/* * fs/f2fs/super.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "gc.h" #include "trace.h" #define CREATE_TRACE_POINTS #include static struct proc_dir_entry *f2fs_proc_root; static struct kmem_cache *f2fs_inode_cachep; static struct kset *f2fs_kset; #ifdef CONFIG_F2FS_FAULT_INJECTION struct f2fs_fault_info f2fs_fault; char *fault_name[FAULT_MAX] = { [FAULT_KMALLOC] = "kmalloc", [FAULT_PAGE_ALLOC] = "page alloc", [FAULT_ALLOC_NID] = "alloc nid", [FAULT_ORPHAN] = "orphan", [FAULT_BLOCK] = "no more block", [FAULT_DIR_DEPTH] = "too big dir depth", [FAULT_EVICT_INODE] = "evict_inode fail", }; static void f2fs_build_fault_attr(unsigned int rate) { if (rate) { atomic_set(&f2fs_fault.inject_ops, 0); f2fs_fault.inject_rate = rate; f2fs_fault.inject_type = (1 << FAULT_MAX) - 1; } else { memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info)); } } #endif /* f2fs-wide shrinker description */ static struct shrinker f2fs_shrinker_info = { .scan_objects = f2fs_shrink_scan, .count_objects = f2fs_shrink_count, .seeks = DEFAULT_SEEKS, }; enum { Opt_gc_background, Opt_disable_roll_forward, Opt_norecovery, Opt_discard, Opt_noheap, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_active_logs, Opt_disable_ext_identify, Opt_inline_xattr, Opt_inline_data, Opt_inline_dentry, Opt_flush_merge, Opt_noflush_merge, Opt_nobarrier, Opt_fastboot, Opt_extent_cache, Opt_noextent_cache, Opt_noinline_data, Opt_data_flush, Opt_fault_injection, Opt_lazytime, Opt_nolazytime, Opt_err, }; static match_table_t f2fs_tokens = { {Opt_gc_background, "background_gc=%s"}, {Opt_disable_roll_forward, "disable_roll_forward"}, {Opt_norecovery, "norecovery"}, {Opt_discard, "discard"}, {Opt_noheap, "no_heap"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_active_logs, "active_logs=%u"}, {Opt_disable_ext_identify, "disable_ext_identify"}, {Opt_inline_xattr, "inline_xattr"}, {Opt_inline_data, "inline_data"}, {Opt_inline_dentry, "inline_dentry"}, {Opt_flush_merge, "flush_merge"}, {Opt_noflush_merge, "noflush_merge"}, {Opt_nobarrier, "nobarrier"}, {Opt_fastboot, "fastboot"}, {Opt_extent_cache, "extent_cache"}, {Opt_noextent_cache, "noextent_cache"}, {Opt_noinline_data, "noinline_data"}, {Opt_data_flush, "data_flush"}, {Opt_fault_injection, "fault_injection=%u"}, {Opt_lazytime, "lazytime"}, {Opt_nolazytime, "nolazytime"}, {Opt_err, NULL}, }; /* Sysfs support for f2fs */ enum { GC_THREAD, /* struct f2fs_gc_thread */ SM_INFO, /* struct f2fs_sm_info */ NM_INFO, /* struct f2fs_nm_info */ F2FS_SBI, /* struct f2fs_sb_info */ #ifdef CONFIG_F2FS_FAULT_INJECTION FAULT_INFO_RATE, /* struct f2fs_fault_info */ FAULT_INFO_TYPE, /* struct f2fs_fault_info */ #endif }; struct f2fs_attr { struct attribute attr; ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, const char *, size_t); int struct_type; int offset; }; static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) { if (struct_type == GC_THREAD) return (unsigned char *)sbi->gc_thread; else if (struct_type == SM_INFO) return (unsigned char *)SM_I(sbi); else if (struct_type == NM_INFO) return (unsigned char *)NM_I(sbi); else if (struct_type == F2FS_SBI) return (unsigned char *)sbi; #ifdef CONFIG_F2FS_FAULT_INJECTION else if (struct_type == FAULT_INFO_RATE || struct_type == FAULT_INFO_TYPE) return (unsigned char *)&f2fs_fault; #endif return NULL; } static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { struct super_block *sb = sbi->sb; if (!sb->s_bdev->bd_part) return snprintf(buf, PAGE_SIZE, "0\n"); return snprintf(buf, PAGE_SIZE, "%llu\n", (unsigned long long)(sbi->kbytes_written + BD_PART_WRITTEN(sbi))); } static ssize_t f2fs_sbi_show(struct f2fs_attr *a, struct f2fs_sb_info *sbi, char *buf) { unsigned char *ptr = NULL; unsigned int *ui; ptr = __struct_ptr(sbi, a->struct_type); if (!ptr) return -EINVAL; ui = (unsigned int *)(ptr + a->offset); return snprintf(buf, PAGE_SIZE, "%u\n", *ui); } static ssize_t f2fs_sbi_store(struct f2fs_attr *a, struct f2fs_sb_info *sbi, const char *buf, size_t count) { unsigned char *ptr; unsigned long t; unsigned int *ui; ssize_t ret; ptr = __struct_ptr(sbi, a->struct_type); if (!ptr) return -EINVAL; ui = (unsigned int *)(ptr + a->offset); ret = kstrtoul(skip_spaces(buf), 0, &t); if (ret < 0) return ret; #ifdef CONFIG_F2FS_FAULT_INJECTION if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) return -EINVAL; #endif *ui = t; return count; } static ssize_t f2fs_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); return a->show ? a->show(a, sbi, buf) : 0; } static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); return a->store ? a->store(a, sbi, buf, len) : 0; } static void f2fs_sb_release(struct kobject *kobj) { struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, s_kobj); complete(&sbi->s_kobj_unregister); } #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ static struct f2fs_attr f2fs_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = _mode }, \ .show = _show, \ .store = _store, \ .struct_type = _struct_type, \ .offset = _offset \ } #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ F2FS_ATTR_OFFSET(struct_type, name, 0644, \ f2fs_sbi_show, f2fs_sbi_store, \ offsetof(struct struct_name, elname)) #define F2FS_GENERAL_RO_ATTR(name) \ static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); #ifdef CONFIG_F2FS_FAULT_INJECTION F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); #endif F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); #define ATTR_LIST(name) (&f2fs_attr_##name.attr) static struct attribute *f2fs_attrs[] = { ATTR_LIST(gc_min_sleep_time), ATTR_LIST(gc_max_sleep_time), ATTR_LIST(gc_no_gc_sleep_time), ATTR_LIST(gc_idle), ATTR_LIST(reclaim_segments), ATTR_LIST(max_small_discards), ATTR_LIST(batched_trim_sections), ATTR_LIST(ipu_policy), ATTR_LIST(min_ipu_util), ATTR_LIST(min_fsync_blocks), ATTR_LIST(max_victim_search), ATTR_LIST(dir_level), ATTR_LIST(ram_thresh), ATTR_LIST(ra_nid_pages), ATTR_LIST(dirty_nats_ratio), ATTR_LIST(cp_interval), ATTR_LIST(idle_interval), ATTR_LIST(lifetime_write_kbytes), NULL, }; static const struct sysfs_ops f2fs_attr_ops = { .show = f2fs_attr_show, .store = f2fs_attr_store, }; static struct kobj_type f2fs_ktype = { .default_attrs = f2fs_attrs, .sysfs_ops = &f2fs_attr_ops, .release = f2fs_sb_release, }; #ifdef CONFIG_F2FS_FAULT_INJECTION /* sysfs for f2fs fault injection */ static struct kobject f2fs_fault_inject; static struct attribute *f2fs_fault_attrs[] = { ATTR_LIST(inject_rate), ATTR_LIST(inject_type), NULL }; static struct kobj_type f2fs_fault_ktype = { .default_attrs = f2fs_fault_attrs, .sysfs_ops = &f2fs_attr_ops, }; #endif void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); va_end(args); } static void init_once(void *foo) { struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; inode_init_once(&fi->vfs_inode); } static int parse_options(struct super_block *sb, char *options) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct request_queue *q; substring_t args[MAX_OPT_ARGS]; char *p, *name; int arg = 0; #ifdef CONFIG_F2FS_FAULT_INJECTION f2fs_build_fault_attr(0); #endif if (!options) return 0; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; /* * Initialize args struct so we know whether arg was * found; some options take optional arguments. */ args[0].to = args[0].from = NULL; token = match_token(p, f2fs_tokens, args); switch (token) { case Opt_gc_background: name = match_strdup(&args[0]); if (!name) return -ENOMEM; if (strlen(name) == 2 && !strncmp(name, "on", 2)) { set_opt(sbi, BG_GC); clear_opt(sbi, FORCE_FG_GC); } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { clear_opt(sbi, BG_GC); clear_opt(sbi, FORCE_FG_GC); } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { set_opt(sbi, BG_GC); set_opt(sbi, FORCE_FG_GC); } else { kfree(name); return -EINVAL; } kfree(name); break; case Opt_disable_roll_forward: set_opt(sbi, DISABLE_ROLL_FORWARD); break; case Opt_norecovery: /* this option mounts f2fs with ro */ set_opt(sbi, DISABLE_ROLL_FORWARD); if (!f2fs_readonly(sb)) return -EINVAL; break; case Opt_discard: q = bdev_get_queue(sb->s_bdev); if (blk_queue_discard(q)) { set_opt(sbi, DISCARD); } else { f2fs_msg(sb, KERN_WARNING, "mounting with \"discard\" option, but " "the device does not support discard"); } break; case Opt_noheap: set_opt(sbi, NOHEAP); break; #ifdef CONFIG_F2FS_FS_XATTR case Opt_user_xattr: set_opt(sbi, XATTR_USER); break; case Opt_nouser_xattr: clear_opt(sbi, XATTR_USER); break; case Opt_inline_xattr: set_opt(sbi, INLINE_XATTR); break; #else case Opt_user_xattr: f2fs_msg(sb, KERN_INFO, "user_xattr options not supported"); break; case Opt_nouser_xattr: f2fs_msg(sb, KERN_INFO, "nouser_xattr options not supported"); break; case Opt_inline_xattr: f2fs_msg(sb, KERN_INFO, "inline_xattr options not supported"); break; #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL case Opt_acl: set_opt(sbi, POSIX_ACL); break; case Opt_noacl: clear_opt(sbi, POSIX_ACL); break; #else case Opt_acl: f2fs_msg(sb, KERN_INFO, "acl options not supported"); break; case Opt_noacl: f2fs_msg(sb, KERN_INFO, "noacl options not supported"); break; #endif case Opt_active_logs: if (args->from && match_int(args, &arg)) return -EINVAL; if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) return -EINVAL; sbi->active_logs = arg; break; case Opt_disable_ext_identify: set_opt(sbi, DISABLE_EXT_IDENTIFY); break; case Opt_inline_data: set_opt(sbi, INLINE_DATA); break; case Opt_inline_dentry: set_opt(sbi, INLINE_DENTRY); break; case Opt_flush_merge: set_opt(sbi, FLUSH_MERGE); break; case Opt_noflush_merge: clear_opt(sbi, FLUSH_MERGE); break; case Opt_nobarrier: set_opt(sbi, NOBARRIER); break; case Opt_fastboot: set_opt(sbi, FASTBOOT); break; case Opt_extent_cache: set_opt(sbi, EXTENT_CACHE); break; case Opt_noextent_cache: clear_opt(sbi, EXTENT_CACHE); break; case Opt_noinline_data: clear_opt(sbi, INLINE_DATA); break; case Opt_data_flush: set_opt(sbi, DATA_FLUSH); break; case Opt_fault_injection: if (args->from && match_int(args, &arg)) return -EINVAL; #ifdef CONFIG_F2FS_FAULT_INJECTION f2fs_build_fault_attr(arg); #else f2fs_msg(sb, KERN_INFO, "FAULT_INJECTION was not selected"); #endif break; case Opt_lazytime: sb->s_flags |= MS_LAZYTIME; break; case Opt_nolazytime: sb->s_flags &= ~MS_LAZYTIME; break; default: f2fs_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" or missing value", p); return -EINVAL; } } return 0; } static struct inode *f2fs_alloc_inode(struct super_block *sb) { struct f2fs_inode_info *fi; fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); if (!fi) return NULL; init_once((void *) fi); if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { kmem_cache_free(f2fs_inode_cachep, fi); return NULL; } /* Initialize f2fs-specific inode info */ fi->vfs_inode.i_version = 1; fi->i_current_depth = 1; fi->i_advise = 0; init_rwsem(&fi->i_sem); INIT_LIST_HEAD(&fi->dirty_list); INIT_LIST_HEAD(&fi->gdirty_list); INIT_LIST_HEAD(&fi->inmem_pages); mutex_init(&fi->inmem_lock); /* Will be used by directory only */ fi->i_dir_level = F2FS_SB(sb)->dir_level; return &fi->vfs_inode; } static int f2fs_drop_inode(struct inode *inode) { int ret; /* * This is to avoid a deadlock condition like