/* * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit) * * Copyright (C) 2011 Samsung Electronics * Donggeun Kim * Amit Daniel Kachhap * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include "exynos_thermal_common.h" #include "exynos_tmu.h" #include "exynos_tmu_data.h" /** * struct exynos_tmu_data : A structure to hold the private data of the TMU driver * @id: identifier of the one instance of the TMU controller. * @pdata: pointer to the tmu platform/configuration data * @base: base address of the single instance of the TMU controller. * @base_common: base address of the common registers of the TMU controller. * @irq: irq number of the TMU controller. * @soc: id of the SOC type. * @irq_work: pointer to the irq work structure. * @lock: lock to implement synchronization. * @clk: pointer to the clock structure. * @temp_error1: fused value of the first point trim. * @temp_error2: fused value of the second point trim. * @regulator: pointer to the TMU regulator structure. * @reg_conf: pointer to structure to register with core thermal. */ struct exynos_tmu_data { int id; struct exynos_tmu_platform_data *pdata; void __iomem *base; void __iomem *base_common; int irq; enum soc_type soc; struct work_struct irq_work; struct mutex lock; struct clk *clk; u8 temp_error1, temp_error2; struct regulator *regulator; struct thermal_sensor_conf *reg_conf; }; /* * TMU treats temperature as a mapped temperature code. * The temperature is converted differently depending on the calibration type. */ static int temp_to_code(struct exynos_tmu_data *data, u8 temp) { struct exynos_tmu_platform_data *pdata = data->pdata; int temp_code; if (pdata->cal_mode == HW_MODE) return temp; if (data->soc == SOC_ARCH_EXYNOS4210) /* temp should range between 25 and 125 */ if (temp < 25 || temp > 125) { temp_code = -EINVAL; goto out; } switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: temp_code = (temp - pdata->first_point_trim) * (data->temp_error2 - data->temp_error1) / (pdata->second_point_trim - pdata->first_point_trim) + data->temp_error1; break; case TYPE_ONE_POINT_TRIMMING: temp_code = temp + data->temp_error1 - pdata->first_point_trim; break; default: temp_code = temp + pdata->default_temp_offset; break; } out: return temp_code; } /* * Calculate a temperature value from a temperature code. * The unit of the temperature is degree Celsius. */ static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code) { struct exynos_tmu_platform_data *pdata = data->pdata; int temp; if (pdata->cal_mode == HW_MODE) return temp_code; if (data->soc == SOC_ARCH_EXYNOS4210) /* temp_code should range between 75 and 175 */ if (temp_code < 75 || temp_code > 175) { temp = -ENODATA; goto out; } switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: temp = (temp_code - data->temp_error1) * (pdata->second_point_trim - pdata->first_point_trim) / (data->temp_error2 - data->temp_error1) + pdata->first_point_trim; break; case TYPE_ONE_POINT_TRIMMING: temp = temp_code - data->temp_error1 + pdata->first_point_trim; break; default: temp = temp_code - pdata->default_temp_offset; break; } out: return temp; } static int exynos_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int status, trim_info = 0, con; unsigned int rising_threshold = 0, falling_threshold = 0; int ret = 0, threshold_code, i, trigger_levs = 0; mutex_lock(&data->lock); clk_enable(data->clk); if (TMU_SUPPORTS(pdata, READY_STATUS)) { status = readb(data->base + reg->tmu_status); if (!status) { ret = -EBUSY; goto out; } } if (TMU_SUPPORTS(pdata, TRIM_RELOAD)) __raw_writel(1, data->base + reg->triminfo_ctrl); if (pdata->cal_mode == HW_MODE) goto skip_calib_data; /* Save trimming info in order to perform calibration */ if (data->soc == SOC_ARCH_EXYNOS5440) { /* * For exynos5440 soc triminfo value is swapped between TMU0 and * TMU2, so the below logic is needed. */ switch (data->id) { case 0: trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data); break; case 1: trim_info = readl(data->base + reg->triminfo_data); break; case 2: trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data); } } else { trim_info = readl(data->base + reg->triminfo_data); } data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK; data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) & EXYNOS_TMU_TEMP_MASK); if (!data->temp_error1 || (pdata->min_efuse_value > data->temp_error1) || (data->temp_error1 > pdata->max_efuse_value)) data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK; if (!data->temp_error2) data->temp_error2 = (pdata->efuse_value >> reg->triminfo_85_shift) & EXYNOS_TMU_TEMP_MASK; skip_calib_data: if (pdata->max_trigger_level > MAX_THRESHOLD_LEVS) { dev_err(&pdev->dev, "Invalid max trigger level\n"); goto out; } for (i = 0; i < pdata->max_trigger_level; i++) { if (!pdata->trigger_levels[i]) continue; if ((pdata->trigger_type[i] == HW_TRIP) && (!pdata->trigger_levels[pdata->max_trigger_level - 1])) { dev_err(&pdev->dev, "Invalid hw trigger level\n"); ret = -EINVAL; goto out; } /* Count trigger levels except the HW trip*/ if (!