntp_tick_length &lt;-do_timer
+ &lt;idle&gt;-0 [004] d.s3 470.867177: _raw_spin_lock_irqsave &lt;-ntp_tick_length
+ .
+ .
+ .
+ </literallayout>
+ Each line in the trace above shows what was happening in
+ the kernel on a given cpu, to the level of detail of
+ function calls. Each entry shows the function called,
+ followed by its caller (after the arrow).
+ </para>
+
+ <para>
+ The function tracer gives you an extremely detailed idea
+ of what the kernel was doing at the point in time the trace
+ was taken, and is a great way to learn about how the kernel
+ code works in a dynamic sense.
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> The ftrace function tracer is also
+ available from within perf, as the ftrace:function tracepoint.
+ </informalexample>
+
+ <para>
+ It is a little more difficult to follow the call chains than
+ it needs to be - luckily there's a variant of the function
+ tracer that displays the callchains explicitly, called the
+ 'function_graph' tracer:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# echo function_graph &gt; current_tracer
+ root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
+
+ tracer: function_graph
+
+ CPU DURATION FUNCTION CALLS
+ | | | | | | |
+ 7) 0.046 us | pick_next_task_fair();
+ 7) 0.043 us | pick_next_task_stop();
+ 7) 0.042 us | pick_next_task_rt();
+ 7) 0.032 us | pick_next_task_fair();
+ 7) 0.030 us | pick_next_task_idle();
+ 7) | _raw_spin_unlock_irq() {
+ 7) 0.033 us | sub_preempt_count();
+ 7) 0.258 us | }
+ 7) 0.032 us | sub_preempt_count();
+ 7) + 13.341 us | } /* __schedule */
+ 7) 0.095 us | } /* sub_preempt_count */
+ 7) | schedule() {
+ 7) | __schedule() {
+ 7) 0.060 us | add_preempt_count();
+ 7) 0.044 us | rcu_note_context_switch();
+ 7) | _raw_spin_lock_irq() {
+ 7) 0.033 us | add_preempt_count();
+ 7) 0.247 us | }
+ 7) | idle_balance() {
+ 7) | _raw_spin_unlock() {
+ 7) 0.031 us | sub_preempt_count();
+ 7) 0.246 us | }
+ 7) | update_shares() {
+ 7) 0.030 us | __rcu_read_lock();
+ 7) 0.029 us | __rcu_read_unlock();
+ 7) 0.484 us | }
+ 7) 0.030 us | __rcu_read_lock();
+ 7) | load_balance() {
+ 7) | find_busiest_group() {
+ 7) 0.031 us | idle_cpu();
+ 7) 0.029 us | idle_cpu();
+ 7) 0.035 us | idle_cpu();
+ 7) 0.906 us | }
+ 7) 1.141 us | }
+ 7) 0.022 us | msecs_to_jiffies();
+ 7) | load_balance() {
+ 7) | find_busiest_group() {
+ 7) 0.031 us | idle_cpu();
+ .
+ .
+ .
+ 4) 0.062 us | msecs_to_jiffies();
+ 4) 0.062 us | __rcu_read_unlock();
+ 4) | _raw_spin_lock() {
+ 4) 0.073 us | add_preempt_count();
+ 4) 0.562 us | }
+ 4) + 17.452 us | }
+ 4) 0.108 us | put_prev_task_fair();
+ 4) 0.102 us | pick_next_task_fair();
+ 4) 0.084 us | pick_next_task_stop();
+ 4) 0.075 us | pick_next_task_rt();
+ 4) 0.062 us | pick_next_task_fair();
+ 4) 0.066 us | pick_next_task_idle();
+ ------------------------------------------
+ 4) kworker-74 =&gt; &lt;idle&gt;-0
+ ------------------------------------------
+
+ 4) | finish_task_switch() {
+ 4) | _raw_spin_unlock_irq() {
+ 4) 0.100 us | sub_preempt_count();
+ 4) 0.582 us | }
+ 4) 1.105 us | }
+ 4) 0.088 us | sub_preempt_count();
+ 4) ! 100.066 us | }
+ .
+ .
+ .
+ 3) | sys_ioctl() {
+ 3) 0.083 us | fget_light();
+ 3) | security_file_ioctl() {
+ 3) 0.066 us | cap_file_ioctl();
+ 3) 0.562 us | }
+ 3) | do_vfs_ioctl() {
+ 3) | drm_ioctl() {
+ 3) 0.075 us | drm_ut_debug_printk();
+ 3) | i915_gem_pwrite_ioctl() {
+ 3) | i915_mutex_lock_interruptible() {
+ 3) 0.070 us | mutex_lock_interruptible();
+ 3) 0.570 us | }
+ 3) | drm_gem_object_lookup() {
+ 3) | _raw_spin_lock() {
+ 3) 0.080 us | add_preempt_count();
+ 3) 0.620 us | }
+ 3) | _raw_spin_unlock() {
+ 3) 0.085 us | sub_preempt_count();
+ 3) 0.562 us | }
+ 3) 2.149 us | }
+ 3) 0.133 us | i915_gem_object_pin();
+ 3) | i915_gem_object_set_to_gtt_domain() {
+ 3) 0.065 us | i915_gem_object_flush_gpu_write_domain();
+ 3) 0.065 us | i915_gem_object_wait_rendering();
+ 3) 0.062 us | i915_gem_object_flush_cpu_write_domain();
+ 3) 1.612 us | }
+ 3) | i915_gem_object_put_fence() {
+ 3) 0.097 us | i915_gem_object_flush_fence.constprop.36();
+ 3) 0.645 us | }
+ 3) 0.070 us | add_preempt_count();
+ 3) 0.070 us | sub_preempt_count();
+ 3) 0.073 us | i915_gem_object_unpin();
+ 3) 0.068 us | mutex_unlock();
+ 3) 9.924 us | }
+ 3) + 11.236 us | }
+ 3) + 11.770 us | }
+ 3) + 13.784 us | }
+ 3) | sys_ioctl() {
+ </literallayout>
+ As you can see, the function_graph display is much easier to
+ follow. Also note that in addition to the function calls and
+ associated braces, other events such as scheduler events
+ are displayed in context. In fact, you can freely include
+ any tracepoint available in the trace events subsystem described
+ in the next section by simply enabling those events, and they'll
+ appear in context in the function graph display. Quite a
+ powerful tool for understanding kernel dynamics.
+ </para>
+
+ <para>
+ Also notice that there are various annotations on the left
+ hand side of the display. For example if the total time it
+ took for a given function to execute is above a certain
+ threshold, an exclamation point or plus sign appears on the
+ left hand side. Please see the ftrace documentation for
+ details on all these fields.
+ </para>
+ </section>
+
+ <section id='the-trace-events-subsystem'>
+ <title>The 'trace events' Subsystem</title>
+
+ <para>
+ One especially important directory contained within
+ the /sys/kernel/debug/tracing directory is the 'events'
+ subdirectory, which contains representations of every
+ tracepoint in the system. Listing out the contents of
+ the 'events' subdirectory, we see mainly another set of
+ subdirectories:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# cd events
+ root@sugarbay:/sys/kernel/debug/tracing/events# ls -al
+ drwxr-xr-x 38 root root 0 Nov 14 23:19 .
+ drwxr-xr-x 5 root root 0 Nov 14 23:19 ..