below. * writeback_single_inode(inode) * - f2fs_write_data_page * - f2fs_gc -> iput -> evict * - inode_wait_for_writeback(inode) */ if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { if (!inode->i_nlink && !is_bad_inode(inode)) { /* to avoid evict_inode call simultaneously */ atomic_inc(&inode->i_count); spin_unlock(&inode->i_lock); /* some remained atomic pages should discarded */ if (f2fs_is_atomic_file(inode)) drop_inmem_pages(inode); /* should remain fi->extent_tree for writepage */ f2fs_destroy_extent_node(inode); sb_start_intwrite(inode->i_sb); f2fs_i_size_write(inode, 0); if (F2FS_HAS_BLOCKS(inode)) f2fs_truncate(inode, true); sb_end_intwrite(inode->i_sb); fscrypt_put_encryption_info(inode, NULL); spin_lock(&inode->i_lock); atomic_dec(&inode->i_count); } return 0; } ret = generic_drop_inode(inode); if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { if (ret) inode->i_state |= I_WILL_FREE; spin_unlock(&inode->i_lock); update_inode_page(inode); spin_lock(&inode->i_lock); if (ret) inode->i_state &= ~I_WILL_FREE; } return ret; } /* * f2fs_dirty_inode() is called from __mark_inode_dirty() * * We should call set_dirty_inode to write the dirty inode through write_inode. */ static void f2fs_dirty_inode(struct inode *inode, int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino == F2FS_NODE_INO(sbi) || inode->i_ino == F2FS_META_INO(sbi)) return; if (flags == I_DIRTY_TIME) return; if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) clear_inode_flag(inode, FI_AUTO_RECOVER); spin_lock(&sbi->inode_lock[DIRTY_META]); if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { spin_unlock(&sbi->inode_lock[DIRTY_META]); return; } set_inode_flag(inode, FI_DIRTY_INODE); list_add_tail(&F2FS_I(inode)->gdirty_list, &sbi->inode_list[DIRTY_META]); inc_page_count(sbi, F2FS_DIRTY_IMETA); spin_unlock(&sbi->inode_lock[DIRTY_META]); stat_inc_dirty_inode(sbi, DIRTY_META); } void f2fs_inode_synced(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); spin_lock(&sbi->inode_lock[DIRTY_META]); if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { spin_unlock(&sbi->inode_lock[DIRTY_META]); return; } list_del_init(&F2FS_I(inode)->gdirty_list); clear_inode_flag(inode, FI_DIRTY_INODE); clear_inode_flag(inode, FI_AUTO_RECOVER); dec_page_count(sbi, F2FS_DIRTY_IMETA); spin_unlock(&sbi->inode_lock[DIRTY_META]); stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); } static void f2fs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); } static void f2fs_destroy_inode(struct inode *inode) { percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); call_rcu(&inode->i_rcu, f2fs_i_callback); } static void destroy_percpu_info(struct f2fs_sb_info *sbi) { int i; for (i = 0; i < NR_COUNT_TYPE; i++) percpu_counter_destroy(&sbi->nr_pages[i]); percpu_counter_destroy(&sbi->alloc_valid_block_count); percpu_counter_destroy(&sbi->total_valid_inode_count); } static void f2fs_put_super(struct super_block *sb) { struct f2fs_sb_info *sbi = F2FS_SB(sb); if (sbi->s_proc) { remove_proc_entry("segment_info", sbi->s_proc); remove_proc_entry("segment_bits", sbi->s_proc); remove_proc_entry(sb->s_id, f2fs_proc_root); } kobject_del(&sbi->s_kobj); stop_gc_thread(sbi); /* prevent remaining shrinker jobs */ mutex_lock(&sbi->umount_mutex); /* * We don't need to do checkpoint when superblock is clean. * But, the previous checkpoint was not done by umount, it needs to do * clean checkpoint again. */ if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { struct cp_control cpc = { .reason = CP_UMOUNT, }; write_checkpoint(sbi, &cpc); } /* write_checkpoint can update stat informaion */ f2fs_destroy_stats(sbi); /* * normally superblock is clean, so we need to release this. * In addition, EIO will skip do checkpoint, we need this as well. */ release_ino_entry(sbi, true); release_discard_addrs(sbi); f2fs_leave_shrinker(sbi); mutex_unlock(&sbi->umount_mutex); /* our cp_error case, we can wait for any writeback page */ f2fs_flush_merged_bios(sbi); iput(sbi->node_inode); iput(sbi->meta_inode); /* destroy f2fs internal modules */ destroy_node_manager(sbi); destroy_segment_manager(sbi); kfree(sbi->ckpt); kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); sb->s_fs_info = NULL; if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); kfree(sbi->raw_super); destroy_percpu_info(sbi); kfree(sbi); } int f2fs_sync_fs(struct super_block *sb, int sync) { struct f2fs_sb_info *sbi = F2FS_SB(sb); int err = 0; trace_f2fs_sync_fs(sb, sync); if (sync) { struct cp_control cpc; cpc.reason = __get_cp_reason(sbi); mutex_lock(&sbi->gc_mutex); err = write_checkpoint(sbi, &cpc); mutex_unlock(&sbi->gc_mutex); } f2fs_trace_ios(NULL, 1); return err; } static int f2fs_freeze(struct super_block *sb) { int err; if (f2fs_readonly(sb)) return 0; err = f2fs_sync_fs(sb, 1); return err; } static int f2fs_unfreeze(struct super_block *sb) { return 0; } static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct f2fs_sb_info *sbi = F2FS_SB(sb); u64 id = huge_encode_dev(sb->s_bdev->bd_dev); block_t total_count, user_block_count, start_count, ovp_count; total_count = le64_to_cpu(sbi->raw_super->block_count); user_block_count = sbi->user_block_count; start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; buf->f_type = F2FS_SUPER_MAGIC; buf->f_bsize = sbi->blocksize; buf->f_blocks = total_count - start_count; buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; buf->f_bavail = user_block_count - valid_user_blocks(sbi); buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; buf->f_ffree = buf->f_files - valid_inode_count(sbi); buf->f_namelen = F2FS_NAME_LEN; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); return 0; } static int f2fs_show_options(struct seq_file *seq, struct dentry *root) { struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { if (test_opt(sbi, FORCE_FG_GC)) seq_printf(seq, ",background_gc=%s", "sync"); else seq_printf(seq, ",background_gc=%s", "on"); } else { seq_printf(seq, ",background_gc=%s", "off"); } if (test_opt(sbi, DISABLE_ROLL_FORWARD)) seq_puts(seq, ",disable_roll_forward"); if (test_opt(sbi, DISCARD)) seq_puts(seq, ",discard"); if (test_opt(sbi, NOHEAP)) seq_puts(seq, ",no_heap_alloc"); #ifdef CONFIG_F2FS_FS_XATTR if (test_opt(sbi, XATTR_USER)) seq_puts(seq, ",user_xattr"); else seq_puts(seq, ",nouser_xattr"); if (test_opt(sbi, INLINE_XATTR)) seq_puts(seq, ",inline_xattr"); #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL if (test_opt(sbi, POSIX_ACL)) seq_puts(seq, ",acl"); else seq_puts(seq, ",noacl"); #endif if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) seq_puts(seq, ",disable_ext_identify"); if (test_opt(sbi, INLINE_DATA)) seq_puts(seq, ",inline_data"); else seq_puts(seq, ",noinline_data"); if (test_opt(sbi, INLINE_DENTRY)) seq_puts(seq, ",inline_dentry"); if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) seq_puts(seq, ",flush_merge"); if (test_opt(sbi, NOBARRIER)) seq_puts(seq, ",nobarrier"); if (test_opt(sbi, FASTBOOT)) seq_puts(seq, ",fastboot"); if (test_opt(sbi, EXTENT_CACHE)) seq_puts(seq, ",extent_cache"); else seq_puts(seq, ",noextent_cache"); if (test_opt(sbi, DATA_FLUSH)) seq_puts(seq, ",data_flush"); seq_printf(seq, ",active_logs=%u", sbi->active_logs); return 0; } static int segment_info_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main); int i; seq_puts(seq, "format: segment_type|valid_blocks\n" "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); for (i = 0; i < total_segs; i++) { struct seg_entry *se = get_seg_entry(sbi, i); if ((i % 10) == 0) seq_printf(seq, "%-10d", i); seq_printf(seq, "%d|%-3u", se->type, get_valid_blocks(sbi, i, 1)); if ((i % 10) == 9 || i == (total_segs - 1)) seq_putc(seq, '\n'); else seq_putc(seq, ' '); } return 0; } static int segment_bits_seq_show(struct seq_file *seq, void *offset) { struct super_block *sb = seq->private; struct f2fs_sb_info *sbi = F2FS_SB(sb); unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main); int i, j; seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); for (i = 0; i < total_segs; i++) { struct seg_entry *se = get_seg_entry(sbi, i); seq_printf(seq, "%-10d", i); seq_printf(seq, "%d|%-3u|", se->type, get_valid_blocks(sbi, i, 1)); for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) seq_printf(seq, "%x ", se->cur_valid_map[j]); seq_putc(seq, '\n'); } return 0; } #define F2FS_PROC_FILE_DEF(_name) \ static int _name##_open_fs(struct inode *inode, struct file *file) \ { \ return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ } \ \ static const struct file_operations f2fs_seq_##_name##_fops = { \ .owner = THIS_MODULE, \ .open = _name##_open_fs, \ .read = seq_read, \ .llseek = seq_lseek, \ .release = single_release, \ }; F2FS_PROC_FILE_DEF(segment_info); F2FS_PROC_FILE_DEF(segment_bits); static void default_options(struct f2fs_sb_info *sbi) { /* init some FS parameters */ sbi->active_logs = NR_CURSEG_TYPE; set_opt(sbi, BG_GC); set_opt(sbi, INLINE_DATA); set_opt(sbi, EXTENT_CACHE); sbi->sb->s_flags |= MS_LAZYTIME; set_opt(sbi, FLUSH_MERGE); #ifdef CONFIG_F2FS_FS_XATTR set_opt(sbi, XATTR_USER); #endif #ifdef CONFIG_F2FS_FS_POSIX_ACL set_opt(sbi, POSIX_ACL); #endif } static int f2fs_remount(struct super_block *sb, int *flags, char *data) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct f2fs_mount_info org_mount_opt; int err, active_logs; bool need_restart_gc = false; bool need_stop_gc = false; bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); /* * Save the old mount options in case we * need to restore them. */ org_mount_opt = sbi->mount_opt; active_logs = sbi->active_logs; /* recover superblocks we couldn't write due to previous RO mount */ if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { err = f2fs_commit_super(sbi, false); f2fs_msg(sb, KERN_INFO, "Try to recover all the superblocks, ret: %d", err); if (!err) clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); } sbi->mount_opt.opt = 0; default_options(sbi); /* parse mount options */ err = parse_options(sb, data); if (err) goto restore_opts; /* * Previous and new state of filesystem is RO, * so skip checking GC and FLUSH_MERGE conditions. */ if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) goto skip; /* disallow enable/disable extent_cache dynamically */ if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { err = -EINVAL; f2fs_msg(sbi->sb, KERN_WARNING, "switch extent_cache option is not allowed"); goto restore_opts; } /* * We stop the GC thread if FS is mounted as RO * or if background_gc = off is passed in mount * option. Also sync the filesystem. */ if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { if (sbi->gc_thread) { stop_gc_thread(sbi); need_restart_gc = true; } } else if (!sbi->gc_thread) { err = start_gc_thread(sbi); if (err) goto restore_opts; need_stop_gc = true; } if (*flags & MS_RDONLY) { writeback_inodes_sb(sb, WB_REASON_SYNC); sync_inodes_sb(sb); set_sbi_flag(sbi, SBI_IS_DIRTY); set_sbi_flag(sbi, SBI_IS_CLOSE); f2fs_sync_fs(sb, 1); clear_sbi_flag(sbi, SBI_IS_CLOSE); } /* * We stop issue flush thread if FS is mounted as RO * or if flush_merge is not passed in mount option. */ if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { destroy_flush_cmd_control(sbi); } else