(pdata->trigger_type[i] == HW_TRIP)) trigger_levs++; } if (data->soc == SOC_ARCH_EXYNOS4210) { /* Write temperature code for threshold */ threshold_code = temp_to_code(data, pdata->threshold); if (threshold_code < 0) { ret = threshold_code; goto out; } writeb(threshold_code, data->base + reg->threshold_temp); for (i = 0; i < trigger_levs; i++) writeb(pdata->trigger_levels[i], data->base + reg->threshold_th0 + i * sizeof(reg->threshold_th0)); writel(reg->inten_rise_mask, data->base + reg->tmu_intclear); } else { /* Write temperature code for rising and falling threshold */ for (i = 0; i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) { threshold_code = temp_to_code(data, pdata->trigger_levels[i]); if (threshold_code < 0) { ret = threshold_code; goto out; } rising_threshold |= threshold_code << 8 * i; if (pdata->threshold_falling) { threshold_code = temp_to_code(data, pdata->trigger_levels[i] - pdata->threshold_falling); if (threshold_code > 0) falling_threshold |= threshold_code << 8 * i; } } writel(rising_threshold, data->base + reg->threshold_th0); writel(falling_threshold, data->base + reg->threshold_th1); writel((reg->inten_rise_mask << reg->inten_rise_shift) | (reg->inten_fall_mask << reg->inten_fall_shift), data->base + reg->tmu_intclear); /* if last threshold limit is also present */ i = pdata->max_trigger_level - 1; if (pdata->trigger_levels[i] && (pdata->trigger_type[i] == HW_TRIP)) { threshold_code = temp_to_code(data, pdata->trigger_levels[i]); if (threshold_code < 0) { ret = threshold_code; goto out; } if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) { /* 1-4 level to be assigned in th0 reg */ rising_threshold |= threshold_code << 8 * i; writel(rising_threshold, data->base + reg->threshold_th0); } else if (i == EXYNOS_MAX_TRIGGER_PER_REG) { /* 5th level to be assigned in th2 reg */ rising_threshold = threshold_code << reg->threshold_th3_l0_shift; writel(rising_threshold, data->base + reg->threshold_th2); } con = readl(data->base + reg->tmu_ctrl); con |= (1 << reg->therm_trip_en_shift); writel(con, data->base + reg->tmu_ctrl); } } /*Clear the PMIN in the common TMU register*/ if (reg->tmu_pmin && !data->id) writel(0, data->base_common + reg->tmu_pmin); out: clk_disable(data->clk); mutex_unlock(&data->lock); return ret; } static void exynos_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int con, interrupt_en, cal_val; mutex_lock(&data->lock); clk_enable(data->clk); con = readl(data->base + reg->tmu_ctrl); if (pdata->reference_voltage) { con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift); con |= pdata->reference_voltage << reg->buf_vref_sel_shift; } if (pdata->gain) { con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift); con |= (pdata->gain << reg->buf_slope_sel_shift); } if (pdata->noise_cancel_mode) { con &= ~(reg->therm_trip_mode_mask << reg->therm_trip_mode_shift); con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift); } if (pdata->cal_mode == HW_MODE) { con &= ~(reg->calib_mode_mask << reg->calib_mode_shift); cal_val = 0; switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: cal_val = 3; break; case TYPE_ONE_POINT_TRIMMING_85: cal_val = 2; break; case TYPE_ONE_POINT_TRIMMING_25: cal_val = 1; break; case TYPE_NONE: break; default: dev_err(&pdev->dev, "Invalid calibration type, using none\n"); } con |= cal_val << reg->calib_mode_shift; } if (on) { con |= (1 << reg->core_en_shift); interrupt_en = pdata->trigger_enable[3] << reg->inten_rise3_shift | pdata->trigger_enable[2] << reg->inten_rise2_shift | pdata->trigger_enable[1] << reg->inten_rise1_shift | pdata->trigger_enable[0] << reg->inten_rise0_shift; if (TMU_SUPPORTS(pdata, FALLING_TRIP)) interrupt_en |= interrupt_en << reg->inten_fall0_shift; } else { con &= ~(1 << reg->core_en_shift); interrupt_en = 0; /* Disable all interrupts */ } writel(interrupt_en, data->base + reg->tmu_inten); writel(con, data->base + reg->tmu_ctrl); clk_disable(data->clk); mutex_unlock(&data->lock); } static