+ drwxr-xr-x 19 root root 0 Nov 14 23:19 block
+ drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs
+ drwxr-xr-x 5 root root 0 Nov 14 23:19 drm
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
+ drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3
+ drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace
+ drwxr-xr-x 8 root root 0 Nov 14 23:19 hda
+ -r--r--r-- 1 root root 0 Nov 14 23:19 header_event
+ -r--r--r-- 1 root root 0 Nov 14 23:19 header_page
+ drwxr-xr-x 25 root root 0 Nov 14 23:19 i915
+ drwxr-xr-x 7 root root 0 Nov 14 23:19 irq
+ drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem
+ drwxr-xr-x 7 root root 0 Nov 14 23:19 module
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 napi
+ drwxr-xr-x 6 root root 0 Nov 14 23:19 net
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 oom
+ drwxr-xr-x 12 root root 0 Nov 14 23:19 power
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 printk
+ drwxr-xr-x 8 root root 0 Nov 14 23:19 random
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu
+ drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm
+ drwxr-xr-x 20 root root 0 Nov 14 23:19 sched
+ drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 signal
+ drwxr-xr-x 5 root root 0 Nov 14 23:19 skb
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 sock
+ drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc
+ drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 task
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 timer
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 udp
+ drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall
+ drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue
+ drwxr-xr-x 26 root root 0 Nov 14 23:19 writeback
+ </literallayout>
+ Each one of these subdirectories corresponds to a
+ 'subsystem' and contains yet again more subdirectories,
+ each one of those finally corresponding to a tracepoint.
+ For example, here are the contents of the 'kmem' subsystem:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 .
+ drwxr-xr-x 38 root root 0 Nov 14 23:19 ..
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kfree
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc_node
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc_node
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_free
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_extfrag
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_zone_locked
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free_batched
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_pcpu_drain
+ </literallayout>
+ Let's see what's inside the subdirectory for a specific
+ tracepoint, in this case the one for kmalloc:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 .
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 ..
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
+ -r--r--r-- 1 root root 0 Nov 14 23:19 format
+ -r--r--r-- 1 root root 0 Nov 14 23:19 id
+ </literallayout>
+ The 'format' file for the tracepoint describes the event
+ in memory, which is used by the various tracing tools
+ that now make use of these tracepoint to parse the event
+ and make sense of it, along with a 'print fmt' field that
+ allows tools like ftrace to display the event as text.
+ Here's what the format of the kmalloc event looks like:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format
+ name: kmalloc
+ ID: 313
+ format:
+ field:unsigned short common_type; offset:0; size:2; signed:0;
+ field:unsigned char common_flags; offset:2; size:1; signed:0;
+ field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
+ field:int common_pid; offset:4; size:4; signed:1;
+ field:int common_padding; offset:8; size:4; signed:1;
+
+ field:unsigned long call_site; offset:16; size:8; signed:0;
+ field:const void * ptr; offset:24; size:8; signed:0;
+ field:size_t bytes_req; offset:32; size:8; signed:0;
+ field:size_t bytes_alloc; offset:40; size:8; signed:0;
+ field:gfp_t gfp_flags; offset:48; size:4; signed:0;
+
+ print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc,
+ (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
+ gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | ((
+ gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | ((
+ gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
+ gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
+ gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"},
+ {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)),
+ "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)((
+ gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)((
+ gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned
+ long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"}, {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"},
+ {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u),
+ "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned
+ long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"},
+ {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT"
+ </literallayout>
+ The 'enable' file in the tracepoint directory is what allows
+ the user (or tools such as trace-cmd) to actually turn the
+ tracepoint on and off. When enabled, the corresponding
+ tracepoint will start appearing in the ftrace 'trace'
+ file described previously. For example, this turns on the
+ kmalloc tracepoint:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable
+ </literallayout>
+ At the moment, we're not interested in the function tracer or
+ some other tracer that might be in effect, so we first turn
+ it off, but if we do that, we still need to turn tracing on in
+ order to see the events in the output buffer:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
+ root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on
+ </literallayout>
+ Now, if we look at the the 'trace' file, we see nothing
+ but the kmalloc events we just turned on:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
+ # tracer: nop
+ #
+ # entries-in-buffer/entries-written: 1897/1897 #P:8
+ #
+ # _-----=&gt; irqs-off
+ # / _----=&gt; need-resched
+ # | / _---=&gt; hardirq/softirq
+ # || / _--=&gt; preempt-depth
+ # ||| / delay
+ # TASK-PID CPU# |||| TIMESTAMP FUNCTION
+ # | | | |||| | |
+ dropbear-1465 [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ &lt;idle&gt;-0 [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ &lt;idle&gt;-0 [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ Xorg-1264 [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
+ Xorg-1264 [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
+ Xorg-1264 [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
+ matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ Xorg-1264 [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
+ Xorg-1264 [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
+ Xorg-1264 [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
+ &lt;idle&gt;-0 [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ &lt;idle&gt;-0 [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ &lt;idle&gt;-0 [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ &lt;idle&gt;-0 [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ &lt;idle&gt;-0 [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ &lt;idle&gt;-0 [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ matchbox-termin-1361 [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ Xorg-1264 [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
+ Xorg-1264 [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
+ Xorg-1264 [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
+ &lt;idle&gt;-0 [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ &lt;idle&gt;-0 [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ &lt;idle&gt;-0 [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ &lt;idle&gt;-0 [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ matchbox-termin-1361 [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ </literallayout>
+ To again disable the kmalloc event, we need to send 0 to the
+ enable file:
+ <literallayout class='monospaced'>
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable
+ </literallayout>
+ You can enable any number of events or complete subsystems
+ (by using the 'enable' file in the subsystem directory) and
+ get an arbitrarily fine-grained idea of what's going on in the
+ system by enabling as many of the appropriate tracepoints
+ as applicable.
+ </para>
+
+ <para>
+ A number of the tools described in this HOWTO do just that,
+ including trace-cmd and kernelshark in the next section.
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> These tracepoints and their representation
+ are used not only by ftrace, but by many of the other tools
+ covered in this document and they form a central point of
+ integration for the various tracers available in Linux.
+ They form a central part of the instrumentation for the
+ following tools: perf, lttng, ftrace, blktrace and SystemTap
+ </informalexample>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> Eventually all the special-purpose tracers
+ currently available in /sys/kernel/debug/tracing will be
+ removed and replaced with equivalent tracers based on the
+ 'trace events' subsystem.
+ </informalexample>
+ </section>
+
+ <section id='trace-cmd-kernelshark'>
+ <title>trace-cmd/kernelshark</title>
+
+ <para>
+ trace-cmd is essentially an extensive command-line 'wrapper'
+ interface that hides the details of all the individual files
+ in /sys/kernel/debug/tracing, allowing users to specify
+ specific particular events within the
+ /sys/kernel/debug/tracing/events/ subdirectory and to collect
+ traces and avoid having to deal with those details directly.
+ </para>
+
+ <para>
+ As yet another layer on top of that, kernelshark provides a GUI
+ that allows users to start and stop traces and specify sets
+ of events using an intuitive interface, and view the
+ output as both trace events and as a per-CPU graphical
+ display. It directly uses 'trace-cmd' as the plumbing
+ that accomplishes all that underneath the covers (and
+ actually displays the trace-cmd command it uses, as we'll see).
