1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
* rotary_encoder.c
*
* (c) 2009 Daniel Mack <daniel@caiaq.de>
* Copyright (C) 2011 Johan Hovold <jhovold@gmail.com>
*
* state machine code inspired by code from Tim Ruetz
*
* A generic driver for rotary encoders connected to GPIO lines.
* See file:Documentation/input/rotary-encoder.txt for more information
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/pm.h>
#include <linux/property.h>
#define DRV_NAME "rotary-encoder"
struct rotary_encoder {
struct input_dev *input;
struct mutex access_mutex;
u32 steps;
u32 axis;
bool relative_axis;
bool rollover;
unsigned int pos;
struct gpio_desc *gpio_a;
struct gpio_desc *gpio_b;
unsigned int irq_a;
unsigned int irq_b;
bool armed;
unsigned char dir; /* 0 - clockwise, 1 - CCW */
char last_stable;
};
static int rotary_encoder_get_state(struct rotary_encoder *encoder)
{
int a = !!gpiod_get_value_cansleep(encoder->gpio_a);
int b = !!gpiod_get_value_cansleep(encoder->gpio_b);
return ((a << 1) | b);
}
static void rotary_encoder_report_event(struct rotary_encoder *encoder)
{
if (encoder->relative_axis) {
input_report_rel(encoder->input,
encoder->axis, encoder->dir ? -1 : 1);
} else {
unsigned int pos = encoder->pos;
if (encoder->dir) {
/* turning counter-clockwise */
if (encoder->rollover)
pos += encoder->steps;
if (pos)
pos--;
} else {
/* turning clockwise */
if (encoder->rollover || pos < encoder->steps)
pos++;
}
if (encoder->rollover)
pos %= encoder->steps;
encoder->pos = pos;
input_report_abs(encoder->input, encoder->axis, encoder->pos);
}
input_sync(encoder->input);
}
static irqreturn_t rotary_encoder_irq(int irq, void *dev_id)
{
struct rotary_encoder *encoder = dev_id;
int state;
mutex_lock(&encoder->access_mutex);
state = rotary_encoder_get_state(encoder);
switch (state) {
case 0x0:
if (encoder->armed) {
rotary_encoder_report_event(encoder);
encoder->armed = false;
}
break;
case 0x1:
case 0x2:
if (encoder->armed)
encoder->dir = state - 1;
break;
case 0x3:
encoder->armed = true;
break;
}
mutex_unlock(&encoder->access_mutex);
return IRQ_HANDLED;
}
static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id)
{
struct rotary_encoder *encoder = dev_id;
int state;
mutex_lock(&encoder->access_mutex);
state = rotary_encoder_get_state(encoder);
switch (state) {
case 0x00:
case 0x03:
if (state != encoder->last_stable) {
rotary_encoder_report_event(encoder);
encoder->last_stable = state;
}
break;
case 0x01:
case 0x02:
encoder->dir = (encoder->last_stable + state) & 0x01;
break;
}
mutex_unlock(&encoder->access_mutex);
return IRQ_HANDLED;
}
static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id)
{
struct rotary_encoder *encoder = dev_id;
unsigned char sum;
int state;
mutex_lock(&encoder->access_mutex);
state = rotary_encoder_get_state(encoder);
/*
* We encode the previous and the current state using a byte.
* The previous state in the MSB nibble, the current state in the LSB
* nibble. Then use a table to decide the direction of the turn.
*/
sum = (encoder->last_stable << 4) + state;
switch (sum) {
case 0x31:
case 0x10:
case 0x02:
case 0x23:
encoder->dir = 0; /* clockwise */
break;
case 0x13:
case 0x01:
case 0x20:
case 0x32:
encoder->dir = 1; /* counter-clockwise */
break;
default:
/*
* Ignore all other values. This covers the case when the
* state didn't change (a spurious interrupt) and the
* cases where the state changed by two steps, making it
* impossible to tell the direction.
*
* In either case, don't report any event and save the
* state for later.
*/
goto out;
}
rotary_encoder_report_event(encoder);
out:
encoder->last_stable = state;
mutex_unlock(&encoder->access_mutex);
return IRQ_HANDLED;
}
static int rotary_encoder_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rotary_encoder *encoder;
struct input_dev *input;
irq_handler_t handler;
u32 steps_per_period;
int err;
encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL);
if (!encoder)
return -ENOMEM;
mutex_init(&encoder->access_mutex);
device_property_read_u32(dev, "rotary-encoder,steps", &encoder->steps);
err = device_property_read_u32(dev, "rotary-encoder,steps-per-period",
&steps_per_period);
if (err) {
/*
* The 'half-period' property has been deprecated, you must
* use 'steps-per-period' and set an appropriate value, but
* we still need to parse it to maintain compatibility. If
* neither property is present we fall back to the one step
* per period behavior.
