/* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_cksum.h" #include "xfs_trans.h" #include "xfs_rmap.h" STATIC int xfs_inobt_get_minrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_inobt_mnr[level != 0]; } STATIC struct xfs_btree_cur * xfs_inobt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agbp, cur->bc_private.a.agno, cur->bc_btnum); } STATIC void xfs_inobt_set_root( struct xfs_btree_cur *cur, union xfs_btree_ptr *nptr, int inc) /* level change */ { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); agi->agi_root = nptr->s; be32_add_cpu(&agi->agi_level, inc); xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); } STATIC void xfs_finobt_set_root( struct xfs_btree_cur *cur, union xfs_btree_ptr *nptr, int inc) /* level change */ { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); agi->agi_free_root = nptr->s; be32_add_cpu(&agi->agi_free_level, inc); xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); } STATIC int xfs_inobt_alloc_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { xfs_alloc_arg_t args; /* block allocation args */ int error; /* error return value */ xfs_agblock_t sbno = be32_to_cpu(start->s); XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); memset(&args, 0, sizeof(args)); args.tp = cur->bc_tp; args.mp = cur->bc_mp; xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT); args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno); args.minlen = 1; args.maxlen = 1; args.prod = 1; args.type = XFS_ALLOCTYPE_NEAR_BNO; error = xfs_alloc_vextent(&args); if (error) { XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR); return error; } if (args.fsbno == NULLFSBLOCK) { XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); *stat = 0; return 0; } ASSERT(args.len == 1); XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT); new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); *stat = 1; return 0; } STATIC int xfs_inobt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_owner_info oinfo; xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT); return xfs_free_extent(cur->bc_tp, XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1, &oinfo, XFS_AG_RESV_NONE); } STATIC int xfs_inobt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_inobt_mxr[level != 0]; } STATIC void xfs_inobt_init_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { key->inobt.ir_startino = rec->inobt.ir_startino; } STATIC void xfs_inobt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino); if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { rec->inobt.ir_u.sp.ir_holemask = cpu_to_be16(cur->bc_rec.i.ir_holemask); rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count; rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount; } else { /* ir_holemask/ir_count not supported on-disk */ rec->inobt.ir_u.f.ir_freecount = cpu_to_be32(cur->bc_rec.i.ir_freecount); } rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free); } /* * initial value of ptr for lookup */ STATIC void xfs_inobt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp); ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno)); ptr->s = agi->agi_root; } STATIC void xfs_finobt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp); ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno)); ptr->s = agi->agi_free_root; } STATIC __int64_t xfs_inobt_key_diff( struct xfs_btree_cur *cur, union xfs_btree_key *key) { return (__int64_t)be32_to_cpu(key->inobt.ir_startino) - cur->bc_rec.i.ir_startino; } static int xfs_inobt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); unsigned int level; /* * During growfs operations, we can't verify the exact owner as the * perag is not fully initialised and hence not attached to the buffer. * * Similarly, during log recovery we will have a perag structure * attached, but the agi information will not yet have been initialised * from the on disk AGI. We don't currently use any of this information, * but beware of the landmine (i.e. need to check pag->pagi_init) if we * ever do. */ switch (block->bb_magic) { case cpu_to_be32(XFS_IBT_CRC_MAGIC): case cpu_to_be32(XFS_FIBT_CRC_MAGIC): if (!xfs_btree_sblock_v5hdr_verify(bp)) return false; /* fall through */ case cpu_to_be32(XFS_IBT_MAGIC): case cpu_to_be32(XFS_FIBT_MAGIC): break; default: return 0; } /* level verification */ level = be16_to_cpu(block->bb_level); if (level >= mp->m_in_maxlevels) return false; return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]); } static void xfs_inobt_read_verify( struct xfs_buf *bp) { if (!xfs_btree_sblock_verify_crc(bp)) xfs_buf_ioerror(bp, -EFSBADCRC); else if (!xfs_inobt_verify(bp)) xfs_buf_ioerror(bp, -EFSCORRUPTED); if (bp->b_error) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp); } } static void xfs_inobt_write_verify( struct xfs_buf *bp) { if (!xfs_inobt_verify(bp)) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_buf_ioerror(bp, -EFSCORRUPTED); xfs_verifier_error(bp); return; } xfs_btree_sblock_calc_crc(bp); } const struct xfs_buf_ops xfs_inobt_buf_ops = { .name = "xfs_inobt", .verify_read = xfs_inobt_read_verify, .verify_write = xfs_inobt_write_verify, }; #if defined(DEBUG) || defined(XFS_WARN) STATIC int