+ </para>
+
+ <para>
+ To start a trace using kernelshark, first start kernelshark:
+ <literallayout class='monospaced'>
+ root@sugarbay:~# kernelshark
+ </literallayout>
+ Then bring up the 'Capture' dialog by choosing from the
+ kernelshark menu:
+ <literallayout class='monospaced'>
+ Capture | Record
+ </literallayout>
+ That will display the following dialog, which allows you to
+ choose one or more events (or even one or more complete
+ subsystems) to trace:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/kernelshark-choose-events.png" width="6in" depth="6in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Note that these are exactly the same sets of events described
+ in the previous trace events subsystem section, and in fact
+ is where trace-cmd gets them for kernelshark.
+ </para>
+
+ <para>
+ In the above screenshot, we've decided to explore the
+ graphics subsystem a bit and so have chosen to trace all
+ the tracepoints contained within the 'i915' and 'drm'
+ subsystems.
+ </para>
+
+ <para>
+ After doing that, we can start and stop the trace using
+ the 'Run' and 'Stop' button on the lower right corner of
+ the dialog (the same button will turn into the 'Stop'
+ button after the trace has started):
+ </para>
+
+ <para>
+ <imagedata fileref="figures/kernelshark-output-display.png" width="6in" depth="6in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Notice that the right-hand pane shows the exact trace-cmd
+ command-line that's used to run the trace, along with the
+ results of the trace-cmd run.
+ </para>
+
+ <para>
+ Once the 'Stop' button is pressed, the graphical view magically
+ fills up with a colorful per-cpu display of the trace data,
+ along with the detailed event listing below that:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/kernelshark-i915-display.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Here's another example, this time a display resulting
+ from tracing 'all events':
+ </para>
+
+ <para>
+ <imagedata fileref="figures/kernelshark-all.png" width="6in" depth="7in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ The tool is pretty self-explanatory, but for more detailed
+ information on navigating through the data, see the
+ <ulink url='http://rostedt.homelinux.com/kernelshark/'>kernelshark website</ulink>.
+ </para>
+ </section>
+
+ <section id='ftrace-documentation'>
+ <title>Documentation</title>
+
+ <para>
+ The documentation for ftrace can be found in the kernel
+ Documentation directory:
+ <literallayout class='monospaced'>
+ Documentation/trace/ftrace.txt
+ </literallayout>
+ The documentation for the trace event subsystem can also
+ be found in the kernel Documentation directory:
+ <literallayout class='monospaced'>
+ Documentation/trace/events.txt
+ </literallayout>
+ There is a nice series of articles on using
+ ftrace and trace-cmd at LWN:
+ <itemizedlist>
+ <listitem><para><ulink url='http://lwn.net/Articles/365835/'>Debugging the kernel using Ftrace - part 1</ulink>
+ </para></listitem>
+ <listitem><para><ulink url='http://lwn.net/Articles/366796/'>Debugging the kernel using Ftrace - part 2</ulink>
+ </para></listitem>
+ <listitem><para><ulink url='http://lwn.net/Articles/370423/'>Secrets of the Ftrace function tracer</ulink>
+ </para></listitem>
+ <listitem><para><ulink url='https://lwn.net/Articles/410200/'>trace-cmd: A front-end for Ftrace</ulink>
+ </para></listitem>
+ </itemizedlist>
+ </para>
+
+ <para>
+ There's more detailed documentation kernelshark usage here:
+ <ulink url='http://rostedt.homelinux.com/kernelshark/'>KernelShark</ulink>
+ </para>
+
+ <para>
+ An amusing yet useful README (a tracing mini-HOWTO) can be
+ found in /sys/kernel/debug/tracing/README.
+ </para>
+ </section>
+</section>
+
+<section id='profile-manual-systemtap'>
+ <title>systemtap</title>
+
+ <para>
+ SystemTap is a system-wide script-based tracing and profiling tool.
+ </para>
+
+ <para>
+ SystemTap scripts are C-like programs that are executed in the
+ kernel to gather/print/aggregate data extracted from the context
+ they end up being invoked under.
+ </para>
+
+ <para>
+ For example, this probe from the
+ <ulink url='http://sourceware.org/systemtap/tutorial/'>SystemTap tutorial</ulink>
+ simply prints a line every time any process on the system open()s
+ a file. For each line, it prints the executable name of the
+ program that opened the file, along with its PID, and the name
+ of the file it opened (or tried to open), which it extracts
+ from the open syscall's argstr.
+ <literallayout class='monospaced'>
+ probe syscall.open
+ {
+ printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
+ }
+
+ probe timer.ms(4000) # after 4 seconds
+ {
+ exit ()
+ }
+ </literallayout>
+ Normally, to execute this probe, you'd simply install
+ systemtap on the system you want to probe, and directly run
+ the probe on that system e.g. assuming the name of the file
+ containing the above text is trace_open.stp:
+ <literallayout class='monospaced'>
+ # stap trace_open.stp
+ </literallayout>
+ What systemtap does under the covers to run this probe is 1)
+ parse and convert the probe to an equivalent 'C' form, 2)
+ compile the 'C' form into a kernel module, 3) insert the
+ module into the kernel, which arms it, and 4) collect the data
+ generated by the probe and display it to the user.
+ </para>
+
+ <para>
+ In order to accomplish steps 1 and 2, the 'stap' program needs
+ access to the kernel build system that produced the kernel
+ that the probed system is running. In the case of a typical
+ embedded system (the 'target'), the kernel build system
+ unfortunately isn't typically part of the image running on
+ the target. It is normally available on the 'host' system
+ that produced the target image however; in such cases,
+ steps 1 and 2 are executed on the host system, and steps
+ 3 and 4 are executed on the target system, using only the
+ systemtap 'runtime'.
+ </para>
+
+ <para>
+ The systemtap support in Yocto assumes that only steps
+ 3 and 4 are run on the target; it is possible to do
+ everything on the target, but this section assumes only
+ the typical embedded use-case.
+ </para>
+
+ <para>
+ So basically what you need to do in order to run a systemtap
+ script on the target is to 1) on the host system, compile the
+ probe into a kernel module that makes sense to the target, 2)
+ copy the module onto the target system and 3) insert the
+ module into the target kernel, which arms it, and 4) collect
+ the data generated by the probe and display it to the user.
+ </para>
+
+ <section id='systemtap-setup'>
+ <title>Setup</title>
+
+ <para>
+ Those are a lot of steps and a lot of details, but
+ fortunately Yocto includes a script called 'crosstap'
+ that will take care of those details, allowing you to
+ simply execute a systemtap script on the remote target,
+ with arguments if necessary.
+ </para>
+
+ <para>
+ In order to do this from a remote host, however, you
+ need to have access to the build for the image you
+ booted. The 'crosstap' script provides details on how
+ to do this if you run the script on the host without having
+ done a build:
+ <note>
+ SystemTap, which uses 'crosstap', assumes you can establish an
+ ssh connection to the remote target.
+ Please refer to the crosstap wiki page for details on verifying
+ ssh connections at
+ <ulink url='https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap'></ulink>.
+ Also, the ability to ssh into the target system is not enabled
+ by default in *-minimal images.
+ </note>
+ <literallayout class='monospaced'>
+ $ crosstap root@192.168.1.88 trace_open.stp
+
+ Error: No target kernel build found.
+ Did you forget to create a local build of your image?
+
+ 'crosstap' requires a local sdk build of the target system
+ (or a build that includes 'tools-profile') in order to build
+ kernel modules that can probe the target system.