*/
steps_per_period = device_property_read_bool(dev,
"rotary-encoder,half-period") ? 2 : 1;
}
encoder->rollover =
device_property_read_bool(dev, "rotary-encoder,rollover");
device_property_read_u32(dev, "linux,axis", &encoder->axis);
encoder->relative_axis =
device_property_read_bool(dev, "rotary-encoder,relative-axis");
encoder->gpio_a = devm_gpiod_get_index(dev, NULL, 0, GPIOD_IN);
if (IS_ERR(encoder->gpio_a)) {
err = PTR_ERR(encoder->gpio_a);
dev_err(dev, "unable to get GPIO at index 0: %d\n", err);
return err;
}
encoder->irq_a = gpiod_to_irq(encoder->gpio_a);
encoder->gpio_b = devm_gpiod_get_index(dev, NULL, 1, GPIOD_IN);
if (IS_ERR(encoder->gpio_b)) {
err = PTR_ERR(encoder->gpio_b);
dev_err(dev, "unable to get GPIO at index 1: %d\n", err);
return err;
}
encoder->irq_b = gpiod_to_irq(encoder->gpio_b);
input = devm_input_allocate_device(dev);
if (!input)
return -ENOMEM;
encoder->input = input;
input->name = pdev->name;
input->id.bustype = BUS_HOST;
input->dev.parent = dev;
if (encoder->relative_axis)
input_set_capability(input, EV_REL, encoder->axis);
else
input_set_abs_params(input,
encoder->axis, 0, encoder->steps, 0, 1);
switch (steps_per_period) {
case 4:
handler = &rotary_encoder_quarter_period_irq;
encoder->last_stable = rotary_encoder_get_state(encoder);
break;
case 2:
handler = &rotary_encoder_half_period_irq;
encoder->last_stable = rotary_encoder_get_state(encoder);
break;
case 1:
handler = &rotary_encoder_irq;
break;
default:
dev_err(dev, "'%d' is not a valid steps-per-period value\n",
steps_per_period);
return -EINVAL;
}
err = devm_request_threaded_irq(dev, encoder->irq_a, NULL, handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
DRV_NAME, encoder);
if (err) {
dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a);
return err;
}
err = devm_request_threaded_irq(dev, encoder->irq_b, NULL, handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
DRV_NAME, encoder);
if (err) {
dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b);
return err;
}
err = input_register_device(input);
if (err) {
dev_err(dev, "failed to register input device\n");
return err;
}
device_init_wakeup(dev,
device_property_read_bool(dev, "wakeup-source"));
platform_set_drvdata(pdev, encoder);
return 0;
}
static int __maybe_unused rotary_encoder_suspend(struct device *dev)
{
struct rotary_encoder *encoder = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) {
enable_irq_wake(encoder->irq_a);
enable_irq_wake(encoder->irq_b);
}
return 0;
}
static int __maybe_unused rotary_encoder_resume(struct device *dev)
{
struct rotary_encoder *encoder = dev_get_drvdata(dev);
if (device_may_wakeup(dev)) {
disable_irq_wake(encoder->irq_a);
disable_irq_wake(encoder->irq_b);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops,
rotary_encoder_suspend, rotary_encoder_resume);
#ifdef CONFIG_OF
static const struct of_device_id rotary_encoder_of_match[] = {
{ .compatible = "rotary-encoder", },
{ },
};
MODULE_DEVICE_TABLE(of, rotary_encoder_of_match);
#endif
static struct platform_driver rotary_encoder_driver = {
.probe = rotary_encoder_probe,
.driver = {
.name = DRV_NAME,
.pm = &rotary_encoder_pm_ops,
.of_match_table = of_match_ptr(rotary_encoder_of_match),
}
};
module_platform_driver(rotary_encoder_driver);
MODULE_ALIAS("platform:" DRV_NAME);
MODULE_DESCRIPTION("GPIO rotary encoder driver");
MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>, Johan Hovold");
MODULE_LICENSE("GPL v2");
|