int exynos_tmu_read(struct exynos_tmu_data *data) { struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; u8 temp_code; int temp; mutex_lock(&data->lock); clk_enable(data->clk); temp_code = readb(data->base + reg->tmu_cur_temp); temp = code_to_temp(data, temp_code); clk_disable(data->clk); mutex_unlock(&data->lock); return temp; } #ifdef CONFIG_THERMAL_EMULATION static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) { struct exynos_tmu_data *data = drv_data; struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int val; int ret = -EINVAL; if (!TMU_SUPPORTS(pdata, EMULATION)) goto out; if (temp && temp < MCELSIUS) goto out; mutex_lock(&data->lock); clk_enable(data->clk); val = readl(data->base + reg->emul_con); if (temp) { temp /= MCELSIUS; if (TMU_SUPPORTS(pdata, EMUL_TIME)) { val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift); val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift); } val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift); val |= (temp_to_code(data, temp) << reg->emul_temp_shift) | EXYNOS_EMUL_ENABLE; } else { val &= ~EXYNOS_EMUL_ENABLE; } writel(val, data->base + reg->emul_con); clk_disable(data->clk); mutex_unlock(&data->lock); return 0; out: return ret; } #else static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) { return -EINVAL; } #endif/*CONFIG_THERMAL_EMULATION*/ static void exynos_tmu_work(struct work_struct *work) { struct exynos_tmu_data *data = container_of(work, struct exynos_tmu_data, irq_work); struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int val_irq, val_type; /* Find which sensor generated this interrupt */ if (reg->tmu_irqstatus) { val_type = readl(data->base_common + reg->tmu_irqstatus); if (!((val_type >> data->id) & 0x1)) goto out; } exynos_report_trigger(data->reg_conf); mutex_lock(&data->lock); clk_enable(data->clk); /* TODO: take action based on particular interrupt */ val_irq = readl(data->base + reg->tmu_intstat); /* clear the interrupts */ writel(val_irq, data->base + reg->tmu_intclear); clk_disable(data->clk); mutex_unlock(&data->lock); out: enable_irq(data->irq); } static irqreturn_t exynos_tmu_irq(int irq, void *id) { struct exynos_tmu_data *data = id; disable_irq_nosync(irq); schedule_work(&data->irq_work); return IRQ_HANDLED; } #ifdef CONFIG_OF static const struct of_device_id exynos_tmu_match[] = { { .compatible = "samsung,exynos4210-tmu", .data = (void *)EXYNOS4210_TMU_DRV_DATA, }, { .compatible = "samsung,exynos4412-tmu", .data = (void *)EXYNOS5250_TMU_DRV_DATA, }, { .compatible = "samsung,exynos5250-tmu", .data = (void *)EXYNOS5250_TMU_DRV_DATA, }, { .compatible = "samsung,exynos5440-tmu", .data = (void *)EXYNOS5440_TMU_DRV_DATA, }, {}, }; MODULE_DEVICE_TABLE(of, exynos_tmu_match); #endif static inline struct exynos_tmu_platform_data *exynos_get_driver_data( struct platform_device *pdev, int id) { #ifdef CONFIG_OF struct exynos_tmu_init_data *data_table; struct exynos_tmu_platform_data *tmu_data; if (pdev->dev.of_node) { const struct of_device_id *match; match = of_match_node(exynos_tmu_match, pdev->dev.of_node); if (!match) return NULL; data_table = (struct exynos_tmu_init_data *) match->data; if (!data_table || id >= data_table->tmu_count) return NULL; tmu_data = data_table->tmu_data; return (struct exynos_tmu_platform_data *) (tmu_data + id); } #endif return NULL; } static int exynos_map_dt_data(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata; struct resource res; int ret; if (!data) return -ENODEV; /* * Try enabling the regulator if found * TODO: Add regulator as an SOC feature, so that regulator enable * is a compulsory call. */ data->regulator = devm_regulator_get(&pdev->dev, "vtmu"); if (!IS_ERR(data->regulator)) { ret = regulator_enable(data->regulator); if (ret) { dev_err(&pdev->dev, "failed to enable vtmu\n"); return ret; } } else { dev_info(&pdev->dev, "Regulator node (vtmu) not found\n"); } data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl"); if (data->id < 0) data->id = 0; data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); if (data->irq <= 0) { dev_err(&pdev->dev, "failed to get IRQ\n"); return -ENODEV; } if (of_address_to_resource(pdev->dev.of_node, 0, &res)) { dev_err(&pdev->dev, "failed to get Resource 0\n"); return -ENODEV; } data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); if (!data->base) { dev_err(&pdev->dev, "Failed to ioremap memory\n"); return -EADDRNOTAVAIL; } pdata = exynos_get_driver_data(pdev, data->id); if (!pdata) { dev_err(&pdev->dev, "No platform init data supplied.