xfs_inobt_keys_inorder( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { return be32_to_cpu(k1->inobt.ir_startino) < be32_to_cpu(k2->inobt.ir_startino); } STATIC int xfs_inobt_recs_inorder( struct xfs_btree_cur *cur, union xfs_btree_rec *r1, union xfs_btree_rec *r2) { return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <= be32_to_cpu(r2->inobt.ir_startino); } #endif /* DEBUG */ static const struct xfs_btree_ops xfs_inobt_ops = { .rec_len = sizeof(xfs_inobt_rec_t), .key_len = sizeof(xfs_inobt_key_t), .dup_cursor = xfs_inobt_dup_cursor, .set_root = xfs_inobt_set_root, .alloc_block = xfs_inobt_alloc_block, .free_block = xfs_inobt_free_block, .get_minrecs = xfs_inobt_get_minrecs, .get_maxrecs = xfs_inobt_get_maxrecs, .init_key_from_rec = xfs_inobt_init_key_from_rec, .init_rec_from_cur = xfs_inobt_init_rec_from_cur, .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur, .key_diff = xfs_inobt_key_diff, .buf_ops = &xfs_inobt_buf_ops, #if defined(DEBUG) || defined(XFS_WARN) .keys_inorder = xfs_inobt_keys_inorder, .recs_inorder = xfs_inobt_recs_inorder, #endif }; static const struct xfs_btree_ops xfs_finobt_ops = { .rec_len = sizeof(xfs_inobt_rec_t), .key_len = sizeof(xfs_inobt_key_t), .dup_cursor = xfs_inobt_dup_cursor, .set_root = xfs_finobt_set_root, .alloc_block = xfs_inobt_alloc_block, .free_block = xfs_inobt_free_block, .get_minrecs = xfs_inobt_get_minrecs, .get_maxrecs = xfs_inobt_get_maxrecs, .init_key_from_rec = xfs_inobt_init_key_from_rec, .init_rec_from_cur = xfs_inobt_init_rec_from_cur, .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur, .key_diff = xfs_inobt_key_diff, .buf_ops = &xfs_inobt_buf_ops, #if defined(DEBUG) || defined(XFS_WARN) .keys_inorder = xfs_inobt_keys_inorder, .recs_inorder = xfs_inobt_recs_inorder, #endif }; /* * Allocate a new inode btree cursor. */ struct xfs_btree_cur * /* new inode btree cursor */ xfs_inobt_init_cursor( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ struct xfs_buf *agbp, /* buffer for agi structure */ xfs_agnumber_t agno, /* allocation group number */ xfs_btnum_t btnum) /* ialloc or free ino btree */ { struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); struct xfs_btree_cur *cur; cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP); cur->bc_tp = tp; cur->bc_mp = mp; cur->bc_btnum = btnum; if (btnum == XFS_BTNUM_INO) { cur->bc_nlevels = be32_to_cpu(agi->agi_level); cur->bc_ops = &xfs_inobt_ops; cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2); } else { cur->bc_nlevels = be32_to_cpu(agi->agi_free_level); cur->bc_ops = &xfs_finobt_ops; cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2); } cur->bc_blocklog = mp->m_sb.sb_blocklog; if (xfs_sb_version_hascrc(&mp->m_sb)) cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; cur->bc_private.a.agbp = agbp; cur->bc_private.a.agno = agno; return cur; } /* * Calculate number of records in an inobt btree block. */ int xfs_inobt_maxrecs( struct xfs_mount *mp, int blocklen, int leaf) { blocklen -= XFS_INOBT_BLOCK_LEN(mp); if (leaf) return blocklen / sizeof(xfs_inobt_rec_t); return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t)); } /* * Convert the inode record holemask to an inode allocation bitmap. The inode * allocation bitmap is inode granularity and specifies whether an inode is * physically allocated on disk (not whether the inode is considered allocated * or free by the fs). * * A bit value of 1 means the inode is allocated, a value of 0 means it is free. */ uint64_t xfs_inobt_irec_to_allocmask( struct xfs_inobt_rec_incore *rec) { uint64_t bitmap = 0; uint64_t inodespbit; int nextbit; uint allocbitmap; /* * The holemask has 16-bits for a 64 inode record. Therefore each * holemask bit represents multiple inodes. Create a mask of bits to set * in the allocmask for each holemask bit. */ inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1; /* * Allocated inodes are represented by 0 bits in holemask. Invert the 0 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask * anything beyond the 16 holemask bits since this casts to a larger * type. */ allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1); /* * allocbitmap is the inverted holemask so every set bit represents * allocated inodes. To expand from 16-bit holemask granularity to * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target * bitmap for every holemask bit. */ nextbit = xfs_next_bit(&allocbitmap, 1, 0); while (nextbit != -1) { ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY)); bitmap |= (inodespbit << (nextbit * XFS_INODES_PER_HOLEMASK_BIT)); nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1); } return bitmap; } #if defined(DEBUG) || defined(XFS_WARN) /* * Verify that an in-core inode record has a valid inode count. */ int xfs_inobt_rec_check_count( struct xfs_mount *mp, struct xfs_inobt_rec_incore *rec) { int inocount = 0; int nextbit = 0; uint64_t allocbmap; int wordsz; wordsz = sizeof(allocbmap) / sizeof(unsigned int); allocbmap = xfs_inobt_irec_to_allocmask(rec); nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit); while (nextbit != -1) { inocount++; nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit + 1); } if (inocount != rec->ir_count) return -EFSCORRUPTED; return 0; } #endif /* DEBUG */