1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/prefetch.h>
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "selftest.h"
#include "workarounds.h"
/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH 8
/* Maximum size of a buffer sharing a page */
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS 64u
/*
* rx_alloc_method - RX buffer allocation method
*
* This driver supports two methods for allocating and using RX buffers:
* each RX buffer may be backed by an skb or by an order-n page.
*
* When GRO is in use then the second method has a lower overhead,
* since we don't have to allocate then free skbs on reassembled frames.
*
* Values:
* - RX_ALLOC_METHOD_AUTO = 0
* - RX_ALLOC_METHOD_SKB = 1
* - RX_ALLOC_METHOD_PAGE = 2
*
* The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
* controlled by the parameters below.
*
* - Since pushing and popping descriptors are separated by the rx_queue
* size, so the watermarks should be ~rxd_size.
* - The performance win by using page-based allocation for GRO is less
* than the performance hit of using page-based allocation of non-GRO,
* so the watermarks should reflect this.
*
* Per channel we maintain a single variable, updated by each channel:
*
* rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
* RX_ALLOC_FACTOR_SKB)
* Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
* limits the hysteresis), and update the allocation strategy:
*
* rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
* RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
*/
static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
#define RX_ALLOC_LEVEL_GRO 0x2000
#define RX_ALLOC_LEVEL_MAX 0x3000
#define RX_ALLOC_FACTOR_GRO 1
#define RX_ALLOC_FACTOR_SKB (-2)
/* This is the percentage fill level below which new RX descriptors
* will be added to the RX descriptor ring.
*/
static unsigned int rx_refill_threshold = 90;
/* This is the percentage fill level to which an RX queue will be refilled
* when the "RX refill threshold" is reached.
*/
static unsigned int rx_refill_limit = 95;
/*
* RX maximum head room required.
*
* This must be at least 1 to prevent overflow and at least 2 to allow
* pipelined receives.
*/
#define EFX_RXD_HEAD_ROOM 2
/* Offset of ethernet header within page */
static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
struct efx_rx_buffer *buf)
{
/* Offset is always within one page, so we don't need to consider
* the page order.
*/
return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) +
efx->type->rx_buffer_hash_size);
}
static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
{
return PAGE_SIZE << efx->rx_buffer_order;
}
static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
{
if (buf->is_page)
return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
else
return ((u8 *)buf->u.skb->data +
efx->type->rx_buffer_hash_size);
}
static inline u32 efx_rx_buf_hash(const u8 *eh)
{
/* The ethernet header is always directly after any hash. */
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
return __le32_to_cpup((const __le32 *)(eh - 4));
#else
const u8 *data = eh - 4;
return ((u32)data[0] |
(u32)data[1] << 8 |
(u32)data[2] << 16 |
(u32)data[3] << 24);
#endif
}
/**
* efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
*
* @rx_queue: Efx RX queue
*
* This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
* struct efx_rx_buffer for each one. Return a negative error code or 0
* on success. May fail having only inserted fewer than EFX_RX_BATCH
* buffers.
*/
static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
struct net_device *net_dev = efx->net_dev;
struct efx_rx_buffer *rx_buf;
struct sk_buff *skb;
int skb_len = efx->rx_buffer_len;
unsigned index, count;
for (count = 0; count < EFX_RX_BATCH; ++count) {
index = rx_queue->added_count & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
if (unlikely(!skb))
return -ENOMEM;
/* Adjust the SKB for padding and checksum */
skb_reserve(skb, NET_IP_ALIGN);
rx_buf->len = skb_len - NET_IP_ALIGN;
rx_buf->is_page = false;
skb->ip_summed = CHECKSUM_UNNECESSARY;
rx_buf->dma_addr = pci_map_single(efx->pci_dev,
skb->data, rx_buf->len,
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(efx->pci_dev,
rx_buf->dma_addr))) {
dev_kfree_skb_any(skb);
rx_buf->u.skb = NULL;
return -EIO;
}
++rx_queue->added_count;
++rx_queue->alloc_skb_count;
}
return 0;
}
/**
* efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
*
* @rx_queue: Efx RX queue
*
* This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
* and populates struct efx_rx_buffers for each one. Return a negative error
* code or 0 on success. If a single page can be split between two buffers,
* then the page will either be inserted fully, or not at at all.
