/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _ISCI_REMOTE_DEVICE_H_ #define _ISCI_REMOTE_DEVICE_H_ #include #include #include "scu_remote_node_context.h" #include "remote_node_context.h" #include "port.h" enum sci_remote_device_not_ready_reason_code { SCIC_REMOTE_DEVICE_NOT_READY_START_REQUESTED, SCIC_REMOTE_DEVICE_NOT_READY_STOP_REQUESTED, SCIC_REMOTE_DEVICE_NOT_READY_SATA_REQUEST_STARTED, SCIC_REMOTE_DEVICE_NOT_READY_SATA_SDB_ERROR_FIS_RECEIVED, SCIC_REMOTE_DEVICE_NOT_READY_SMP_REQUEST_STARTED, SCIC_REMOTE_DEVICE_NOT_READY_REASON_CODE_MAX }; /** * isci_remote_device - isci representation of a sas expander / end point * @device_port_width: hw setting for number of simultaneous connections * @connection_rate: per-taskcontext connection rate for this device * @working_request: SATA requests have no tag we for unaccelerated * protocols we need a method to associate unsolicited * frames with a pending request */ struct isci_remote_device { #define IDEV_START_PENDING 0 #define IDEV_STOP_PENDING 1 #define IDEV_ALLOCATED 2 #define IDEV_GONE 3 #define IDEV_IO_READY 4 #define IDEV_IO_NCQERROR 5 unsigned long flags; struct kref kref; struct isci_port *isci_port; struct domain_device *domain_dev; struct list_head node; struct list_head reqs_in_process; struct sci_base_state_machine sm; u32 device_port_width; enum sas_linkrate connection_rate; bool is_direct_attached; struct isci_port *owning_port; struct sci_remote_node_context rnc; /* XXX unify with device reference counting and delete */ u32 started_request_count; struct isci_request *working_request; u32 not_ready_reason; }; #define ISCI_REMOTE_DEVICE_START_TIMEOUT 5000 /* device reference routines must be called under sci_lock */ static inline struct isci_remote_device *isci_lookup_device(struct domain_device *dev) { struct isci_remote_device *idev = dev->lldd_dev; if (idev && !test_bit(IDEV_GONE, &idev->flags)) { kref_get(&idev->kref); return idev; } return NULL; } void isci_remote_device_release(struct kref *kref); static inline void isci_put_device(struct isci_remote_device *idev) { if (idev) kref_put(&idev->kref, isci_remote_device_release); } enum sci_status isci_remote_device_stop(struct isci_host *ihost, struct isci_remote_device *idev); void isci_remote_device_nuke_requests(struct isci_host *ihost, struct isci_remote_device *idev); void isci_remote_device_gone(struct domain_device *domain_dev); int isci_remote_device_found(struct domain_device *domain_dev); /** * sci_remote_device_stop() - This method will stop both transmission and * reception of link activity for the supplied remote device. This method * disables normal IO requests from flowing through to the remote device. * @remote_device: This parameter specifies the device to be stopped. * @timeout: This parameter specifies the number of milliseconds in which the * stop operation should complete. * * An indication of whether the device was successfully stopped. SCI_SUCCESS * This value is returned if the transmission and reception for the device was * successfully stopped. */ enum sci_status sci_remote_device_stop( struct isci_remote_device *idev, u32 timeout); /** * sci_remote_device_reset() - This method will reset the device making it * ready for operation. This method must be called anytime the device is * reset either through a SMP phy control or a port hard reset request. * @remote_device: This parameter specifies the device to be reset. * * This method does not actually cause the device hardware to be reset. This * method resets the software object so that it will be operational after a * device hardware reset completes. An indication of whether the device reset * was accepted. SCI_SUCCESS This value is returned if the device reset is * started. */ enum sci_status sci_remote_device_reset( struct isci_remote_device *idev); /** * sci_remote_device_reset_complete() - This method informs the device object * that the reset operation is complete and the device can resume operation * again. * @remote_device: This parameter specifies the device which is to be informed * of the reset complete operation. * * An indication that the device is resuming operation. SCI_SUCCESS the device * is resuming operation. */ enum sci_status sci_remote_device_reset_complete( struct isci_remote_device *idev); /** * enum sci_remote_device_states - This enumeration depicts all the states * for the common remote device state machine. * * */ enum sci_remote_device_states { /** * Simply the initial state for the base remote device state machine. */ SCI_DEV_INITIAL, /** * This state indicates