+
+ Practically speaking, that means you need to do the following:
+ - If you're running a pre-built image, download the release
+ and/or BSP tarballs used to build the image.
+ - If you're working from git sources, just clone the metadata
+ and BSP layers needed to build the image you'll be booting.
+ - Make sure you're properly set up to build a new image (see
+ the BSP README and/or the widely available basic documentation
+ that discusses how to build images).
+ - Build an -sdk version of the image e.g.:
+ $ bitbake core-image-sato-sdk
+ OR
+ - Build a non-sdk image but include the profiling tools:
+ [ edit local.conf and add 'tools-profile' to the end of
+ the EXTRA_IMAGE_FEATURES variable ]
+ $ bitbake core-image-sato
+
+ Once you've build the image on the host system, you're ready to
+ boot it (or the equivalent pre-built image) and use 'crosstap'
+ to probe it (you need to source the environment as usual first):
+
+ $ source oe-init-build-env
+ $ cd ~/my/systemtap/scripts
+ $ crosstap root@192.168.1.xxx myscript.stp
+ </literallayout>
+ So essentially what you need to do is build an SDK image or
+ image with 'tools-profile' as detailed in the
+ "<link linkend='profile-manual-general-setup'>General Setup</link>"
+ section of this manual, and boot the resulting target image.
+ </para>
+
+ <note>
+ If you have a build directory containing multiple machines,
+ you need to have the MACHINE you're connecting to selected
+ in local.conf, and the kernel in that machine's build
+ directory must match the kernel on the booted system exactly,
+ or you'll get the above 'crosstap' message when you try to
+ invoke a script.
+ </note>
+ </section>
+
+ <section id='running-a-script-on-a-target'>
+ <title>Running a Script on a Target</title>
+
+ <para>
+ Once you've done that, you should be able to run a systemtap
+ script on the target:
+ <literallayout class='monospaced'>
+ $ cd /path/to/yocto
+ $ source oe-init-build-env
+
+ ### Shell environment set up for builds. ###
+
+ You can now run 'bitbake &lt;target&gt;'
+
+ Common targets are:
+ core-image-minimal
+ core-image-sato
+ meta-toolchain
+ meta-ide-support
+
+ You can also run generated qemu images with a command like 'runqemu qemux86'
+
+ </literallayout>
+ Once you've done that, you can cd to whatever directory
+ contains your scripts and use 'crosstap' to run the script:
+ <literallayout class='monospaced'>
+ $ cd /path/to/my/systemap/script
+ $ crosstap root@192.168.7.2 trace_open.stp
+ </literallayout>
+ If you get an error connecting to the target e.g.:
+ <literallayout class='monospaced'>
+ $ crosstap root@192.168.7.2 trace_open.stp
+ error establishing ssh connection on remote 'root@192.168.7.2'
+ </literallayout>
+ Try ssh'ing to the target and see what happens:
+ <literallayout class='monospaced'>
+ $ ssh root@192.168.7.2
+ </literallayout>
+ A lot of the time, connection problems are due specifying a
+ wrong IP address or having a 'host key verification error'.
+ </para>
+
+ <para>
+ If everything worked as planned, you should see something
+ like this (enter the password when prompted, or press enter
+ if it's set up to use no password):
+ <literallayout class='monospaced'>
+ $ crosstap root@192.168.7.2 trace_open.stp
+ root@192.168.7.2's password:
+ matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
+ matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
+ </literallayout>
+ </para>
+ </section>
+
+ <section id='systemtap-documentation'>
+ <title>Documentation</title>
+
+ <para>
+ The SystemTap language reference can be found here:
+ <ulink url='http://sourceware.org/systemtap/langref/'>SystemTap Language Reference</ulink>
+ </para>
+
+ <para>
+ Links to other SystemTap documents, tutorials, and examples can be
+ found here:
+ <ulink url='http://sourceware.org/systemtap/documentation.html'>SystemTap documentation page</ulink>
+ </para>
+ </section>
+</section>
+
+<section id='profile-manual-sysprof'>
+ <title>Sysprof</title>
+
+ <para>
+ Sysprof is a very easy to use system-wide profiler that consists
+ of a single window with three panes and a few buttons which allow
+ you to start, stop, and view the profile from one place.
+ </para>
+
+ <section id='sysprof-setup'>
+ <title>Setup</title>
+
+ <para>
+ For this section, we'll assume you've already performed the
+ basic setup outlined in the General Setup section.
+ </para>
+
+ <para>
+ Sysprof is a GUI-based application that runs on the target
+ system. For the rest of this document we assume you've
+ ssh'ed to the host and will be running Sysprof on the
+ target (you can use the '-X' option to ssh and have the
+ Sysprof GUI run on the target but display remotely on the
+ host if you want).
+ </para>
+ </section>
+
+ <section id='sysprof-basic-usage'>
+ <title>Basic Usage</title>
+
+ <para>
+ To start profiling the system, you simply press the 'Start'
+ button. To stop profiling and to start viewing the profile data
+ in one easy step, press the 'Profile' button.
+ </para>
+
+ <para>
+ Once you've pressed the profile button, the three panes will
+ fill up with profiling data:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/sysprof-copy-to-user.png" width="6in" depth="4in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ The left pane shows a list of functions and processes.
+ Selecting one of those expands that function in the right
+ pane, showing all its callees. Note that this caller-oriented
+ display is essentially the inverse of perf's default
+ callee-oriented callchain display.
+ </para>
+
+ <para>
+ In the screenshot above, we're focusing on __copy_to_user_ll()
+ and looking up the callchain we can see that one of the callers
+ of __copy_to_user_ll is sys_read() and the complete callpath
+ between them. Notice that this is essentially a portion of the
+ same information we saw in the perf display shown in the perf
+ section of this page.
+ </para>
+
+ <para>
+ <imagedata fileref="figures/sysprof-copy-from-user.png" width="6in" depth="4in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Similarly, the above is a snapshot of the Sysprof display of a
+ copy-from-user callchain.
+ </para>
+
+ <para>
+ Finally, looking at the third Sysprof pane in the lower left,
+ we can see a list of all the callers of a particular function
+ selected in the top left pane. In this case, the lower pane is
+ showing all the callers of __mark_inode_dirty:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/sysprof-callers.png" width="6in" depth="4in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ Double-clicking on one of those functions will in turn change the
+ focus to the selected function, and so on.
+ </para>
+
+ <informalexample>
+ <emphasis>Tying it Together:</emphasis> If you like sysprof's 'caller-oriented'
+ display, you may be able to approximate it in other tools as
+ well. For example, 'perf report' has the -g (--call-graph)
+ option that you can experiment with; one of the options is
+ 'caller' for an inverted caller-based callgraph display.
+ </informalexample>
+ </section>
+
+ <section id='sysprof-documentation'>
+ <title>Documentation</title>
+
+ <para>
+ There doesn't seem to be any documentation for Sysprof, but
+ maybe that's because it's pretty self-explanatory.
+ The Sysprof website, however, is here:
+ <ulink url='http://sysprof.com/'>Sysprof, System-wide Performance Profiler for Linux</ulink>
+ </para>
+ </section>
+</section>
+
+<section id='lttng-linux-trace-toolkit-next-generation'>
+ <title>LTTng (Linux Trace Toolkit, next generation)</title>
+
+ <section id='lttng-setup'>
+ <title>Setup</title>
+
+ <para>
+ For this section, we'll assume you've already performed the
+ basic setup outlined in the General Setup section.