*/
static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_rx_buffer *rx_buf;
struct page *page;
void *page_addr;
struct efx_rx_page_state *state;
dma_addr_t dma_addr;
unsigned index, count;
/* We can split a page between two buffers */
BUILD_BUG_ON(EFX_RX_BATCH & 1);
for (count = 0; count < EFX_RX_BATCH; ++count) {
page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
efx->rx_buffer_order);
if (unlikely(page == NULL))
return -ENOMEM;
dma_addr = pci_map_page(efx->pci_dev, page, 0,
efx_rx_buf_size(efx),
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
__free_pages(page, efx->rx_buffer_order);
return -EIO;
}
page_addr = page_address(page);
state = page_addr;
state->refcnt = 0;
state->dma_addr = dma_addr;
page_addr += sizeof(struct efx_rx_page_state);
dma_addr += sizeof(struct efx_rx_page_state);
split:
index = rx_queue->added_count & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
rx_buf->u.page = page;
rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
rx_buf->is_page = true;
++rx_queue->added_count;
++rx_queue->alloc_page_count;
++state->refcnt;
if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
/* Use the second half of the page */
get_page(page);
dma_addr += (PAGE_SIZE >> 1);
page_addr += (PAGE_SIZE >> 1);
++count;
goto split;
}
}
return 0;
}
static void efx_unmap_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
if (rx_buf->is_page && rx_buf->u.page) {
struct efx_rx_page_state *state;
state = page_address(rx_buf->u.page);
if (--state->refcnt == 0) {
pci_unmap_page(efx->pci_dev,
state->dma_addr,
efx_rx_buf_size(efx),
PCI_DMA_FROMDEVICE);
}
} else if (!rx_buf->is_page && rx_buf->u.skb) {
pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
rx_buf->len, PCI_DMA_FROMDEVICE);
}
}
static void efx_free_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
if (rx_buf->is_page && rx_buf->u.page) {
__free_pages(rx_buf->u.page, efx->rx_buffer_order);
rx_buf->u.page = NULL;
} else if (!rx_buf->is_page && rx_buf->u.skb) {
dev_kfree_skb_any(rx_buf->u.skb);
rx_buf->u.skb = NULL;
}
}
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
efx_free_rx_buffer(rx_queue->efx, rx_buf);
}
/* Attempt to resurrect the other receive buffer that used to share this page,
* which had previously been passed up to the kernel and freed. */
static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
struct efx_rx_page_state *state = page_address(rx_buf->u.page);
struct efx_rx_buffer *new_buf;
unsigned fill_level, index;
/* +1 because efx_rx_packet() incremented removed_count. +1 because
* we'd like to insert an additional descriptor whilst leaving
* EFX_RXD_HEAD_ROOM for the non-recycle path */
fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
if (unlikely(fill_level > rx_queue->max_fill)) {
/* We could place "state" on a list, and drain the list in
* efx_fast_push_rx_descriptors(). For now, this will do. */
return;
}
++state->refcnt;
get_page(rx_buf->u.page);
index = rx_queue->added_count & rx_queue->ptr_mask;
new_buf = efx_rx_buffer(rx_queue, index);
new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
new_buf->u.page = rx_buf->u.page;
new_buf->len = rx_buf->len;
new_buf->is_page = true;
++rx_queue->added_count;
}
/* Recycle the given rx buffer directly back into the rx_queue. There is
* always room to add this buffer, because we've just popped a buffer. */
static void efx_recycle_rx_buffer(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf)
{
struct efx_nic *efx = channel->efx;
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
struct efx_rx_buffer *new_buf;
unsigned index;
if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
page_count(rx_buf->u.page) == 1)
efx_resurrect_rx_buffer(rx_queue, rx_buf);
index = rx_queue->added_count & rx_queue->ptr_mask;
new_buf = efx_rx_buffer(rx_queue, index);
memcpy(new_buf, rx_buf, sizeof(*new_buf));
rx_buf->u.page = NULL;
++rx_queue->added_count;
}
/**
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
* This will aim to fill the RX descriptor queue up to
* @rx_queue->@fast_fill_limit. If there is insufficient atomic
* memory to do so, a slow fill will be scheduled.
*
* The caller must provide serialisation (none is used here). In practise,
* this means this function must run from the NAPI handler, or be called
* when NAPI is disabled.