that the remote device has successfully been * stopped. In this state no new IO operations are permitted. * This state is entered from the INITIAL state. * This state is entered from the STOPPING state. */ SCI_DEV_STOPPED, /** * This state indicates the the remote device is in the process of * becoming ready (i.e. starting). In this state no new IO operations * are permitted. * This state is entered from the STOPPED state. */ SCI_DEV_STARTING, /** * This state indicates the remote device is now ready. Thus, the user * is able to perform IO operations on the remote device. * This state is entered from the STARTING state. */ SCI_DEV_READY, /** * This is the idle substate for the stp remote device. When there are no * active IO for the device it is is in this state. */ SCI_STP_DEV_IDLE, /** * This is the command state for for the STP remote device. This state is * entered when the device is processing a non-NCQ command. The device object * will fail any new start IO requests until this command is complete. */ SCI_STP_DEV_CMD, /** * This is the NCQ state for the STP remote device. This state is entered * when the device is processing an NCQ reuqest. It will remain in this state * so long as there is one or more NCQ requests being processed. */ SCI_STP_DEV_NCQ, /** * This is the NCQ error state for the STP remote device. This state is * entered when an SDB error FIS is received by the device object while in the * NCQ state. The device object will only accept a READ LOG command while in * this state. */ SCI_STP_DEV_NCQ_ERROR, /** * This is the ATAPI error state for the STP ATAPI remote device. * This state is entered when ATAPI device sends error status FIS * without data while the device object is in CMD state. * A suspension event is expected in this state. * The device object will resume right away. */ SCI_STP_DEV_ATAPI_ERROR, /** * This is the READY substate indicates the device is waiting for the RESET task * coming to be recovered from certain hardware specific error. */ SCI_STP_DEV_AWAIT_RESET, /** * This is the ready operational substate for the remote device. This is the * normal operational state for a remote device. */ SCI_SMP_DEV_IDLE, /** * This is the suspended state for the remote device. This is the state that * the device is placed in when a RNC suspend is received by the SCU hardware. */ SCI_SMP_DEV_CMD, /** * This state indicates that the remote device is in the process of * stopping. In this state no new IO operations are permitted, but * existing IO operations are allowed to complete. * This state is entered from the READY state. * This state is entered from the FAILED state. */ SCI_DEV_STOPPING, /** * This state indicates that the remote device has failed. * In this state no new IO operations are permitted. * This state is entered from the INITIALIZING state. * This state is entered from the READY state. */ SCI_DEV_FAILED, /** * This state indicates the device is being reset. * In this state no new IO operations are permitted. * This state is entered from the READY state. */ SCI_DEV_RESETTING, /** * Simply the final state for the base remote device state machine. */ SCI_DEV_FINAL, }; static inline struct isci_remote_device *rnc_to_dev(struct sci_remote_node_context *rnc) { struct isci_remote_device *idev; idev = container_of(rnc, typeof(*idev), rnc); return idev; } static inline bool dev_is_expander(struct domain_device *dev) { return dev->dev_type == EDGE_DEV || dev->dev_type == FANOUT_DEV; } static inline void sci_remote_device_decrement_request_count(struct isci_remote_device *idev) { /* XXX delete this voodoo when converting to the top-level device * reference count */ if (WARN_ONCE(idev->started_request_count == 0, "%s: tried to decrement started_request_count past 0!?", __func__)) /* pass */; else idev->started_request_count--; } enum sci_status sci_remote_device_frame_handler( struct isci_remote_device *idev, u32 frame_index); enum sci_status sci_remote_device_event_handler( struct isci_remote_device *idev, u32 event_code); enum sci_status sci_remote_device_start_io( struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq); enum sci_status sci_remote_device_start_task( struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq); enum sci_status sci_remote_device_complete_io( struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq); enum sci_status sci_remote_device_suspend( struct isci_remote_device *idev, u32 suspend_type); void sci_remote_device_post_request( struct isci_remote_device *idev, u32 request); #endif /* !defined(_ISCI_REMOTE_DEVICE_H_) */