summaryrefslogtreecommitdiffstats
path: root/arch/ia64/mm/tlb.c
blob: 3d8903f936a580c5ee43ebe946a8a6da67d978e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * TLB support routines.
 *
 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
 *		Modified RID allocation for SMP
 *          Goutham Rao <goutham.rao@intel.com>
 *              IPI based ptc implementation and A-step IPI implementation.
 * Rohit Seth <rohit.seth@intel.com>
 * Ken Chen <kenneth.w.chen@intel.com>
 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
 */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <linux/bootmem.h>

#include <asm/delay.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/pal.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/processor.h>
#include <asm/tlb.h>

static struct {
	unsigned long mask;	/* mask of supported purge page-sizes */
	unsigned long max_bits;	/* log2 of largest supported purge page-size */
} purge;

struct ia64_ctx ia64_ctx = {
	.lock =	__SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
	.next =	1,
	.max_ctx = ~0U
};

DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
DEFINE_PER_CPU(u8, ia64_tr_num);  /*Number of TR slots in current processor*/
DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/

struct ia64_tr_entry __per_cpu_idtrs[NR_CPUS][2][IA64_TR_ALLOC_MAX];

/*
 * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
 * Called after cpu_init() has setup ia64_ctx.max_ctx based on
 * maximum RID that is supported by boot CPU.
 */
void __init
mmu_context_init (void)
{
	ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
	ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
}

/*
 * Acquire the ia64_ctx.lock before calling this function!
 */
void
wrap_mmu_context (struct mm_struct *mm)
{
	int i, cpu;
	unsigned long flush_bit;

	for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
		flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
		ia64_ctx.bitmap[i] ^= flush_bit;
	}
 
	/* use offset at 300 to skip daemons */
	ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
				ia64_ctx.max_ctx, 300);
	ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
				ia64_ctx.max_ctx, ia64_ctx.next);

	/*
	 * can't call flush_tlb_all() here because of race condition
	 * with O(1) scheduler [EF]
	 */
	cpu = get_cpu(); /* prevent preemption/migration */
	for_each_online_cpu(i)
		if (i != cpu)
			per_cpu(ia64_need_tlb_flush, i) = 1;
	put_cpu();
	local_flush_tlb_all();
}

void
ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
		       unsigned long end, unsigned long nbits)
{
	static DEFINE_SPINLOCK(ptcg_lock);

	struct mm_struct *active_mm = current->active_mm;

	if (mm != active_mm) {
		/* Restore region IDs for mm */
		if (mm && active_mm) {
			activate_context(mm);
		} else {
			flush_tlb_all();
			return;
		}
	}

	/* HW requires global serialization of ptc.ga.  */
	spin_lock(&ptcg_lock);
	{
		do {
			/*
			 * Flush ALAT entries also.
			 */
			ia64_ptcga(start, (nbits<<2));
			ia64_srlz_i();
			start += (1UL << nbits);
		} while (start < end);
	}
	spin_unlock(&ptcg_lock);

        if (mm != active_mm) {
                activate_context(active_mm);
        }
}

void
local_flush_tlb_all (void)
{
	unsigned long i, j, flags, count0, count1, stride0, stride1, addr;

	addr    = local_cpu_data->ptce_base;
	count0  = local_cpu_data->ptce_count[0];
	count1  = local_cpu_data->ptce_count[1];
	stride0 = local_cpu_data->ptce_stride[0];
	stride1 = local_cpu_data->ptce_stride[1];

	local_irq_save(flags);
	for (i = 0; i < count0; ++i) {
		for (j = 0; j < count1; ++j) {
			ia64_ptce(addr);
			addr += stride1;
		}
		addr += stride0;
	}
	local_irq_restore(flags);
	ia64_srlz_i();			/* srlz.i implies srlz.d */
}

void
flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
		 unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long size = end - start;
	unsigned long nbits;

#ifndef CONFIG_SMP
	if (mm != current->active_mm) {
		mm->context = 0;
		return;
	}
#endif

	nbits = ia64_fls(size + 0xfff);
	while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
			(nbits < purge.max_bits))
		++nbits;
	if (nbits > purge.max_bits)
		nbits = purge.max_bits;
	start &= ~((1UL << nbits) - 1);

	preempt_disable();
#ifdef CONFIG_SMP
	if (mm != current->active_mm || cpus_weight(mm->cpu_vm_mask) != 1) {
		platform_global_tlb_purge(mm, start, end, nbits);
		preempt_enable();
		return;
	}
#endif
	do {
		ia64_ptcl(start, (nbits<<2));
		start += (1UL << nbits);
	} while (start < end);
	preempt_enable();
	ia64_srlz_i();			/* srlz.i implies srlz.d */
}
EXPORT_SYMBOL(flush_tlb_range);

void __devinit
ia64_tlb_init (void)
{
	ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
	unsigned long tr_pgbits;
	long status;
	pal_vm_info_1_u_t vm_info_1;
	pal_vm_info_2_u_t vm_info_2;
	int cpu = smp_processor_id();

	if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
		printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
		       "defaulting to architected purge page-sizes.\n", status);
		purge.mask = 0x115557000UL;
	}
	purge.max_bits = ia64_fls(purge.mask);