*/
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
unsigned fill_level;
int space, rc = 0;
/* Calculate current fill level, and exit if we don't need to fill */
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
if (fill_level >= rx_queue->fast_fill_trigger)
goto out;
/* Record minimum fill level */
if (unlikely(fill_level < rx_queue->min_fill)) {
if (fill_level)
rx_queue->min_fill = fill_level;
}
space = rx_queue->fast_fill_limit - fill_level;
if (space < EFX_RX_BATCH)
goto out;
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filling descriptor ring from"
" level %d to level %d using %s allocation\n",
efx_rx_queue_index(rx_queue), fill_level,
rx_queue->fast_fill_limit,
channel->rx_alloc_push_pages ? "page" : "skb");
do {
if (channel->rx_alloc_push_pages)
rc = efx_init_rx_buffers_page(rx_queue);
else
rc = efx_init_rx_buffers_skb(rx_queue);
if (unlikely(rc)) {
/* Ensure that we don't leave the rx queue empty */
if (rx_queue->added_count == rx_queue->removed_count)
efx_schedule_slow_fill(rx_queue);
goto out;
}
} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filled descriptor ring "
"to level %d\n", efx_rx_queue_index(rx_queue),
rx_queue->added_count - rx_queue->removed_count);
out:
if (rx_queue->notified_count != rx_queue->added_count)
efx_nic_notify_rx_desc(rx_queue);
}
void efx_rx_slow_fill(unsigned long context)
{
struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
/* Post an event to cause NAPI to run and refill the queue */
efx_nic_generate_fill_event(channel);
++rx_queue->slow_fill_count;
}
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf,
int len, bool *discard,
bool *leak_packet)
{
struct efx_nic *efx = rx_queue->efx;
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
if (likely(len <= max_len))
return;
/* The packet must be discarded, but this is only a fatal error
* if the caller indicated it was
*/
*discard = true;
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d seriously overlength "
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
efx_rx_queue_index(rx_queue), len, max_len,
efx->type->rx_buffer_padding);
/* If this buffer was skb-allocated, then the meta
* data at the end of the skb will be trashed. So
* we have no choice but to leak the fragment.
*/
*leak_packet = !rx_buf->is_page;
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
} else {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d overlength RX event "
"(0x%x > 0x%x)\n",
efx_rx_queue_index(rx_queue), len, max_len);
}
efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
}
/* Pass a received packet up through the generic GRO stack
*
* Handles driverlink veto, and passes the fragment up via
* the appropriate GRO method
*/
static void efx_rx_packet_gro(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
const u8 *eh, bool checksummed)
{
struct napi_struct *napi = &channel->napi_str;
gro_result_t gro_result;
/* Pass the skb/page into the GRO engine */
if (rx_buf->is_page) {
struct efx_nic *efx = channel->efx;
struct page *page = rx_buf->u.page;
struct sk_buff *skb;
rx_buf->u.page = NULL;
skb = napi_get_frags(napi);
if (!skb) {
put_page(page);
return;
}
if (efx->net_dev->features & NETIF_F_RXHASH)
skb->rxhash = efx_rx_buf_hash(eh);
skb_frag_set_page(skb, 0, page);
skb_shinfo(skb)->frags[0].page_offset =
efx_rx_buf_offset(efx, rx_buf);
skb_shinfo(skb)->frags[0].size = rx_buf->len;
skb_shinfo(skb)->nr_frags = 1;
skb->len = rx_buf->len;
skb->data_len = rx_buf->len;
skb->truesize += rx_buf->len;
skb->ip_summed =
checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
skb_record_rx_queue(skb, channel->channel);
gro_result = napi_gro_frags(napi);
} else {
struct sk_buff *skb = rx_buf->u.skb;
EFX_BUG_ON_PARANOID(!checksummed);
rx_buf->u.skb = NULL;
gro_result = napi_gro_receive(napi, skb);
}
if (gro_result == GRO_NORMAL) {
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
} else if (gro_result != GRO_DROP) {
channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
channel->irq_mod_score += 2;
}
}
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
unsigned int len, bool checksummed, bool discard)
{
struct efx_nic *efx = rx_queue->efx;
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_rx_buffer *rx_buf;
bool leak_packet = false;
rx_buf = efx_rx_buffer(rx_queue, index);
/* This allows the refill path to post another buffer.
* EFX_RXD_HEAD_ROOM ensures that the slot we are using
* isn't overwritten yet.
*/
rx_queue->removed_count++;
/* Validate the length encoded in the event vs the descriptor pushed */
efx_rx_packet__check_len(rx_queue, rx_buf, len,
&discard, &leak_packet);
netif_vdbg(efx, rx_status, efx->net_dev,
"RX queue %d received id %x at %llx+%x %s%s\n",
efx_rx_queue_index(rx_queue), index,
(unsigned long long)rx_buf->dma_addr, len,
(checksummed ? " [SUMMED]" : ""),
(discard ? " [DISCARD]" : ""));
/* Discard packet, if instructed to do so */
if (unlikely(discard)) {
if (unlikely(leak_packet))
channel->n_skbuff_leaks++;
else
efx_recycle_rx_buffer(channel, rx_buf);
/* Don't hold off the previous receive */
rx_buf = NULL;
goto out;
}
/* Release card resources - assumes all RX buffers consumed in-order
* per RX queue
*/
efx_unmap_rx_buffer(efx, rx_buf);
/* Prefetch nice and early so data will (hopefully) be in cache by
* the time we look at it.