if (!SM_I(sbi)->cmd_control_info) { err = create_flush_cmd_control(sbi); if (err) goto restore_gc; } skip: /* Update the POSIXACL Flag */ sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); return 0; restore_gc: if (need_restart_gc) { if (start_gc_thread(sbi)) f2fs_msg(sbi->sb, KERN_WARNING, "background gc thread has stopped"); } else if (need_stop_gc) { stop_gc_thread(sbi); } restore_opts: sbi->mount_opt = org_mount_opt; sbi->active_logs = active_logs; return err; } static struct super_operations f2fs_sops = { .alloc_inode = f2fs_alloc_inode, .drop_inode = f2fs_drop_inode, .destroy_inode = f2fs_destroy_inode, .write_inode = f2fs_write_inode, .dirty_inode = f2fs_dirty_inode, .show_options = f2fs_show_options, .evict_inode = f2fs_evict_inode, .put_super = f2fs_put_super, .sync_fs = f2fs_sync_fs, .freeze_fs = f2fs_freeze, .unfreeze_fs = f2fs_unfreeze, .statfs = f2fs_statfs, .remount_fs = f2fs_remount, }; #ifdef CONFIG_F2FS_FS_ENCRYPTION static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) { return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len, NULL); } static int f2fs_key_prefix(struct inode *inode, u8 **key) { *key = F2FS_I_SB(inode)->key_prefix; return F2FS_I_SB(inode)->key_prefix_size; } static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, void *fs_data) { return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len, fs_data, XATTR_CREATE); } static unsigned f2fs_max_namelen(struct inode *inode) { return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : F2FS_NAME_LEN; } static struct fscrypt_operations f2fs_cryptops = { .get_context = f2fs_get_context, .key_prefix = f2fs_key_prefix, .set_context = f2fs_set_context, .is_encrypted = f2fs_encrypted_inode, .empty_dir = f2fs_empty_dir, .max_namelen = f2fs_max_namelen, }; #else static struct fscrypt_operations f2fs_cryptops = { .is_encrypted = f2fs_encrypted_inode, }; #endif static struct inode *f2fs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct f2fs_sb_info *sbi = F2FS_SB(sb); struct inode *inode; if (check_nid_range(sbi, ino)) return ERR_PTR(-ESTALE); /* * f2fs_iget isn't quite right if the inode is currently unallocated! * However f2fs_iget currently does appropriate checks to handle stale * inodes so everything is OK. */ inode = f2fs_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (unlikely(generation && inode->i_generation != generation)) { /* we didn't find the right inode.. */ iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, f2fs_nfs_get_inode); } static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, f2fs_nfs_get_inode); } static const struct export_operations f2fs_export_ops = { .fh_to_dentry = f2fs_fh_to_dentry, .fh_to_parent = f2fs_fh_to_parent, .get_parent = f2fs_get_parent, }; static loff_t max_file_blocks(void) { loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); loff_t leaf_count = ADDRS_PER_BLOCK; /* two direct node blocks */ result += (leaf_count * 2); /* two indirect node blocks */ leaf_count *= NIDS_PER_BLOCK; result += (leaf_count * 2); /* one double indirect node block */ leaf_count *= NIDS_PER_BLOCK; result += leaf_count; return result; } static int __f2fs_commit_super(struct buffer_head *bh, struct f2fs_super_block *super) { lock_buffer(bh); if (super) memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); set_buffer_uptodate(bh); set_buffer_dirty(bh); unlock_buffer(bh); /* it's rare case, we can do fua all the time */ return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); } static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, struct buffer_head *bh) { struct f2fs_super_block *raw_super = (struct f2fs_super_block *) (bh->b_data + F2FS_SUPER_OFFSET); struct super_block *sb = sbi->sb; u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); u32 segment_count = le32_to_cpu(raw_super->segment_count); u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); u64 main_end_blkaddr = main_blkaddr + (segment_count_main << log_blocks_per_seg); u64 seg_end_blkaddr = segment0_blkaddr + (segment_count << log_blocks_per_seg); if (segment0_blkaddr != cp_blkaddr) { f2fs_msg(sb, KERN_INFO, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", segment0_blkaddr, cp_blkaddr); return true; } if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != sit_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", cp_blkaddr, sit_blkaddr, segment_count_ckpt << log_blocks_per_seg); return true; } if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != nat_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", sit_blkaddr, nat_blkaddr, segment_count_sit << log_blocks_per_seg); return true; } if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != ssa_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", nat_blkaddr, ssa_blkaddr, segment_count_nat << log_blocks_per_seg); return true; } if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != main_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", ssa_blkaddr, main_blkaddr, segment_count_ssa << log_blocks_per_seg); return true; } if (main_end_blkaddr > seg_end_blkaddr) { f2fs_msg(sb, KERN_INFO, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", main_blkaddr, segment0_blkaddr + (segment_count << log_blocks_per_seg), segment_count_main << log_blocks_per_seg); return true; } else if (main_end_blkaddr < seg_end_blkaddr) { int err = 0; char *res; /* fix in-memory information all the time */ raw_super->segment_count = cpu_to_le32((main_end_blkaddr - segment0_blkaddr) >> log_blocks_per_seg); if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { set_sbi_flag(sbi, SBI_NEED_SB_WRITE); res = "internally"; } else { err = __f2fs_commit_super(bh, NULL); res = err ? "failed" : "done"; } f2fs_msg(sb, KERN_INFO, "Fix alignment : %s, start(%u) end(%u) block(%u)", res, main_blkaddr, segment0_blkaddr + (segment_count << log_blocks_per_seg), segment_count_main << log_blocks_per_seg); if (err) return true; } return false; } static int sanity_check_raw_super(struct f2fs_sb_info *sbi, struct buffer_head *bh) { struct f2fs_super_block *raw_super = (struct f2fs_super_block *) (bh->b_data + F2FS_SUPER_OFFSET); struct super_block *sb = sbi->sb; unsigned int blocksize; if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { f2fs_msg(sb, KERN_INFO, "Magic Mismatch, valid(0x%x) - read(0x%x)", F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); return 1; } /* Currently, support only 4KB page cache size */ if (F2FS_BLKSIZE != PAGE_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid page_cache_size (%lu), supports only 4KB\n", PAGE_SIZE); return 1; } /* Currently, support only 4KB block size */ blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); if (blocksize != F2FS_BLKSIZE) { f2fs_msg(sb, KERN_INFO, "Invalid blocksize (%u), supports only 4KB\n", blocksize); return 1; } /* check log blocks per segment */ if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { f2fs_msg(sb, KERN_INFO, "Invalid log blocks per segment (%u)\n", le32_to_cpu(raw_super->log_blocks_per_seg)); return 1; } /* Currently, support 512/1024/2048/4096 bytes sector size */ if (le32_to_cpu(raw_super->log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE || le32_to_cpu(raw_super->log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", le32_to_cpu(raw_super->log_sectorsize)); return 1; } if (le32_to_cpu(raw_super->log_sectors_per_block) + le32_to_cpu(raw_super->log_sectorsize) != F2FS_MAX_LOG_SECTOR_SIZE) { f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block(%u) log sectorsize(%u)", le32_to_cpu(raw_super->log_sectors_per_block), le32_to_cpu(raw_super->log_sectorsize)); return 1; } /* check reserved ino info */ if (le32_to_cpu(raw_super->node_ino) != 1 || le32_to_cpu(raw_super->meta_ino) != 2 || le32_to_cpu(raw_super->root_ino) != 3) { f2fs_msg(sb, KERN_INFO, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", le32_to_cpu(raw_super->node_ino), le32_to_cpu(raw_super->meta_ino), le32_to_cpu(raw_super->root_ino)); return 1; } /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ if (sanity_check_area_boundary(sbi, bh)) return 1; return 0; } int sanity_check_ckpt(struct f2fs_sb_info *sbi) { unsigned int total, fsmeta; struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); total = le32_to_cpu(raw_super->segment_count); fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); fsmeta += le32_to_cpu(raw_super->segment_count_sit); fsmeta += le32_to_cpu(raw_super->segment_count_nat); fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); fsmeta += le32_to_cpu(raw_super->segment_count_ssa); if (unlikely(fsmeta >= total)) return 1; if (unlikely(f2fs_cp_error(sbi))) { f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); return 1; } return 0; } static void init_sb_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = sbi->raw_super; sbi->log_sectors_per_block = le32_to_cpu(raw_super->log_sectors_per_block); sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); sbi->blocksize = 1 << sbi->log_blocksize; sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); sbi->total_sections = le32_to_cpu(raw_super->section_count); sbi->total_node_count = (le32_to_cpu(raw_super->segment_count_nat) / 2) * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); sbi->cur_victim_sec = NULL_SECNO; sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; sbi->dir_level = DEF_DIR_LEVEL; sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; clear_sbi_flag(sbi, SBI_NEED_FSCK); INIT_LIST_HEAD(&sbi->s_list); mutex_init(&sbi->umount_mutex); #ifdef CONFIG_F2FS_FS_ENCRYPTION memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, F2FS_KEY_DESC_PREFIX_SIZE); sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; #endif } static int init_percpu_info(struct f2fs_sb_info *sbi) { int i, err; for (i = 0; i < NR_COUNT_TYPE; i++) { err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); if (err) return err; } err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); if (err) return err; return percpu_counter_init(&sbi->total_valid_inode_count, 0, GFP_KERNEL); } /* * Read f2fs raw super block. * Because we have two copies of super block, so read both of them * to get the first valid one. If any one of them is broken, we pass * them recovery flag back to the caller. */ static int read_raw_super_block(struct f2fs_sb_info *sbi, struct f2fs_super_block **raw_super, int *valid_super_block, int *recovery) { struct super_block *sb = sbi->sb; int block; struct buffer_head *bh; struct f2fs_super_block *super; int err = 0; super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); if (!super) return -ENOMEM; for (block = 0; block < 2; block++) { bh = sb_bread(sb, block); if (!bh) { f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", block + 1); err = -EIO; continue; } /* sanity checking of raw super */ if (sanity_check_raw_super(sbi, bh)) { f2fs_msg(sb, KERN_ERR, "Can't find valid F2FS filesystem in %dth superblock", block + 1); err = -EINVAL; brelse(bh); continue; } if (!*raw_super) { memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, sizeof(*super)); *valid_super_block = block; *raw_super = super; } brelse(bh); } /* Fail to read any one of the superblocks*/ if (err < 0) *recovery = 1; /* No valid superblock */ if (!