summaryrefslogtreecommitdiffstats
path: root/include/asm-i386/system.h
blob: 609756c616769194763fb3b17dbf046ca3c25059 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#ifndef __ASM_SYSTEM_H
#define __ASM_SYSTEM_H

#include <linux/kernel.h>
#include <asm/segment.h>
#include <asm/cpufeature.h>
#include <asm/cmpxchg.h>

#ifdef __KERNEL__

struct task_struct;	/* one of the stranger aspects of C forward declarations.. */
extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));

/*
 * Saving eflags is important. It switches not only IOPL between tasks,
 * it also protects other tasks from NT leaking through sysenter etc.
 */
#define switch_to(prev,next,last) do {					\
	unsigned long esi,edi;						\
	asm volatile("pushfl\n\t"		/* Save flags */	\
		     "pushl %%ebp\n\t"					\
		     "movl %%esp,%0\n\t"	/* save ESP */		\
		     "movl %5,%%esp\n\t"	/* restore ESP */	\
		     "movl $1f,%1\n\t"		/* save EIP */		\
		     "pushl %6\n\t"		/* restore EIP */	\
		     "jmp __switch_to\n"				\
		     "1:\t"						\
		     "popl %%ebp\n\t"					\
		     "popfl"						\
		     :"=m" (prev->thread.esp),"=m" (prev->thread.eip),	\
		      "=a" (last),"=S" (esi),"=D" (edi)			\
		     :"m" (next->thread.esp),"m" (next->thread.eip),	\
		      "2" (prev), "d" (next));				\
} while (0)

#define _set_base(addr,base) do { unsigned long __pr; \
__asm__ __volatile__ ("movw %%dx,%1\n\t" \
	"rorl $16,%%edx\n\t" \
	"movb %%dl,%2\n\t" \
	"movb %%dh,%3" \
	:"=&d" (__pr) \
	:"m" (*((addr)+2)), \
	 "m" (*((addr)+4)), \
	 "m" (*((addr)+7)), \
         "0" (base) \
        ); } while(0)

#define _set_limit(addr,limit) do { unsigned long __lr; \
__asm__ __volatile__ ("movw %%dx,%1\n\t" \
	"rorl $16,%%edx\n\t" \
	"movb %2,%%dh\n\t" \
	"andb $0xf0,%%dh\n\t" \
	"orb %%dh,%%dl\n\t" \
	"movb %%dl,%2" \
	:"=&d" (__lr) \
	:"m" (*(addr)), \
	 "m" (*((addr)+6)), \
	 "0" (limit) \
        ); } while(0)

#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
#define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )

/*
 * Load a segment. Fall back on loading the zero
 * segment if something goes wrong..
 */
#define loadsegment(seg,value)			\
	asm volatile("\n"			\
		"1:\t"				\
		"mov %0,%%" #seg "\n"		\
		"2:\n"				\
		".section .fixup,\"ax\"\n"	\
		"3:\t"				\
		"pushl $0\n\t"			\
		"popl %%" #seg "\n\t"		\
		"jmp 2b\n"			\
		".previous\n"			\
		".section __ex_table,\"a\"\n\t"	\
		".align 4\n\t"			\
		".long 1b,3b\n"			\
		".previous"			\
		: :"rm" (value))

/*
 * Save a segment register away
 */
#define savesegment(seg, value) \
	asm volatile("mov %%" #seg ",%0":"=rm" (value))


static inline void native_clts(void)
{
	asm volatile ("clts");
}

static inline unsigned long native_read_cr0(void)
{
	unsigned long val;
	asm volatile("movl %%cr0,%0\n\t" :"=r" (val));
	return val;
}

static inline void native_write_cr0(unsigned long val)
{
	asm volatile("movl %0,%%cr0": :"r" (val));
}

static inline unsigned long native_read_cr2(void)
{
	unsigned long val;
	asm volatile("movl %%cr2,%0\n\t" :"=r" (val));
	return val;
}

static inline void native_write_cr2(unsigned long val)
{
	asm volatile("movl %0,%%cr2": :"r" (val));
}

static inline unsigned long native_read_cr3(void)
{
	unsigned long val;
	asm volatile("movl %%cr3,%0\n\t" :"=r" (val));
	return val;
}

static inline void native_write_cr3(unsigned long val)
{
	asm volatile("movl %0,%%cr3": :"r" (val));
}

static inline unsigned long native_read_cr4(void)
{
	unsigned long val;
	asm volatile("movl %%cr4,%0\n\t" :"=r" (val));
	return val;
}

static inline unsigned long native_read_cr4_safe(void)
{
	unsigned long val;
	/* This could fault if %cr4 does not exist */
	asm("1: movl %%cr4, %0		\n"
		"2:				\n"
		".section __ex_table,\"a\"	\n"
		".long 1b,2b			\n"
		".previous			\n"
		: "=r" (val): "0" (0));
	return val;
}