\n"); return -ENODEV; } data->pdata = pdata; /* * Check if the TMU shares some registers and then try to map the * memory of common registers. */ if (!TMU_SUPPORTS(pdata, SHARED_MEMORY)) return 0; if (of_address_to_resource(pdev->dev.of_node, 1, &res)) { dev_err(&pdev->dev, "failed to get Resource 1\n"); return -ENODEV; } data->base_common = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); if (!data->base_common) { dev_err(&pdev->dev, "Failed to ioremap memory\n"); return -ENOMEM; } return 0; } static int exynos_tmu_probe(struct platform_device *pdev) { struct exynos_tmu_data *data; struct exynos_tmu_platform_data *pdata; struct thermal_sensor_conf *sensor_conf; int ret, i; data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data), GFP_KERNEL); if (!data) { dev_err(&pdev->dev, "Failed to allocate driver structure\n"); return -ENOMEM; } platform_set_drvdata(pdev, data); mutex_init(&data->lock); ret = exynos_map_dt_data(pdev); if (ret) return ret; pdata = data->pdata; INIT_WORK(&data->irq_work, exynos_tmu_work); data->clk = devm_clk_get(&pdev->dev, "tmu_apbif"); if (IS_ERR(data->clk)) { dev_err(&pdev->dev, "Failed to get clock\n"); return PTR_ERR(data->clk); } ret = clk_prepare(data->clk); if (ret) return ret; if (pdata->type == SOC_ARCH_EXYNOS || pdata->type == SOC_ARCH_EXYNOS4210 || pdata->type == SOC_ARCH_EXYNOS5440) data->soc = pdata->type; else { ret = -EINVAL; dev_err(&pdev->dev, "Platform not supported\n"); goto err_clk; } ret = exynos_tmu_initialize(pdev); if (ret) { dev_err(&pdev->dev, "Failed to initialize TMU\n"); goto err_clk; } exynos_tmu_control(pdev, true); /* Allocate a structure to register with the exynos core thermal */ sensor_conf = devm_kzalloc(&pdev->dev, sizeof(struct thermal_sensor_conf), GFP_KERNEL); if (!sensor_conf) { dev_err(&pdev->dev, "Failed to allocate registration struct\n"); ret = -ENOMEM; goto err_clk; } sprintf(sensor_conf->name, "therm_zone%d", data->id); sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read; sensor_conf->write_emul_temp = (int (*)(void *, unsigned long))exynos_tmu_set_emulation; sensor_conf->driver_data = data; sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] + pdata->trigger_enable[1] + pdata->trigger_enable[2]+ pdata->trigger_enable[3]; for (i = 0; i < sensor_conf->trip_data.trip_count; i++) { sensor_conf->trip_data.trip_val[i] = pdata->threshold + pdata->trigger_levels[i]; sensor_conf->trip_data.trip_type[i] = pdata->trigger_type[i]; } sensor_conf->trip_data.trigger_falling = pdata->threshold_falling; sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count; for (i = 0; i < pdata->freq_tab_count; i++) { sensor_conf->cooling_data.freq_data[i].freq_clip_max = pdata->freq_tab[i].freq_clip_max; sensor_conf->cooling_data.freq_data[i].temp_level = pdata->freq_tab[i].temp_level; } sensor_conf->dev = &pdev->dev; /* Register the sensor with thermal management interface */ ret = exynos_register_thermal(sensor_conf); if (ret) { dev_err(&pdev->dev, "Failed to register thermal interface\n"); goto err_clk; } data->reg_conf = sensor_conf; ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq, IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data); if (ret) { dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); goto err_clk; } return 0; err_clk: clk_unprepare(data->clk); return ret; } static int exynos_tmu_remove(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); exynos_tmu_control(pdev, false); exynos_unregister_thermal(data->reg_conf); clk_unprepare(data->clk); if (!IS_ERR(data->regulator)) regulator_disable(data->regulator); return 0; } #ifdef CONFIG_PM_SLEEP static int exynos_tmu_suspend(struct device *dev) { exynos_tmu_control(to_platform_device(dev), false); return 0; } static int exynos_tmu_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); exynos_tmu_initialize(pdev); exynos_tmu_control(pdev, true); return 0; } static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, exynos_tmu_suspend, exynos_tmu_resume); #define EXYNOS_TMU_PM (&exynos_tmu_pm) #else #define EXYNOS_TMU_PM NULL #endif static struct platform_driver exynos_tmu_driver = { .driver = { .name = "exynos-tmu", .owner = THIS_MODULE, .pm = EXYNOS_TMU_PM, .of_match_table = of_match_ptr(exynos_tmu_match), }, .probe = exynos_tmu_probe, .remove = exynos_tmu_remove, }; module_platform_driver(exynos_tmu_driver); MODULE_DESCRIPTION("EXYNOS TMU Driver"); MODULE_AUTHOR("Donggeun Kim "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:exynos-tmu");