*raw_super) kfree(super); else err = 0; return err; } int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) { struct buffer_head *bh; int err; if ((recover && f2fs_readonly(sbi->sb)) || bdev_read_only(sbi->sb->s_bdev)) { set_sbi_flag(sbi, SBI_NEED_SB_WRITE); return -EROFS; } /* write back-up superblock first */ bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); if (!bh) return -EIO; err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); brelse(bh); /* if we are in recovery path, skip writing valid superblock */ if (recover || err) return err; /* write current valid superblock */ bh = sb_getblk(sbi->sb, sbi->valid_super_block); if (!bh) return -EIO; err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); brelse(bh); return err; } static int f2fs_fill_super(struct super_block *sb, void *data, int silent) { struct f2fs_sb_info *sbi; struct f2fs_super_block *raw_super; struct inode *root; int err; bool retry = true, need_fsck = false; char *options = NULL; int recovery, i, valid_super_block; struct curseg_info *seg_i; try_onemore: err = -EINVAL; raw_super = NULL; valid_super_block = -1; recovery = 0; /* allocate memory for f2fs-specific super block info */ sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sbi->sb = sb; /* Load the checksum driver */ sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); if (IS_ERR(sbi->s_chksum_driver)) { f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); err = PTR_ERR(sbi->s_chksum_driver); sbi->s_chksum_driver = NULL; goto free_sbi; } /* set a block size */ if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); goto free_sbi; } err = read_raw_super_block(sbi, &raw_super, &valid_super_block, &recovery); if (err) goto free_sbi; sb->s_fs_info = sbi; default_options(sbi); /* parse mount options */ options = kstrdup((const char *)data, GFP_KERNEL); if (data && !options) { err = -ENOMEM; goto free_sb_buf; } err = parse_options(sb, options); if (err) goto free_options; sbi->max_file_blocks = max_file_blocks(); sb->s_maxbytes = sbi->max_file_blocks << le32_to_cpu(raw_super->log_blocksize); sb->s_max_links = F2FS_LINK_MAX; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); sb->s_op = &f2fs_sops; sb->s_cop = &f2fs_cryptops; sb->s_xattr = f2fs_xattr_handlers; sb->s_export_op = &f2fs_export_ops; sb->s_magic = F2FS_SUPER_MAGIC; sb->s_time_gran = 1; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); /* init f2fs-specific super block info */ sbi->raw_super = raw_super; sbi->valid_super_block = valid_super_block; mutex_init(&sbi->gc_mutex); mutex_init(&sbi->cp_mutex); init_rwsem(&sbi->node_write); /* disallow all the data/node/meta page writes */ set_sbi_flag(sbi, SBI_POR_DOING); spin_lock_init(&sbi->stat_lock); init_rwsem(&sbi->read_io.io_rwsem); sbi->read_io.sbi = sbi; sbi->read_io.bio = NULL; for (i = 0; i < NR_PAGE_TYPE; i++) { init_rwsem(&sbi->write_io[i].io_rwsem); sbi->write_io[i].sbi = sbi; sbi->write_io[i].bio = NULL; } init_rwsem(&sbi->cp_rwsem); init_waitqueue_head(&sbi->cp_wait); init_sb_info(sbi); err = init_percpu_info(sbi); if (err) goto free_options; /* get an inode for meta space */ sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); if (IS_ERR(sbi->meta_inode)) { f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); err = PTR_ERR(sbi->meta_inode); goto free_options; } err = get_valid_checkpoint(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); goto free_meta_inode; } sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count); percpu_counter_set(&sbi->total_valid_inode_count, le32_to_cpu(sbi->ckpt->valid_inode_count)); sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); sbi->total_valid_block_count = le64_to_cpu(sbi->ckpt->valid_block_count); sbi->last_valid_block_count = sbi->total_valid_block_count; for (i = 0; i < NR_INODE_TYPE; i++) { INIT_LIST_HEAD(&sbi->inode_list[i]); spin_lock_init(&sbi->inode_lock[i]); } init_extent_cache_info(sbi); init_ino_entry_info(sbi); /* setup f2fs internal modules */ err = build_segment_manager(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to initialize F2FS segment manager"); goto free_sm; } err = build_node_manager(sbi); if (err) { f2fs_msg(sb, KERN_ERR, "Failed to initialize F2FS node manager"); goto free_nm; } /* For write statistics */ if (sb->s_bdev->bd_part) sbi->sectors_written_start = (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); /* Read accumulated write IO statistics if exists */ seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); if (__exist_node_summaries(sbi)) sbi->kbytes_written = le64_to_cpu(seg_i->journal->info.kbytes_written); build_gc_manager(sbi); /* get an inode for node space */ sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); if (IS_ERR(sbi->node_inode)) { f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); err = PTR_ERR(sbi->node_inode); goto free_nm; } f2fs_join_shrinker(sbi); /* if there are nt orphan nodes free them */ err = recover_orphan_inodes(sbi); if (err) goto free_node_inode; /* read root inode and dentry */ root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); if (IS_ERR(root)) { f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); err = PTR_ERR(root); goto free_node_inode; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { iput(root); err = -EINVAL; goto free_node_inode; } sb->s_root = d_make_root(root); /* allocate root dentry */ if (!sb->s_root) { err = -ENOMEM; goto free_root_inode; } err = f2fs_build_stats(sbi); if (err) goto free_root_inode; if (f2fs_proc_root) sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); if (sbi->s_proc) { proc_create_data("segment_info", S_IRUGO, sbi->s_proc, &f2fs_seq_segment_info_fops, sb); proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, &f2fs_seq_segment_bits_fops, sb); } sbi->s_kobj.kset = f2fs_kset; init_completion(&sbi->s_kobj_unregister); err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, "%s", sb->s_id); if (err) goto free_proc; /* recover fsynced data */ if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { /* * mount should be failed, when device has readonly mode, and * previous checkpoint was not done by clean system shutdown. */ if (bdev_read_only(sb->s_bdev) && !