+ </para>
+
+ <para>
+ LTTng is run on the target system by ssh'ing to it.
+ However, if you want to see the traces graphically,
+ install Eclipse as described in section
+ "<link linkend='manually-copying-a-trace-to-the-host-and-viewing-it-in-eclipse'>Manually copying a trace to the host and viewing it in Eclipse (i.e. using Eclipse without network support)</link>"
+ and follow the directions to manually copy traces to the host and
+ view them in Eclipse (i.e. using Eclipse without network support).
+ </para>
+
+ <note>
+ Be sure to download and install/run the 'SR1' or later Juno release
+ of eclipse e.g.:
+ <ulink url='http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz'>http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz</ulink>
+ </note>
+ </section>
+
+ <section id='collecting-and-viewing-traces'>
+ <title>Collecting and Viewing Traces</title>
+
+ <para>
+ Once you've applied the above commits and built and booted your
+ image (you need to build the core-image-sato-sdk image or use one of the
+ other methods described in the General Setup section), you're
+ ready to start tracing.
+ </para>
+
+ <section id='collecting-and-viewing-a-trace-on-the-target-inside-a-shell'>
+ <title>Collecting and viewing a trace on the target (inside a shell)</title>
+
+ <para>
+ First, from the host, ssh to the target:
+ <literallayout class='monospaced'>
+ $ ssh -l root 192.168.1.47
+ The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
+ RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
+ Are you sure you want to continue connecting (yes/no)? yes
+ Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
+ root@192.168.1.47's password:
+ </literallayout>
+ Once on the target, use these steps to create a trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng create
+ Spawning a session daemon
+ Session auto-20121015-232120 created.
+ Traces will be written in /home/root/lttng-traces/auto-20121015-232120
+ </literallayout>
+ Enable the events you want to trace (in this case all
+ kernel events):
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng enable-event --kernel --all
+ All kernel events are enabled in channel channel0
+ </literallayout>
+ Start the trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng start
+ Tracing started for session auto-20121015-232120
+ </literallayout>
+ And then stop the trace after awhile or after running
+ a particular workload that you want to trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng stop
+ Tracing stopped for session auto-20121015-232120
+ </literallayout>
+ You can now view the trace in text form on the target:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng view
+ [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { }
+ [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 }
+ [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C }
+ [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 }
+ [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 }
+ [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 }
+ [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 }
+ [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 }
+ [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 }
+ [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 }
+ [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 }
+ [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 }
+ [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 }
+ [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 }
+ [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 }
+ [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 }
+ [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 }
+ [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 }
+ [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 }
+ [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 }
+ [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 }
+ [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
+ [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
+ [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 }
+ [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 }
+ [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 }
+ [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 }
+ [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 }
+ [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 }
+ [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 }
+ [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 }
+ [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 }
+ [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 }
+ [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 }
+ [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 }
+ [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 }
+ [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 }
+ .
+ .
+ .
+ </literallayout>
+ You can now safely destroy the trace session (note that
+ this doesn't delete the trace - it's still there
+ in ~/lttng-traces):
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng destroy
+ Session auto-20121015-232120 destroyed at /home/root
+ </literallayout>
+ Note that the trace is saved in a directory of the same
+ name as returned by 'lttng create', under the ~/lttng-traces
+ directory (note that you can change this by supplying your
+ own name to 'lttng create'):
+ <literallayout class='monospaced'>
+ root@crownbay:~# ls -al ~/lttng-traces
+ drwxrwx--- 3 root root 1024 Oct 15 23:21 .
+ drwxr-xr-x 5 root root 1024 Oct 15 23:57 ..
+ drwxrwx--- 3 root root 1024 Oct 15 23:21 auto-20121015-232120
+ </literallayout>
+ </para>
+ </section>
+
+ <section id='collecting-and-viewing-a-userspace-trace-on-the-target-inside-a-shell'>
+ <title>Collecting and viewing a userspace trace on the target (inside a shell)</title>
+
+ <para>
+ For LTTng userspace tracing, you need to have a properly
+ instrumented userspace program. For this example, we'll use
+ the 'hello' test program generated by the lttng-ust build.
+ </para>
+
+ <para>
+ The 'hello' test program isn't installed on the rootfs by
+ the lttng-ust build, so we need to copy it over manually.
+ First cd into the build directory that contains the hello
+ executable:
+ <literallayout class='monospaced'>
+ $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
+ </literallayout>
+ Copy that over to the target machine:
+ <literallayout class='monospaced'>
+ $ scp hello root@192.168.1.20:
+ </literallayout>
+ You now have the instrumented lttng 'hello world' test
+ program on the target, ready to test.
+ </para>
+
+ <para>
+ First, from the host, ssh to the target:
+ <literallayout class='monospaced'>
+ $ ssh -l root 192.168.1.47
+ The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
+ RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
+ Are you sure you want to continue connecting (yes/no)? yes
+ Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
+ root@192.168.1.47's password:
+ </literallayout>
+ Once on the target, use these steps to create a trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng create
+ Session auto-20190303-021943 created.
+ Traces will be written in /home/root/lttng-traces/auto-20190303-021943
+ </literallayout>
+ Enable the events you want to trace (in this case all
+ userspace events):
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng enable-event --userspace --all
+ All UST events are enabled in channel channel0
+ </literallayout>
+ Start the trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng start
+ Tracing started for session auto-20190303-021943
+ </literallayout>
+ Run the instrumented hello world program:
+ <literallayout class='monospaced'>
+ root@crownbay:~# ./hello
+ Hello, World!
+ Tracing... done.
+ </literallayout>
+ And then stop the trace after awhile or after running a
+ particular workload that you want to trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng stop
+ Tracing stopped for session auto-20190303-021943
+ </literallayout>
+ You can now view the trace in text form on the target:
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng view
+ [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ .
+ .
+ .
+ </literallayout>
+ You can now safely destroy the trace session (note that
+ this doesn't delete the trace - it's still
+ there in ~/lttng-traces):
+ <literallayout class='monospaced'>
+ root@crownbay:~# lttng destroy
+ Session auto-20190303-021943 destroyed at /home/root
+ </literallayout>
+ </para>
+ </section>
+
+ <section id='manually-copying-a-trace-to-the-host-and-viewing-it-in-eclipse'>
+ <title>Manually copying a trace to the host and viewing it in Eclipse (i.e. using Eclipse without network support)</title>
+
+ <para>
+ If you already have an LTTng trace on a remote target and
+ would like to view it in Eclipse on the host, you can easily
+ copy it from the target to the host and import it into
+ Eclipse to view it using the LTTng Eclipse plug-in already
+ bundled in the Eclipse (Juno SR1 or greater).
+ </para>
+
+ <para>
+ Using the trace we created in the previous section, archive
+ it and copy it to your host system:
+ <literallayout class='monospaced'>
+ root@crownbay:~/lttng-traces# tar zcvf auto-20121015-232120.tar.gz auto-20121015-232120
+ auto-20121015-232120/
+ auto-20121015-232120/kernel/
+ auto-20121015-232120/kernel/metadata
+ auto-20121015-232120/kernel/channel0_1
+ auto-20121015-232120/kernel/channel0_0
+
+ $ scp root@192.168.1.47:lttng-traces/auto-20121015-232120.tar.gz .