static inline void native_write_cr4(unsigned long val)
{
	asm volatile("movl %0,%%cr4": :"r" (val));
}

static inline void native_wbinvd(void)
{
	asm volatile("wbinvd": : :"memory");
}


#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define read_cr0()	(native_read_cr0())
#define write_cr0(x)	(native_write_cr0(x))
#define read_cr2()	(native_read_cr2())
#define write_cr2(x)	(native_write_cr2(x))
#define read_cr3()	(native_read_cr3())
#define write_cr3(x)	(native_write_cr3(x))
#define read_cr4()	(native_read_cr4())
#define read_cr4_safe()	(native_read_cr4_safe())
#define write_cr4(x)	(native_write_cr4(x))
#define wbinvd()	(native_wbinvd())

/* Clear the 'TS' bit */
#define clts()		(native_clts())

#endif/* CONFIG_PARAVIRT */

/* Set the 'TS' bit */
#define stts() write_cr0(8 | read_cr0())

#endif	/* __KERNEL__ */

static inline unsigned long get_limit(unsigned long segment)
{
	unsigned long __limit;
	__asm__("lsll %1,%0"
		:"=r" (__limit):"r" (segment));
	return __limit+1;
}

#define nop() __asm__ __volatile__ ("nop")

/*
 * Force strict CPU ordering.
 * And yes, this is required on UP too when we're talking
 * to devices.
 *
 * For now, "wmb()" doesn't actually do anything, as all
 * Intel CPU's follow what Intel calls a *Processor Order*,
 * in which all writes are seen in the program order even
 * outside the CPU.
 *
 * I expect future Intel CPU's to have a weaker ordering,
 * but I'd also expect them to finally get their act together
 * and add some real memory barriers if so.
 *
 * Some non intel clones support out of order store. wmb() ceases to be a
 * nop for these.
 */
 

/* 
 * Actually only lfence would be needed for mb() because all stores done 
 * by the kernel should be already ordered. But keep a full barrier for now. 
 */

#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)

/**
 * read_barrier_depends - Flush all pending reads that subsequents reads
 * depend on.
 *
 * No data-dependent reads from memory-like regions are ever reordered
 * over this barrier.  All reads preceding this primitive are guaranteed
 * to access memory (but not necessarily other CPUs' caches) before any
 * reads following this primitive that depend on the data return by
 * any of the preceding reads.  This primitive is much lighter weight than
 * rmb() on most CPUs, and is never heavier weight than is
 * rmb().
 *
 * These ordering constraints are respected by both the local CPU
 * and the compiler.
 *
 * Ordering is not guaranteed by anything other than these primitives,
 * not even by data dependencies.  See the documentation for
 * memory_barrier() for examples and URLs to more information.
 *
 * For example, the following code would force ordering (the initial
 * value of "a" is zero, "b" is one, and "p" is "&a"):
 *
 * <programlisting>
 *	CPU 0				CPU 1
 *
 *	b = 2;
 *	memory_barrier();
 *	p = &b;				q = p;
 *					read_barrier_depends();
 *					d = *q;
 * </programlisting>
 *
 * because the read of "*q" depends on the read of "p" and these
 * two reads are separated by a read_barrier_depends().  However,
 * the following code, with the same initial values for "a" and "b":
 *
 * <programlisting>
 *	CPU 0				CPU 1
 *
 *	a = 2;
 *	memory_barrier();
 *	b = 3;				y = b;
 *					read_barrier_depends();
 *					x = a;
 * </programlisting>
 *
 * does not enforce ordering, since there is no data dependency between
 * the read of "a" and the read of "b".  Therefore, on some CPUs, such
 * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
 * in cases like this where there are no data dependencies.
 **/

#define read_barrier_depends()	do { } while(0)

#ifdef CONFIG_X86_OOSTORE
/* Actually there are no OOO store capable CPUs for now that do SSE, 
   but make it already an possibility. */
#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
#else
#define wmb()	__asm__ __volatile__ ("": : :"memory")
#endif

#ifdef CONFIG_SMP
#define smp_mb()	mb()
#define smp_rmb()	rmb()
#define smp_wmb()	wmb()
#define smp_read_barrier_depends()	read_barrier_depends()
#define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
#else
#define smp_mb()	barrier()
#define smp_rmb()	barrier()
#define smp_wmb()	barrier()
#define smp_read_barrier_depends()	do { } while(0)
#define set_mb(var, value) do { var = value; barrier(); } while (0)
#endif

#include <linux/irqflags.h>

/*
 * disable hlt during certain critical i/o operations
 */
#define HAVE_DISABLE_HLT
void disable_hlt(void);
void enable_hlt(void);

extern int es7000_plat;
void cpu_idle_wait(void);

extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);

void default_idle(void);

#endif
OpenPOWER on IntegriCloud