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { err = -EROFS; goto free_kobj; } if (need_fsck) set_sbi_flag(sbi, SBI_NEED_FSCK); err = recover_fsync_data(sbi, false); if (err < 0) { need_fsck = true; f2fs_msg(sb, KERN_ERR, "Cannot recover all fsync data errno=%d", err); goto free_kobj; } } else { err = recover_fsync_data(sbi, true); if (!f2fs_readonly(sb) && err > 0) { err = -EINVAL; f2fs_msg(sb, KERN_ERR, "Need to recover fsync data"); goto free_kobj; } } /* recover_fsync_data() cleared this already */ clear_sbi_flag(sbi, SBI_POR_DOING); /* * If filesystem is not mounted as read-only then * do start the gc_thread. */ if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { /* After POR, we can run background GC thread.*/ err = start_gc_thread(sbi); if (err) goto free_kobj; } kfree(options); /* recover broken superblock */ if (recovery) { err = f2fs_commit_super(sbi, true); f2fs_msg(sb, KERN_INFO, "Try to recover %dth superblock, ret: %d", sbi->valid_super_block ? 1 : 2, err); } f2fs_update_time(sbi, CP_TIME); f2fs_update_time(sbi, REQ_TIME); return 0; free_kobj: f2fs_sync_inode_meta(sbi); kobject_del(&sbi->s_kobj); kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); free_proc: if (sbi->s_proc) { remove_proc_entry("segment_info", sbi->s_proc); remove_proc_entry("segment_bits", sbi->s_proc); remove_proc_entry(sb->s_id, f2fs_proc_root); } f2fs_destroy_stats(sbi); free_root_inode: dput(sb->s_root); sb->s_root = NULL; free_node_inode: mutex_lock(&sbi->umount_mutex); f2fs_leave_shrinker(sbi); iput(sbi->node_inode); mutex_unlock(&sbi->umount_mutex); free_nm: destroy_node_manager(sbi); free_sm: destroy_segment_manager(sbi); kfree(sbi->ckpt); free_meta_inode: make_bad_inode(sbi->meta_inode); iput(sbi->meta_inode); free_options: destroy_percpu_info(sbi); kfree(options); free_sb_buf: kfree(raw_super); free_sbi: if (sbi->s_chksum_driver) crypto_free_shash(sbi->s_chksum_driver); kfree(sbi); /* give only one another chance */ if (retry) { retry = false; shrink_dcache_sb(sb); goto try_onemore; } return err; } static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); } static void kill_f2fs_super(struct super_block *sb) { if (sb->s_root) set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); kill_block_super(sb); } static struct file_system_type f2fs_fs_type = { .owner = THIS_MODULE, .name = "f2fs", .mount = f2fs_mount, .kill_sb = kill_f2fs_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("f2fs"); static int __init init_inodecache(void) { f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", sizeof(struct f2fs_inode_info), 0, SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); if (!f2fs_inode_cachep) return -ENOMEM; return 0; } static void destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(f2fs_inode_cachep); } static int __init init_f2fs_fs(void) { int err; f2fs_build_trace_ios(); err = init_inodecache(); if (err) goto fail; err = create_node_manager_caches(); if (err) goto free_inodecache; err = create_segment_manager_caches(); if (err) goto free_node_manager_caches; err = create_checkpoint_caches(); if (err) goto free_segment_manager_caches; err = create_extent_cache(); if (err) goto free_checkpoint_caches; f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); if (!f2fs_kset) { err = -ENOMEM; goto free_extent_cache; } #ifdef CONFIG_F2FS_FAULT_INJECTION f2fs_fault_inject.kset = f2fs_kset; f2fs_build_fault_attr(0); err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype, NULL, "fault_injection"); if (err) { f2fs_fault_inject.kset = NULL; goto free_kset; } #endif err = register_shrinker(&f2fs_shrinker_info); if (err) goto free_kset; err = register_filesystem(&f2fs_fs_type); if (err) goto free_shrinker; err = f2fs_create_root_stats(); if (err) goto free_filesystem; f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); return 0; free_filesystem: unregister_filesystem(&f2fs_fs_type); free_shrinker: unregister_shrinker(&f2fs_shrinker_info); free_kset: #ifdef CONFIG_F2FS_FAULT_INJECTION if (f2fs_fault_inject.kset) kobject_put(&f2fs_fault_inject); #endif kset_unregister(f2fs_kset); free_extent_cache: destroy_extent_cache(); free_checkpoint_caches: destroy_checkpoint_caches(); free_segment_manager_caches: destroy_segment_manager_caches(); free_node_manager_caches: destroy_node_manager_caches(); free_inodecache: destroy_inodecache(); fail: return err; } static void __exit exit_f2fs_fs(void) { remove_proc_entry("fs/f2fs", NULL); f2fs_destroy_root_stats(); unregister_filesystem(&f2fs_fs_type); unregister_shrinker(&f2fs_shrinker_info); #ifdef CONFIG_F2FS_FAULT_INJECTION kobject_put(&f2fs_fault_inject); #endif kset_unregister(f2fs_kset); destroy_extent_cache(); destroy_checkpoint_caches(); destroy_segment_manager_caches(); destroy_node_manager_caches(); destroy_inodecache(); f2fs_destroy_trace_ios(); } module_init(init_f2fs_fs) module_exit(exit_f2fs_fs) MODULE_AUTHOR("Samsung Electronics's Praesto Team"); MODULE_DESCRIPTION("Flash Friendly File System"); MODULE_LICENSE("GPL");