+ root@192.168.1.47's password:
+ auto-20121015-232120.tar.gz 100% 1566KB 1.5MB/s 00:01
+ </literallayout>
+ Unarchive it on the host:
+ <literallayout class='monospaced'>
+ $ gunzip -c auto-20121015-232120.tar.gz | tar xvf -
+ auto-20121015-232120/
+ auto-20121015-232120/kernel/
+ auto-20121015-232120/kernel/metadata
+ auto-20121015-232120/kernel/channel0_1
+ auto-20121015-232120/kernel/channel0_0
+ </literallayout>
+ We can now import the trace into Eclipse and view it:
+ <orderedlist>
+ <listitem><para>First, start eclipse and open the
+ 'LTTng Kernel' perspective by selecting the following
+ menu item:
+ <literallayout class='monospaced'>
+ Window | Open Perspective | Other...
+ </literallayout></para></listitem>
+ <listitem><para>In the dialog box that opens, select
+ 'LTTng Kernel' from the list.</para></listitem>
+ <listitem><para>Back at the main menu, select the
+ following menu item:
+ <literallayout class='monospaced'>
+ File | New | Project...
+ </literallayout></para></listitem>
+ <listitem><para>In the dialog box that opens, select
+ the 'Tracing | Tracing Project' wizard and press
+ 'Next>'.</para></listitem>
+ <listitem><para>Give the project a name and press
+ 'Finish'.</para></listitem>
+ <listitem><para>In the 'Project Explorer' pane under
+ the project you created, right click on the
+ 'Traces' item.</para></listitem>
+ <listitem><para>Select 'Import..." and in the dialog
+ that's displayed:</para></listitem>
+ <listitem><para>Browse the filesystem and find the
+ select the 'kernel' directory containing the trace
+ you copied from the target
+ e.g. auto-20121015-232120/kernel</para></listitem>
+ <listitem><para>'Checkmark' the directory in the tree
+ that's displayed for the trace</para></listitem>
+ <listitem><para>Below that, select 'Common Trace Format:
+ Kernel Trace' for the 'Trace Type'</para></listitem>
+ <listitem><para>Press 'Finish' to close the dialog
+ </para></listitem>
+ <listitem><para>Back in the 'Project Explorer' pane,
+ double-click on the 'kernel' item for the
+ trace you just imported under 'Traces'
+ </para></listitem>
+ </orderedlist>
+ You should now see your trace data displayed graphically
+ in several different views in Eclipse:
+ </para>
+
+ <para>
+ <imagedata fileref="figures/lttngmain0.png" width="6in" depth="6in" align="center" scalefit="1" />
+ </para>
+
+ <para>
+ You can access extensive help information on how to use
+ the LTTng plug-in to search and analyze captured traces via
+ the Eclipse help system:
+ <literallayout class='monospaced'>
+ Help | Help Contents | LTTng Plug-in User Guide
+ </literallayout>
+ </para>
+ </section>
+
+ <section id='collecting-and-viewing-a-trace-in-eclipse'>
+ <title>Collecting and viewing a trace in Eclipse</title>
+
+ <note>
+ This section on collecting traces remotely doesn't currently
+ work because of Eclipse 'RSE' connectivity problems. Manually
+ tracing on the target, copying the trace files to the host,
+ and viewing the trace in Eclipse on the host as outlined in
+ previous steps does work however - please use the manual
+ steps outlined above to view traces in Eclipse.
+ </note>
+
+ <para>
+ In order to trace a remote target, you also need to add
+ a 'tracing' group on the target and connect as a user
+ who's part of that group e.g:
+ <literallayout class='monospaced'>
+ # adduser tomz
+ # groupadd -r tracing
+ # usermod -a -G tracing tomz
+ </literallayout>
+ <orderedlist>
+ <listitem><para>First, start eclipse and open the
+ 'LTTng Kernel' perspective by selecting the following
+ menu item:
+ <literallayout class='monospaced'>
+ Window | Open Perspective | Other...
+ </literallayout></para></listitem>
+ <listitem><para>In the dialog box that opens, select
+ 'LTTng Kernel' from the list.</para></listitem>
+ <listitem><para>Back at the main menu, select the
+ following menu item:
+ <literallayout class='monospaced'>
+ File | New | Project...
+ </literallayout></para></listitem>
+ <listitem><para>In the dialog box that opens, select
+ the 'Tracing | Tracing Project' wizard and
+ press 'Next>'.</para></listitem>
+ <listitem><para>Give the project a name and press
+ 'Finish'. That should result in an entry in the
+ 'Project' subwindow.</para></listitem>
+ <listitem><para>In the 'Control' subwindow just below
+ it, press 'New Connection'.</para></listitem>
+ <listitem><para>Add a new connection, giving it the
+ hostname or IP address of the target system.
+ </para></listitem>
+ <listitem><para>Provide the username and password
+ of a qualified user (a member of the 'tracing' group)
+ or root account on the target system.
+ </para></listitem>
+ <listitem><para>Provide appropriate answers to whatever
+ else is asked for e.g. 'secure storage password'
+ can be anything you want.
+ If you get an 'RSE Error' it may be due to proxies.
+ It may be possible to get around the problem by
+ changing the following setting:
+ <literallayout class='monospaced'>
+ Window | Preferences | Network Connections
+ </literallayout>
+ Switch 'Active Provider' to 'Direct'
+ </para></listitem>
+ </orderedlist>
+ </para>
+ </section>
+ </section>
+
+ <section id='lltng-documentation'>
+ <title>Documentation</title>
+
+ <para>
+ You can find the primary LTTng Documentation on the
+ <ulink url='https://lttng.org/docs/'>LTTng Documentation</ulink>
+ site.
+ The documentation on this site is appropriate for intermediate to
+ advanced software developers who are working in a Linux environment
+ and are interested in efficient software tracing.
+ </para>
+
+ <para>
+ For information on LTTng in general, visit the
+ <ulink url='http://lttng.org/lttng2.0'>LTTng Project</ulink>
+ site.
+ You can find a "Getting Started" link on this site that takes
+ you to an LTTng Quick Start.
+ </para>
+
+ <para>
+ Finally, you can access extensive help information on how to use
+ the LTTng plug-in to search and analyze captured traces via the
+ Eclipse help system:
+ <literallayout class='monospaced'>
+ Help | Help Contents | LTTng Plug-in User Guide
+ </literallayout>
+ </para>
+ </section>
+</section>
+
+<section id='profile-manual-blktrace'>
+ <title>blktrace</title>
+
+ <para>
+ blktrace is a tool for tracing and reporting low-level disk I/O.
+ blktrace provides the tracing half of the equation; its output can
+ be piped into the blkparse program, which renders the data in a
+ human-readable form and does some basic analysis:
+ </para>
+
+ <section id='blktrace-setup'>
+ <title>Setup</title>
+
+ <para>
+ For this section, we'll assume you've already performed the
+ basic setup outlined in the
+ "<link linkend='profile-manual-general-setup'>General Setup</link>"
+ section.
+ </para>
+
+ <para>
+ blktrace is an application that runs on the target system.
+ You can run the entire blktrace and blkparse pipeline on the
+ target, or you can run blktrace in 'listen' mode on the target
+ and have blktrace and blkparse collect and analyze the data on
+ the host (see the
+ "<link linkend='using-blktrace-remotely'>Using blktrace Remotely</link>"
+ section below).
+ For the rest of this section we assume you've ssh'ed to the
+ host and will be running blkrace on the target.