*/
prefetch(efx_rx_buf_eh(efx, rx_buf));
/* Pipeline receives so that we give time for packet headers to be
* prefetched into cache.
*/
rx_buf->len = len - efx->type->rx_buffer_hash_size;
out:
if (channel->rx_pkt)
__efx_rx_packet(channel,
channel->rx_pkt, channel->rx_pkt_csummed);
channel->rx_pkt = rx_buf;
channel->rx_pkt_csummed = checksummed;
}
/* Handle a received packet. Second half: Touches packet payload. */
void __efx_rx_packet(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf, bool checksummed)
{
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
u8 *eh = efx_rx_buf_eh(efx, rx_buf);
/* If we're in loopback test, then pass the packet directly to the
* loopback layer, and free the rx_buf here
*/
if (unlikely(efx->loopback_selftest)) {
efx_loopback_rx_packet(efx, eh, rx_buf->len);
efx_free_rx_buffer(efx, rx_buf);
return;
}
if (!rx_buf->is_page) {
skb = rx_buf->u.skb;
prefetch(skb_shinfo(skb));
skb_reserve(skb, efx->type->rx_buffer_hash_size);
skb_put(skb, rx_buf->len);
if (efx->net_dev->features & NETIF_F_RXHASH)
skb->rxhash = efx_rx_buf_hash(eh);
/* Move past the ethernet header. rx_buf->data still points
* at the ethernet header */
skb->protocol = eth_type_trans(skb, efx->net_dev);
skb_record_rx_queue(skb, channel->channel);
}
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
checksummed = false;
if (likely(checksummed || rx_buf->is_page)) {
efx_rx_packet_gro(channel, rx_buf, eh, checksummed);
return;
}
/* We now own the SKB */
skb = rx_buf->u.skb;
rx_buf->u.skb = NULL;
/* Set the SKB flags */
skb_checksum_none_assert(skb);
/* Pass the packet up */
netif_receive_skb(skb);
/* Update allocation strategy method */
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
}
void efx_rx_strategy(struct efx_channel *channel)
{
enum efx_rx_alloc_method method = rx_alloc_method;
/* Only makes sense to use page based allocation if GRO is enabled */
if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
method = RX_ALLOC_METHOD_SKB;
} else if (method == RX_ALLOC_METHOD_AUTO) {
/* Constrain the rx_alloc_level */
if (channel->rx_alloc_level < 0)
channel->rx_alloc_level = 0;
else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
/* Decide on the allocation method */
method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
}
/* Push the option */
channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
}
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
rx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating RX queue %d size %#x mask %#x\n",
efx_rx_queue_index(rx_queue), efx->rxq_entries,
rx_queue->ptr_mask);
/* Allocate RX buffers */
rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer),
GFP_KERNEL);
if (!rx_queue->buffer)
return -ENOMEM;
rc = efx_nic_probe_rx(rx_queue);
if (rc) {
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
return rc;
}
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int max_fill, trigger, limit;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
/* Initialise ptr fields */
rx_queue->added_count = 0;
rx_queue->notified_count = 0;
rx_queue->removed_count = 0;
rx_queue->min_fill = -1U;
/* Initialise limit fields */
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
limit = max_fill * min(rx_refill_limit, 100U) / 100U;
rx_queue->max_fill = max_fill;
rx_queue->fast_fill_trigger = trigger;
rx_queue->fast_fill_limit = limit;
/* Set up RX descriptor ring */
efx_nic_init_rx(rx_queue);
}
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
int i;
struct efx_rx_buffer *rx_buf;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
del_timer_sync(&rx_queue->slow_fill);
efx_nic_fini_rx(rx_queue);
/* Release RX buffers NB start at index 0 not current HW ptr */
if (rx_queue->buffer) {
for (i = 0; i <= rx_queue->ptr_mask; i++) {
rx_buf = efx_rx_buffer(rx_queue, i);
efx_fini_rx_buffer(rx_queue, rx_buf);
}
}
}
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
efx_nic_remove_rx(rx_queue);
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
module_param(rx_alloc_method, int, 0644);
MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
"RX descriptor ring fast/slow fill threshold (%)");
|