	ia64_get_ptce(&ptce_info);
	local_cpu_data->ptce_base = ptce_info.base;
	local_cpu_data->ptce_count[0] = ptce_info.count[0];
	local_cpu_data->ptce_count[1] = ptce_info.count[1];
	local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
	local_cpu_data->ptce_stride[1] = ptce_info.stride[1];

	local_flush_tlb_all();	/* nuke left overs from bootstrapping... */
	status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);

	if (status) {
		printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
		per_cpu(ia64_tr_num, cpu) = 8;
		return;
	}
	per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
	if (per_cpu(ia64_tr_num, cpu) >
				(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
		per_cpu(ia64_tr_num, cpu) =
				vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
	if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
		per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
		printk(KERN_DEBUG "TR register number exceeds IA64_TR_ALLOC_MAX!"
			"IA64_TR_ALLOC_MAX should be extended\n");
	}
}

/*
 * is_tr_overlap
 *
 * Check overlap with inserted TRs.
 */
static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
{
	u64 tr_log_size;
	u64 tr_end;
	u64 va_rr = ia64_get_rr(va);
	u64 va_rid = RR_TO_RID(va_rr);
	u64 va_end = va + (1<<log_size) - 1;

	if (va_rid != RR_TO_RID(p->rr))
		return 0;
	tr_log_size = (p->itir & 0xff) >> 2;
	tr_end = p->ifa + (1<<tr_log_size) - 1;

	if (va > tr_end || p->ifa > va_end)
		return 0;
	return 1;

}

/*
 * ia64_insert_tr in virtual mode. Allocate a TR slot
 *
 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
 *
 * va 	: virtual address.
 * pte 	: pte entries inserted.
 * log_size: range to be covered.
 *
 * Return value:  <0 :  error No.
 *
 *		  >=0 : slot number allocated for TR.
 * Must be called with preemption disabled.
 */
int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
{
	int i, r;
	unsigned long psr;
	struct ia64_tr_entry *p;
	int cpu = smp_processor_id();

	r = -EINVAL;
	/*Check overlap with existing TR entries*/
	if (target_mask & 0x1) {
		p = &__per_cpu_idtrs[cpu][0][0];
		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
								i++, p++) {
			if (p->pte & 0x1)
				if (is_tr_overlap(p, va, log_size)) {
					printk(KERN_DEBUG "Overlapped Entry"
						"Inserted for TR Reigster!!\n");
					goto out;
			}
		}
	}
	if (target_mask & 0x2) {
		p = &__per_cpu_idtrs[cpu][1][0];
		for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
								i++, p++) {
			if (p->pte & 0x1)
				if (is_tr_overlap(p, va, log_size)) {
					printk(KERN_DEBUG "Overlapped Entry"
						"Inserted for TR Reigster!!\n");
					goto out;
				}
		}
	}

	for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
		switch (target_mask & 0x3) {
		case 1:
			if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1))
				goto found;
			continue;
		case 2:
			if (!(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
				goto found;
			continue;
		case 3:
			if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1) &&
				!(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
				goto found;
			continue;
		default:
			r = -EINVAL;
			goto out;
		}
	}
found:
	if (i >= per_cpu(ia64_tr_num, cpu))
		return -EBUSY;

	/*Record tr info for mca hander use!*/
	if (i > per_cpu(ia64_tr_used, cpu))
		per_cpu(ia64_tr_used, cpu) = i;

	psr = ia64_clear_ic();
	if (target_mask & 0x1) {
		ia64_itr(0x1, i, va, pte, log_size);
		ia64_srlz_i();
		p = &__per_cpu_idtrs[cpu][0][i];
		p->ifa = va;
		p->pte = pte;
		p->itir = log_size << 2;
		p->rr = ia64_get_rr(va);
	}
	if (target_mask & 0x2) {
		ia64_itr(0x2, i, va, pte, log_size);
		ia64_srlz_i();
		p = &__per_cpu_idtrs[cpu][1][i];
		p->ifa = va;
		p->pte = pte;
		p->itir = log_size << 2;
		p->rr = ia64_get_rr(va);
	}
	ia64_set_psr(psr);
	r = i;
out:
	return r;
}
EXPORT_SYMBOL_GPL(ia64_itr_entry);

/*
 * ia64_purge_tr
 *
 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
 * slot: slot number to be freed.
 *
 * Must be called with preemption disabled.
 */
void ia64_ptr_entry(u64 target_mask, int slot)
{
	int cpu = smp_processor_id();
	int i;
	struct ia64_tr_entry *p;

	if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
		return;

	if (target_mask & 0x1) {
		p = &__per_cpu_idtrs[cpu][0][slot];
		if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
			p->pte = 0;
			ia64_ptr(0x1, p->ifa, p->itir>>2);
			ia64_srlz_i();
		}
	}

	if (target_mask & 0x2) {
		p = &__per_cpu_idtrs[cpu][1][slot];
		if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
			p->pte = 0;
			ia64_ptr(0x2, p->ifa, p->itir>>2);
			ia64_srlz_i();
		}
	}

	for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
		if ((__per_cpu_idtrs[cpu][0][i].pte & 0x1) ||
				(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
			break;
	}
	per_cpu(ia64_tr_used, cpu) = i;
}
EXPORT_SYMBOL_GPL(ia64_ptr_entry);
OpenPOWER on IntegriCloud