+ </para>
+ </section>
+
+ <section id='blktrace-basic-usage'>
+ <title>Basic Usage</title>
+
+ <para>
+ To record a trace, simply run the 'blktrace' command, giving it
+ the name of the block device you want to trace activity on:
+ <literallayout class='monospaced'>
+ root@crownbay:~# blktrace /dev/sdc
+ </literallayout>
+ In another shell, execute a workload you want to trace.
+ <literallayout class='monospaced'>
+ root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
+ </literallayout>
+ Press Ctrl-C in the blktrace shell to stop the trace. It will
+ display how many events were logged, along with the per-cpu file
+ sizes (blktrace records traces in per-cpu kernel buffers and
+ simply dumps them to userspace for blkparse to merge and sort
+ later).
+ <literallayout class='monospaced'>
+ ^C=== sdc ===
+ CPU 0: 7082 events, 332 KiB data
+ CPU 1: 1578 events, 74 KiB data
+ Total: 8660 events (dropped 0), 406 KiB data
+ </literallayout>
+ If you examine the files saved to disk, you see multiple files,
+ one per CPU and with the device name as the first part of the
+ filename:
+ <literallayout class='monospaced'>
+ root@crownbay:~# ls -al
+ drwxr-xr-x 6 root root 1024 Oct 27 22:39 .
+ drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
+ -rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0
+ -rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.1
+ </literallayout>
+ To view the trace events, simply invoke 'blkparse' in the
+ directory containing the trace files, giving it the device name
+ that forms the first part of the filenames:
+ <literallayout class='monospaced'>
+ root@crownbay:~# blkparse sdc
+
+ 8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8]
+ 8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 0 0.000057270 0 m N cfq1225 insert_request
+ 8,32 1 0 0.000064813 0 m N cfq1225 add_to_rr
+ 8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1
+ 8,32 1 0 0.000088559 0 m N cfq workload slice:150
+ 8,32 1 0 0.000097359 0 m N cfq1225 set_active wl_prio:0 wl_type:1
+ 8,32 1 0 0.000104063 0 m N cfq1225 Not idling. st->count:1
+ 8,32 1 0 0.000112584 0 m N cfq1225 fifo= (null)
+ 8,32 1 0 0.000118730 0 m N cfq1225 dispatch_insert
+ 8,32 1 0 0.000127390 0 m N cfq1225 dispatched a request
+ 8,32 1 0 0.000133536 0 m N cfq1225 activate rq, drv=1
+ 8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8]
+ 8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8]
+ 8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8]
+ 8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8]
+ 8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8]
+ 8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8]
+ 8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8]
+ 8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8]
+ 8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8]
+ 8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8]
+ 8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8]
+ 8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8]
+ 8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8]
+ 8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8]
+ 8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8]
+ 8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8]
+ 8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8]
+ 8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8]
+ 8,32 1 0 0.000483022 0 m N cfq1225 insert_request
+ 8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1
+ 8,32 1 0 0.000498457 0 m N cfq1225 Not idling. st->count:1
+ 8,32 1 0 0.000503765 0 m N cfq1225 dispatch_insert
+ 8,32 1 0 0.000512914 0 m N cfq1225 dispatched a request
+ 8,32 1 0 0.000518851 0 m N cfq1225 activate rq, drv=2
+ .
+ .
+ .
+ 8,32 0 0 58.515006138 0 m N cfq3551 complete rqnoidle 1
+ 8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0]
+ 8,32 0 0 58.516626736 0 m N cfq3551 complete rqnoidle 1
+ 8,32 0 0 58.516634558 0 m N cfq3551 arm_idle: 8 group_idle: 0
+ 8,32 0 0 58.516636933 0 m N cfq schedule dispatch
+ 8,32 1 0 58.516971613 0 m N cfq3551 slice expired t=0
+ 8,32 1 0 58.516982089 0 m N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80
+ 8,32 1 0 58.516985511 0 m N cfq3551 del_from_rr
+ 8,32 1 0 58.516990819 0 m N cfq3551 put_queue
+
+ CPU0 (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB
+ Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB
+ Read Merges: 0, 0KiB Write Merges: 13, 160KiB
+ Read depth: 0 Write depth: 2
+ IO unplugs: 23 Timer unplugs: 0
+ CPU1 (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB
+ Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB
+ Read Merges: 0, 0KiB Write Merges: 40, 276KiB
+ Read depth: 0 Write depth: 2
+ IO unplugs: 30 Timer unplugs: 1
+
+ Total (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB
+ Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB
+ Read Merges: 0, 0KiB Write Merges: 53, 436KiB
+ IO unplugs: 53 Timer unplugs: 1
+
+ Throughput (R/W): 0KiB/s / 719KiB/s
+ Events (sdc): 6,592 entries
+ Skips: 0 forward (0 - 0.0%)
+ Input file sdc.blktrace.0 added
+ Input file sdc.blktrace.1 added
+ </literallayout>
+ The report shows each event that was found in the blktrace data,
+ along with a summary of the overall block I/O traffic during
+ the run. You can look at the
+ <ulink url='http://linux.die.net/man/1/blkparse'>blkparse</ulink>
+ manpage to learn the
+ meaning of each field displayed in the trace listing.
+ </para>
+
+ <section id='blktrace-live-mode'>
+ <title>Live Mode</title>
+
+ <para>
+ blktrace and blkparse are designed from the ground up to
+ be able to operate together in a 'pipe mode' where the
+ stdout of blktrace can be fed directly into the stdin of
+ blkparse:
+ <literallayout class='monospaced'>
+ root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -
+ </literallayout>
+ This enables long-lived tracing sessions to run without
+ writing anything to disk, and allows the user to look for
+ certain conditions in the trace data in 'real-time' by
+ viewing the trace output as it scrolls by on the screen or
+ by passing it along to yet another program in the pipeline
+ such as grep which can be used to identify and capture
+ conditions of interest.
+ </para>
+
+ <para>
+ There's actually another blktrace command that implements
+ the above pipeline as a single command, so the user doesn't
+ have to bother typing in the above command sequence:
+ <literallayout class='monospaced'>
+ root@crownbay:~# btrace /dev/sdc
+ </literallayout>
+ </para>
+ </section>
+
+ <section id='using-blktrace-remotely'>
+ <title>Using blktrace Remotely</title>
+
+ <para>
+ Because blktrace traces block I/O and at the same time
+ normally writes its trace data to a block device, and
+ in general because it's not really a great idea to make
+ the device being traced the same as the device the tracer
+ writes to, blktrace provides a way to trace without
+ perturbing the traced device at all by providing native
+ support for sending all trace data over the network.
+ </para>
+
+ <para>
+ To have blktrace operate in this mode, start blktrace on
+ the target system being traced with the -l option, along with
+ the device to trace:
+ <literallayout class='monospaced'>
+ root@crownbay:~# blktrace -l /dev/sdc
+ server: waiting for connections...
+ </literallayout>
+ On the host system, use the -h option to connect to the
+ target system, also passing it the device to trace:
+ <literallayout class='monospaced'>
+ $ blktrace -d /dev/sdc -h 192.168.1.43
+ blktrace: connecting to 192.168.1.43
+ blktrace: connected!
+ </literallayout>
+ On the target system, you should see this:
+ <literallayout class='monospaced'>
+ server: connection from 192.168.1.43
+ </literallayout>
+ In another shell, execute a workload you want to trace.
+ <literallayout class='monospaced'>
+ root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
+ </literallayout>
+ When it's done, do a Ctrl-C on the host system to
+ stop the trace:
+ <literallayout class='monospaced'>
+ ^C=== sdc ===
+ CPU 0: 7691 events, 361 KiB data
+ CPU 1: 4109 events, 193 KiB data
+ Total: 11800 events (dropped 0), 554 KiB data
+ </literallayout>
+ On the target system, you should also see a trace
+ summary for the trace just ended:
+ <literallayout class='monospaced'>
+ server: end of run for 192.168.1.43:sdc
+ === sdc ===
+ CPU 0: 7691 events, 361 KiB data
+ CPU 1: 4109 events, 193 KiB data
+ Total: 11800 events (dropped 0), 554 KiB data
+ </literallayout>
+ The blktrace instance on the host will save the target
+ output inside a hostname-timestamp directory:
+ <literallayout class='monospaced'>
+ $ ls -al
+ drwxr-xr-x 10 root root 1024 Oct 28 02:40 .
+ drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
+ drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56
+ </literallayout>
+ cd into that directory to see the output files:
+ <literallayout class='monospaced'>
+ $ ls -l
+ -rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0
+ -rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1
+ </literallayout>
+ And run blkparse on the host system using the device name:
+ <literallayout class='monospaced'>
+ $ blkparse sdc
+
+ 8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls]
+ 8,32 1 0 0.000036038 0 m N cfq1263 alloced
+ 8,32 1 2 0.000039390 1263 G RM 6016 + 8 [ls]
+ 8,32 1 3 0.000049168 1263 I RM 6016 + 8 [ls]
+ 8,32 1 0 0.000056152 0 m N cfq1263 insert_request
+ 8,32 1 0 0.000061600 0 m N cfq1263 add_to_rr
+ 8,32 1 0 0.000075498 0 m N cfq workload slice:300
+ .
+ .
+ .
+ 8,32 0 0 177.266385696 0 m N cfq1267 arm_idle: 8 group_idle: 0
+ 8,32 0 0 177.266388140 0 m N cfq schedule dispatch
+ 8,32 1 0 177.266679239 0 m N cfq1267 slice expired t=0
+ 8,32 1 0 177.266689297 0 m N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56
+ 8,32 1 0 177.266692649 0 m N cfq1267 del_from_rr
+ 8,32 1 0 177.266696560 0 m N cfq1267 put_queue
+
+ CPU0 (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB
+ Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB
+ Read Merges: 0, 0KiB Write Merges: 9, 344KiB
+ Read depth: 2 Write depth: 2
+ IO unplugs: 20 Timer unplugs: 1
+ CPU1 (sdc):
+ Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB
+ Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 11, 764KiB
+ Read Merges: 598, 2,392KiB Write Merges: 88, 448KiB
+ Read depth: 2 Write depth: 2
+ IO unplugs: 52 Timer unplugs: 0
+
+ Total (sdc):
+ Reads Queued: 688, 2,752KiB Writes Queued: 651, 42,360KiB
+ Read Dispatches: 90, 2,752KiB Write Dispatches: 554, 42,360KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 90, 2,752KiB Writes Completed: 554, 42,360KiB
+ Read Merges: 598, 2,392KiB Write Merges: 97, 792KiB
+ IO unplugs: 72 Timer unplugs: 1
+
+ Throughput (R/W): 15KiB/s / 238KiB/s
+ Events (sdc): 9,301 entries
+ Skips: 0 forward (0 - 0.0%)
+ </literallayout>
+ You should see the trace events and summary just as
+ you would have if you'd run the same command on the target.
+ </para>
+ </section>
+
+ <section id='tracing-block-io-via-ftrace'>
+ <title>Tracing Block I/O via 'ftrace'</title>
+
+ <para>
+ It's also possible to trace block I/O using only
+ <link linkend='the-trace-events-subsystem'>trace events subsystem</link>,
+ which can be useful for casual tracing
+ if you don't want to bother dealing with the userspace tools.
+ </para>
+
+ <para>
+ To enable tracing for a given device, use
+ /sys/block/xxx/trace/enable, where xxx is the device name.
+ This for example enables tracing for /dev/sdc:
+ <literallayout class='monospaced'>
+ root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable
+ </literallayout>
+ Once you've selected the device(s) you want to trace,
+ selecting the 'blk' tracer will turn the blk tracer on:
+ <literallayout class='monospaced'>
+ root@crownbay:/sys/kernel/debug/tracing# cat available_tracers
+ blk function_graph function nop
+
+ root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer
+ </literallayout>
+ Execute the workload you're interested in:
+ <literallayout class='monospaced'>
+ root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt
+ </literallayout>
+ And look at the output (note here that we're using
+ 'trace_pipe' instead of trace to capture this trace -
+ this allows us to wait around on the pipe for data to
+ appear):
+ <literallayout class='monospaced'>
+ root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe
+ cat-3587 [001] d..1 3023.276361: 8,32 Q R 1699848 + 8 [cat]
+ cat-3587 [001] d..1 3023.276410: 8,32 m N cfq3587 alloced
+ cat-3587 [001] d..1 3023.276415: 8,32 G R 1699848 + 8 [cat]
+ cat-3587 [001] d..1 3023.276424: 8,32 P N [cat]
+ cat-3587 [001] d..2 3023.276432: 8,32 I R 1699848 + 8 [cat]
+ cat-3587 [001] d..1 3023.276439: 8,32 m N cfq3587 insert_request
+ cat-3587 [001] d..1 3023.276445: 8,32 m N cfq3587 add_to_rr
+ cat-3587 [001] d..2 3023.276454: 8,32 U N [cat] 1
+ cat-3587 [001] d..1 3023.276464: 8,32 m N cfq workload slice:150
+ cat-3587 [001] d..1 3023.276471: 8,32 m N cfq3587 set_active wl_prio:0 wl_type:2
+ cat-3587 [001] d..1 3023.276478: 8,32 m N cfq3587 fifo= (null)
+ cat-3587 [001] d..1 3023.276483: 8,32 m N cfq3587 dispatch_insert
+ cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request
+ cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1
+ cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat]
+ </literallayout>
+ And this turns off tracing for the specified device:
+ <literallayout class='monospaced'>
+ root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
+ </literallayout>
+ </para>
+ </section>
+ </section>
+
+ <section id='blktrace-documentation'>
+ <title>Documentation</title>
+
+ <para>
+ Online versions of the man pages for the commands discussed
+ in this section can be found here:
+ <itemizedlist>
+ <listitem><para><ulink url='http://linux.die.net/man/8/blktrace'>http://linux.die.net/man/8/blktrace</ulink>
+ </para></listitem>
+ <listitem><para><ulink url='http://linux.die.net/man/1/blkparse'>http://linux.die.net/man/1/blkparse</ulink>
+ </para></listitem>
+ <listitem><para><ulink url='http://linux.die.net/man/8/btrace'>http://linux.die.net/man/8/btrace</ulink>
+ </para></listitem>
+ </itemizedlist>
+ </para>
+
+ <para>
+ The above manpages, along with manpages for the other
+ blktrace utilities (btt, blkiomon, etc) can be found in the
+ /doc directory of the blktrace tools git repo:
+ <literallayout class='monospaced'>
+ $ git clone git://git.kernel.dk/blktrace.git
+ </literallayout>
+ </para>
+ </section>
+</section>
+</chapter>
+<!--
+vim: expandtab tw=80 ts=4
+-->
OpenPOWER on IntegriCloud